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Abstract. Following obstacle free paths towards the ball and avoiding opponents
while dribbling are key skills to win soccer games. These tasks are challenging
as the robot’s environment in soccer games is highly dynamic. Thus, exact plans
will likely become invalid in the future and continuous replanning is necessary.
The robots of the RoboCup Standard Platform League are equipped with limited
computational resources, but have to perform many parallel tasks with real-time
requirements. Consequently, path planning algorithms have to be fast.
In this paper, we compare two approaches to reduce the planning time by using
a local-multiresolution representation or a log-polar representation of the envi-
ronment. Both approaches combine a detailed representation of the vicinity of
the robot with a reasonably short planning time. We extend the multiresolution
approach to the time dimension and we predict the opponents movement by pro-
jecting the planning robot’s intentions.

1 Introduction

A basic skill for autonomous robots is the ability to plan collision-free paths. In the hu-
manoid soccer domain, a common approach is to determine a gait target vector, which
controls the direction and velocity of the robot’s motion, by incorporating the target po-
sition and the position of obstacles. Hence, perceptions are directly mapped to actions.
The mapping may depend on additional factors, like the role assigned to the robot or the
game state, but it does not consider the (foreseeable) future. This can lead to inefficient
obstacle avoidance, e. g., the robot passes an obstacle on the side closer to its target just
to be blocked by the next obstacle in the same direction.

On mobile robot platforms, the computational resources are often limited due to
weight and power constraints. Accordingly, exact planning even of relatively small
problem instances is not possible in real-time. Moreover, performing time-consuming
planning and committing to a long-term plan is no option in highly dynamic domains
like soccer. Because of the limited capabilities of the robot’s sensors, it is not possible
to estimate precise obstacle positions. Therefore, the environment is not only dynamic,
but path planning has to deal with uncertainties.

Thus, we propose to use approximate path planning with replanning every time a
new state of the environment is perceived. With increasing time since the last percep-
tion, the prediction of the world state becomes more uncertain. Consequently, planning
steps in the far future should be more approximative than planning steps that have to be
executed immediately, as the former will likely be invalid at the time they are executed.
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In order to reduce the complexity of the plan representations, we employ multiresolu-
tional approaches, namely, a local multiresolutional grid and a log-polar grid. In both
representations, the resolution decreases with increasing distance to the robot.

In arbitrary situations, it is hard to predict the movements of dynamic obstacles
without tracking them. Thus, these movements are often modelled as random noise. In
contrast, the movements of the opponent in soccer games are aimed at scoring goals.
We employ this fact to gain a better estimation of probable obstacle trajectories by
projecting the intentions of the planning robot to other field players.

2 Related Work

Our humanoid soccer team uses a hierarchical reactive approach to control the robot’s
motion [2]. In contrast, our novel approach is based on planning. It considers the fore-
seeable future to determine obstacle-free robot paths. Continuous replanning allows
for always considering the most recent sensory information and for quickly reacting to
changes in the environment.

Many planning-based systems exist in the literature. The key challenge is the com-
putational complexity of real-time planning and execution. Kaelbling and Lozano-Pérez
reduce the complexity of task planning by top-down hierarchical planning [4]. In their
approach, an agent commits to a high-level plan. The refinement of abstract actions is
performed at the moment an agent reaches them during plan execution. We follow the
same assumption that there is likely a valid refinement at the time an abstract action has
to be concretized, and that every plan can be reversed without huge costs in case that
there is no such refinement.

A method for resource-saving path planning is the local multiresolution Cartesian
grid [1]. It employs multiple robot-centered grids with different resolutions, and nests
them hierarchically while connecting them through adjacencies. This representation
resembles our approach to approximate plan steps with increasing distance to the robot.
In addition, it was designed for soccer robots and, consequently, considers the present
circumstances.

Apart from Cartesian occupancy grid maps [11], polar coordinate based grids can
be found for egocentric robot motion planning in the literature [3], [5]. In this approach,
the environment close to the robot has a high Cartesian resolution that decreases with
the distance, due to the fixed angular resolution. Polar grids with hyperbolic distance
functions are used to represent infinite radii within a finite number of grid cells. This
property is used to plan long-distance paths in outdoor environments [10].

