
Learning Visual Obstacle Detection
Using Color Histogram Features

Saskia Metzler, Matthias Nieuwenhuisen, and Sven Behnke

Autonomous Intelligent Systems Group, Institute for Computer Science VI
University of Bonn, Germany

Abstract. Perception of the environment is crucial in terms of successfully play-
ing soccer. Especially the detection of other players improves game play skills,
such as obstacle avoidance and path planning. Such information can help refine
reactive behavioral strategies, and is conducive to team play capabilities. Robot
detection in the RoboCup Standard Platform League is particularly challenging
as the Nao robots are limited in computing resources and their appearance is pre-
dominantly white in color like the field lines.
This paper describes a vision-based multilevel approach which is integrated into
the B-Human Software Framework and evaluated in terms of speed and accu-
racy. On the basis of color segmented images, a feed-forward neural network is
trained to discriminate between robots and non-robots. The presented algorithm
initially extracts image regions which potentially depict robots and prepares them
for classification. Preparation comprises calculation of color histograms as well
as linear interpolation in order to obtain network inputs of a specific size. After
classification by the neural network, a position hypothesis is generated.

1 Introduction

In RoboCup Standard Platform League (SPL), two teams of three Nao robots compete
in the game of soccer. For them as autonomous systems, acquiring information on the
current state of the environment is essential for playing successfully. In particular the
detection of other robots is important for successfully planning upcoming actions, drib-
bling the ball along the field, and scoring goals. It is also conducive in terms of reactive
obstacle avoidance and team play skills, such as passing the ball to a team mate. How-
ever, given the limited computational resources of the Nao robot and the impossible
task of discriminating robots from field lines by their color, visual robot detection is a
demanding task.

The approach presented here is a multilevel analysis of visual sensor data. This in-
cludes the steps of selecting interesting regions within an image, reducing their dimen-
sionality, and finally classifying them to decide if there is a robot. The classification step
is accomplished using an artificial neural network. In this paper, the implementation of
the detection approach is described and evaluated in terms of speed and accuracy.

After discussing related work, the hardware and software prerequisites are described
in Sect. 3. In Sect. 4 the robot detection process is described in detail. Subsequently, the
results of the evaluation of the detection process are presented in Sect. 5. This comprises
simulated as well as real-robot experiments.

lnieuwenh
Typewriter
In Proceedings of 15th RoboCup International Symposium, Istanbul, Turkey, 2011.
In: RoboCup 2011: Robot Soccer World Cup XV, LNCS 7416, pp. 149-161, Springer, 2012.



2 Related Work

Before 2008, the SPL was staged on four-legged Sony AIBO robots [12]. Among others,
Fasola and Veloso [5] as well as Wilking and Röfer [15] established object detection
mechanisms for these robots. Nao robot detection approaches significantly depend on
the competition rules. Until 2009, the current robots’ gray patches were either bright
red or blue according to the team color. Whereas now, only the waist bands denote the
team color.

Daniş et al. [3] describe a boosting approach to detect Nao robots by means of their
colored patches. It is based on Haar-like features as introduced in [13] and is conducted
using the Haartraining implementation of the OpenCV [2] library. A different technique
for Nao robot detection was proposed by Fabisch, Laue and Röfer [4]. The approach is
intended for team marker-wearing robots. A color-classified image is scanned for the
team colors. If a spot of interest is found, heuristics are applied in order to determine
whether it belongs to a robot. Ruiz-del-Solar et al. [11] detect Nao and other humanoid
soccer robots using trees of cascades of boosted multiclass classifiers. They aim at pre-
dicting the behavior of robots by determining their pose.

In the context of RoboCup Middle Size League Mayer et al. [9] present a multi-
stage neural network based detection method capable of perceiving robots that have
never been seen during training. And as Lange and Riedmiller [6] demonstrate, it is
also possible to discriminate opponent robots from team mates as well as from other
objects with no prior knowledge on their exact appearance. Their approach makes use
of Eigenimages of Middle Size robots and involves training of a Support Vector Ma-
chine for recognition.

3 Robot Platform

Humanoid Aldebaran Nao robots are equipped with a x86 AMD Geode LX 800 CPU
running at 500 MHz. It has 256 MB of RAM and 2 GB of persistent flash memory
[1]. This means, the computational resources are rather limited and low computational
complexity is an important demand to the robot detection algorithm. The sensor equip-
ment of the robots includes, among other devices, two head cameras pointing forward
at different angles. These are identical in construction and alternately provide images at
a common frame rate of 30 fps. The image resolution is 640× 480 pixels, however the
first step of image processing is a reduction to 320× 240 pixels.

The software development of the robot detector is based on the B-Human Software
Framework 2009 [10]. This framework consists of several modules executing differ-
ent tasks. Additionally, a simulator called SimRobot is provided. The robot detection
process is integrated as a new module and makes use of already processed image data.

4 Robot Detection Process

The objective of finding robots in an image is to