Another kind of polar grids are log-polar grids [6]. Like the local multiresolution
grid, this approach emphasizes a more precise path planning in the robot’s vicinity. Fur-
thermore, polar grids have the advantage of an easy integration of obstacles perceived
by ultrasonic sensors and cameras.

3 Robot Platform

In the RoboCup Standard Platform League (SPL), Nao robots from Aldebaran Robotics
are used [7]. The Nao V3+ edition, used in recent RoboCup competitions, has 21 de-



(a) Local multiresolution grid with five levels
and 8× 8 cells on each level.

(b) Log-polar grid with 16 discrete steps for an-
gle and distance respectively.

Fig. 1. Non-uniform grids allow to cover a given area with multiple orders of magnitude less cells
than uniform ones. Depicted are planned paths on a soccer field (red dots and lines) starting from
the robot position in the center of the grid to the ball 3m in front of it. The robot faces towards
the positive x-axis. Occupied cells are marked by black dots.

grees of freedom. The environment is perceived by two cameras, from which only one
can be used at a time, and two ultrasonic sensors. In our system, we continuously switch
between the two cameras, which results in a frame rate of approximately 14 Hz. The
ultrasonic sensors are located at the robot’s chest covering an angle of approximately
110◦ in front of the robot. The detection range is from 300mm to 700mm 1.

The ultrasonic sensors measure the distance towards an obstacle, but not its precise
angular position. In contrast, both cameras provide the exact direction towards an ob-
stacle, but no precise distance. This leads to uncertainties which have to be taken into
account.

The Nao robot is equipped with a x86 AMD Geode LX 800 CPU running at 500MHz.
It has 256MB of RAM and 2GB of persistent flash memory 2. The built-in processor
has the advantage of low power consumption, with the tradeoff of low computational
power. Compared to state-of-the-art computer systems, the resources are rather lim-
ited. Hence, a low system load is an important requirement for the development of new
software components.

Our software is based on the framework of the German SPL-team B-Human [8]. The
framework consists of several modules executing different tasks. In addition to modules
for, e. g., perception or behavior control, a simulator called SimRobot is provided. For
our tests, we integrated a new path planning module into the framework.

4 Path Planning Representations

At RoboCup 2010, we used reactive target selection and obstacle avoidance behaviors.
Thus, a gait target vector (vx, vy, vθ), which determines the walking speed in forward,

1 Nao User’s Guide Ver 1.6.0, Aldebaran Robotics
2 Nao Academics Datasheet, Aldebaran Robotics



Fig. 2. Obstacles are modeled as a fixed radius rF and a distance dependant radius rD with
maximum costs and a safety margin rS with decreasing costs.

lateral, and rotational direction, respectively, is determined merely by direct perceptions
and active behaviors. Typical behaviors are go to ball or avoid obstacle. Going to the
ball leads to a gait target vector towards the estimated ball position. Obstacles can be
seen as repulsive forces affecting the direction of the gait target vector in this notion.

Our approach to planning a path to a target introduces a planning layer between
abstract behaviors and motion control. Waypoints provided by this layer are used to
determine the needed velocities. The abstract behaviors configure the planner and per-
ceptions are integrated into the planner’s world representation.

In our implementation, we use the A*-algorithm with a closed list. We implemented
our planner with three different types of representations: a uniform, a local multireso-
lution and a log-polar grid. All representations have in common that their coordinate
system is egocentric, i. e., they are translated and rotated according to the robot’s pose.
In the following section, we describe our uniform grid representation and detail the two
non-uniform grid representations.

4.1 Uniform Grid

A commonly used representation of the environment are uniform grid maps. These dis-
cretize the environment into equally-sized cells. Cells marked as occupied correspond
to obstacles. Perceived obstacles are initialized with a radius and costs. The radius con-
sists of a static part representing the obstacle radius plus a component that increases
linearly with the distance to the grid center. This component represents the uncertainty
in distant measurements and the obstacle movements. To keep the overall costs of an
obstacle constant, the costs are reduced accordingly. The approximate robot radius and
a safety margin with linear decreasing costs are added to the obstacle, before it is in-
serted into the map. This simplifies the planning problem to finding a path for a robot
that is reduced to a point and allows to plan paths through robots standing close to
each other, but avoids the vicinity of obstacles if this is possible without huge costs.
Our obstacle model is depicted in Fig. 2. The positions of visually perceived obstacles
and sonar readings are maintained in different representations outside of the grid and
incorporated into it during planning.



The center of a grid cell can be interpreted as a node of a graph with edges to the
eight neighboring cell centers. Therefore, it is possible to use standard graph searches
as the A*-algorithm (cf. [9]).

Due to the simple structure of the grid, there is no need to explicitly model the
cell connectivity. Furthermore, the cost calculation per step is reduced to two cases:
Diagonal or straight steps. Because of the simplicity, it can be easily implemented,
and arbitrary environments can be represented equally accurate, up to a freely chosen
resolution. This makes uniform grids a good choice for many applications. A major dis-
advantage is the computational complexity, which does not scale well with increasing
grid size. Especially in environments with special characteristics, like a soccer field,
more efficient representations are possible.

4.2 Local Multiresolution Grid

An efficient path planning algorithm is local multiresolution path planning [1]. Besides
the computational advantages of multiresolution, the uncertainty of local sensing and
of the own and the opponent’s movements are implicitly taken into account with an
increasing cell size.

The grid consists of multiple robot-centered grids with different resolutions embed-
ded into each other. With increasing distance to the robot, the grid resolution decreases.
This models the uncertainties caused by local sensing with only relative precision and
by the dynamic environment. Local multiresolution planning utilizes the fact that the
world changes continuously while the agents of the own and the opponent team move.
Hence, it is not worthwhile to make detailed plans for the far-future.

More formally, the environment is discretized into a square M ×M grid. Recur-
sively, a grid is embedded into the inner part
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the next coarser level. The cell area of the inner grid is a quarter of the cell area
of the outer grid. In order to cover the same area as a uniform N × N grid, only
(log2(N/M) + 1)M2 cells are necessary.

Fig. 1a shows an 8×8 local multiresolution grid with a minimum cell size of 10 cm
that covers an area of 163.84m2 with 256 cells using five grid levels. In contrast, a
uniform grid covering the same area consists of 16,384 cells.

The neighborhood of an inner grid cell consists of eight neighbors, similar to the
neighborhood of the uniform grid. However, the cells at the border to the coarser grid
have seven neighbors at the edges and six neighbors at the corner. Likewise, the grid
cells at the border to the finer grid have nine neighbors and eight neighbors, respectively.
In our implementation, the connections between two neighbors are encoded as edges of
a graph.

Incorporating obstacles into the grid is analog to the uniform grid.
For path planning with the A*-algorithm, the costs of each step are calculated by

means of the Euclidean distance of the centers of both cells and the added costs of the
target cell. The employed heuristic is the distance from the current grid cell to the target.

The advantages of this representation are the low requirements on the robot’s mem-
ory and on computational power. Moreover, uncertainties occurring in dynamic envi-
ronments are considered by the increasing cell size with increasing distance from the
robot.



4.3 Log-Polar Grid

Although our soccer robots are able to walk omnidirectionally, the best speed can be
achieved in forward direction. Furthermore, the robot’s sensing capabilities are de-
signed for perceiving the environment in front of the robot. Accordingly, walking in
forward direction towards the target, i. e., to the next waypoint of the plan, is preferred
for long distances. On a soccer field with only smaller obstacles, it is likely that rel-
atively long straight segments are often part of the plans. Because of our grid repre-
sentations being egocentric, a target in front of the robot is on the positive x-axis. As
this axis is a cell boundary in every resolution, this case is not well supported by the
local multiresolution grid. Due to imprecise measurements of the target and inaccurate
motion execution, distant targets in a uniform grid presumably change their respective
cells, too.

This leads us to a grid representation that fits the robot’s motion and sensing char-
acteristics in a more efficient way. In contrast to the Cartesian grid representations, a
polar grid representation provides a straight path towards targets in front of the robot
if there are no obstacles. Additionally, sensory information relevant to path planning is
initially provided in polar coordinates on our robots. Ultrasonic measurements are rep-
resented as a distance and an apex angle, and visual perceptions are estimated distances
and directions to obstacles. Both can be easily incorporated in a grid representation in
polar coordinates.

In polar coordinates, the environment is represented as an angle θ and a distance ρ
with regard to the robot’s pose, written as a tuple (θ, ρ). In our coordinate system, the
robot faces in the direction of the positive x-axis. We discretize the angular component
θ into T equally sized partitions. The first partition is chosen in a way that the positive
x-axis becomes the angle bisector of the angle represented by this partition. Hence,
small angular inaccuracies in the perception or gait execution will not change the grid
cell of a waypoint or the target.

To reach the implicit consideration of uncertainties and computational advantages
of the multiresolutional grid, the cells of our polar grid grow exponentially with the dis-
tance. In order to achieve this, the logarithm of the distance to the robot is partitioned.
To define a minimal cell size and still achieve a reasonable growth until the maximum
radius, we use a slightly shifted logarithm to avoid the initial strong slope of the log-
arithm. The calculations to determine the polar coordinates (θ, ρ) of a point (x, y) in
Cartesian coordinates, and the corresponding discretized grid cell (r, t) are

ρ = logb

((√
x2 + y2 (b− 1)

l

)
+ 1

)
,

θ = arctan
(y
x

)
,

(r, t) =

(
bρc, b

(
T

2π

)
θ + 0.5c

)
,

where b is the base of the logarithm, l is the minimal cell size and T is the number of
angular partitions.



The inverse operation therefore is described by

(x, y) =

(
cos(θ)
sin(θ)

)(
(br+0.5 − 1) ∗ l

b− 1

)
.

In our implementation, we use a base of b = 1.1789 and a minimal cell size of
l = 100mm. With 16 cell rings, we reach a maximum radius of 7211mm, which is
sufficient to plan paths for any two points within the SPL field boundaries. We use 16
steps for the angular component as well, leading to 256 cells in total, the same number
of grid cells used in the local multiresolution grid. The resulting grid is depicted in
Fig. 1b.

In the polar grid representation, the obstacles are treated analogously to the local
multiresolution grid.

The costs of each step are calculated by means of the Euclidean distance of the
centers of both cells, as in the local multiresolution grid. The heuristic is computed
likewise. The cell distances are precalculated to decrease the computational complexity.
Thus, single node expansions of a planner are not more costly in this representation than
in uniform grids.

4.4 Implementation Details

In our 2D planning implementation, we neglect the orientation and velocities of the
robot for efficiency reasons. Accordingly, due to the fast replanning, sudden changes of
the gait target vector are possible. To avoid this, we introduce a virtual obstacle behind
the robot, which represents its starting speed (Fig. 3). The polar grid representation
employs a half circle with cost interpolation between a minimum at the edges and a
maximum at the midway of the circle segment. In contrast, the Cartesian grid represen-
tations use a rectangle having the same characteristic. When the robot is moving, this
obstacle is opposed to the gait target vector with costs corresponding to the scalar value
of the velocity.

To generate motion commands for a planned path, the planning module sends the
next waypoint on the path to the motion control in every execution cycle. Replanning
is performed if the robot’s movement exceeds a threshold. Between planning calls,
the waypoint is adjusted using odometry data. The resulting gait target vector is the
weighted vector of position and angle of the waypoint relative to the robot.

5 Evaluation of the Representations

5.1 Planning Time & Node Expansions

The computing time of the three planners was measured in the simulator and on a Nao
robot with regard to four different test cases, representing all possible constellations
on the soccer field. Those are, 1. that no obstacle is detected, 2. obstacles are detected
either in the ultrasonic sensor measurements or 3. through cameras, and 4. obstacles
are captured by both, ultrasonic sensors and cameras. The used sensors influence the
planning time, because sonar sensors can only perceive close obstacles and have a low



Fig. 3. An artificial obstacle leading to preference of paths towards the robot’s current walking
direction to avoid sudden directional changes. Cells with higher costs are darker. The red arrow
is the gait target vector (left: Cartesian grid, right: polar grid).

Table 1. Planning time (in milliseconds) on the Nao (UG: uniform grid, LMG: local multiresolu-
tion grid, LPG: log-polar grid).

test case UG LMG LPG
no obstacles 2.9 0.4 0.3
ultrasonic 12.2 0.8 1.2

camera 18 2.3 3.0
ultrasonic & camera 23 3.0 3.5

angular resolution. This results in only few, but large obstacles in the vicinity of the
robot. In every test case, the target was 4000mm in front of the robot and five other
robots were on the field. In order to avoid an influence of noisy sensor data and for a
better reproducibility, we set the egocentric obstacle positions manually when testing
on the real robot and used ground truth data in simulation. The measured execution time
was averaged over 1000 planner runs.

The results of the tests on the Nao robot are shown in Tab. 1. Overall, the multires-
olutional approaches outperform the uniform grid planner clearly. Moreover, there are
differences between the local multiresolution and the log-polar grid, as the former has
a lower computational complexity.

6 Dynamic Planning with Intention Projection

Most of the obstacles apparent on the soccer field are not static. As described before,
we take this into account by smoothing distant obstacles. If the movement of the other
robot’s can be estimated in advance, it is possible to avoid future positions of these. Nat-
urally, it is not possible to reason about the exact behaviors and targets of the opponent
team. Thus, we have to apply situation specific assumptions for probable movements of
the opponent. For example, if our robot intends to reach a position where it can get ball
possession, this intent is projected to the opponent. Thus, we assume it will move to a
position where it can control the ball, too. This assumption is reasonable, as opponents
with the same intent as the planning player will more likely intersect the planned path
than robots with different intents.



Our dynamic obstacle model extends the static obstacle model by introducing an
assumed target relative to the obstacle and a velocity vector v. To be consistent with
the multiresolutional representation of space, the obstacle radius is increased and the
costs are decreased with increasing distance to the robot. We assume that the opponent
may either keep standing still or move to the target with any speed up to a maximum
vmax. This results in a uniform probability distribution of the opponent’s position along
a vector vmax × t. To represent this the representation of the obstacle grows into the
direction of its movement up to the assumed target with advancing time t. The overall
costs of the obstacle are kept constant. Hence, the costs of the obstacle decrease.

To represent the resulting different shapes of obstacles at different times, we extend
the grid representation to the time dimension. The resulting three-dimensional grid is
discrete in time and this discretization may not necessarily equal the space discretization
for arbitrary robot speeds. To take this into account, we explicitly calculate the average
time the robot needs to follow the planned path up to the current grid cell and discretize
it afterwards to determine whether edges connecting nodes within the same time level
can be followed.

Figure 4a shows an example where the planned paths with and without dynamic
planning are qualitatively different. Our robot aims to reach a position next to the ball
to dribble it towards the opponent goal. Therefore it has to walk around the ball. Another
player is approaching the ball from the left bottom side of the map. Utilizing a planning
algorithm not taking the directed movement of this robot into account, the robot would
try to pass the ball at the side the opponent is coming from, possibly having to avoid
it later on. The dynamic approach plans the same shortest path, if the opponent is still
far away. Otherwise, the ball is passed on the other side, where an intersection with the
opponents path is unlike.

Obviously, adding the time dimension makes the planning computationally more
involved. For the uniform time discretization we use a 16 s lookahead, discretized into
1 s steps. This results in a local-multiresolution grid with 4096 cells. Thus, we reduce
the complexity, following the same ideas of a multiresolutional representation as in the
space dimension. The minimal time an opponent robot needs to reach a cell corresponds
to the distance of that robot to the cell. Here, we have three qualitatively different cases
to consider:

– The robots are close to each other and to the cell. Thus, the cell is represented at
a fine spatial resolution and an intersection of the robot’s paths may occur soon. A
finer temporal resolution is necessary.

– The cell is further away. Hence, it is represented at a coarse spatial resolution and
coarse temporal resolution is sufficient, regardless of the position of the opponent.

– The cell is close to the planning robot, but the opponent is further away. In this case
a coarse resolution is sufficient to determine, if an intersection of paths in this cell
is likely.

Figure 4b depicts snapshots of the ball approaching example using a multiresolutional
time representation. The discrete time steps tm are defined as

tm(i) =

{
i = 0, 0
i > 0, 2i



(a) Uniform Time Dis-
cretization

(b) Multiresolutional Time
Discretization

(c) Implicit Consideration of
Time

Fig. 4. The planning robot aims to reach a position behind the ball to dribble it to the goal. An
opponent is detected and its position is propagated over the time by elongating the corresponding
obstacle shape. At the beginning costs of cell nodes are calculated using a circular obstacle model.
With increasing time, the obstacle representation becomes more elongated until it reaches the
target, i. e. a position behind the ball opposing our target. The time increases from the top (t=0) to
the bottom images (t=8 s). The left image series shows the uniform time discretization, the middle
series the multiresolutional time discretization and the right series the implicit consideration of
the time.



Fig. 5. Comparison of the robot’s trajectories while using the planner without time consideration
(green/dotted), with uniform time discretization(blue/dashed), and with implicit time incorpora-
tion (red/solid). The target is a point behind the ball (circle). An opponent is approaching from
the bottom right side. In the example on the left side the opponent is further away than in the
example depicted on the right side. Both planners that propagate the opponent’s position plan
qualitatively similar path. While following the plan without representation of the time, the robot
had to replan to avoid a collision with the opponent in the case depicted in the right figure.

The resulting grid contains 1280 cells and covers the same time and space as the uniform
grid.

As the speed of the planning robot is bound, the time necessary to reach cells in-
crease linearly with their distance to the robot, defining a lower envelope of the reach-
able cells. Thus, major parts of the three dimensional grid cannot be reached. Especially,
the fine grained temporal resolution steps are mostly below this envelope. For the plan-
ner it is of primary importance if a path through a cell may possibly cause a collision in
the future. Shortest paths often start with long straight segments towards the target. In
the case of an apparent obstacle, the segment is split into two segments with an interme-
diate point that modifies the path to be collision free. The time to follow the first segment
can be approximated by a linear function of the distance between robot and endpoint
of that segment. This leads us to an implicit incorporation of the time dimension into
our obstacle model. We determine the minimal distance to the line segment between the
opponent and its assumed target. With the linear time approximation function, we get
the approximate time of the probable intersection of the two paths. This approximation
is used to estimate the distribution over the possible positions of the obstacle on the
field. As time is only implicitly taken into account for planning, the planning problem
stays two-dimensional.

We compared the planning time on the Nao robot for the ball approaching example.
To plan a path around the ball without considering the opponents movement took on av-
erage 1.6ms, with 16 uniform time discretization steps 55.4ms. The multiresolutional
discretization with 5 steps took 7.9ms and the implicit approach took 3.3ms. With
every representation of the time component it was possible to use the shortest path, if
the opponent was sufficiently far away and to avoid the opponents path if it was closer
(see Fig. 5).



7 Conclusion and Future Work

In this paper, we evaluated two approaches to path planning which are applicable to
soccer robots with relatively low computational power. Both approaches make use of
properties found in the soccer domain. An important property is the lack of static ob-
stacles in the environment of the soccer field. For this reason, it allows planning at a
coarse resolution for regions which are far from the robot. Furthermore, one can expect
to find a valid plan refinement in order to avoid dynamic obstacles while approaching
them. Consequently, our grid representations employ a decreasing resolution for distant
parts of the environment.

As virtually all obstacles are dynamic, it is likely that the situation in distant cells
will have changed at the time a plan refinement will be necessary. Therefore, we are
convinced that approximate planning with continuous and fast replanning is superior to
slower exact planning. Furthermore, the estimation of possible future obstacle positions
is likely to improve plans with regard to the need of necessary replanning. Thus, we use
assumptions about the behavior of soccer playing robots to estimate their trajectories.

The real-robot experiments reveal that the speedup facilitates real-time planning on
the Nao.
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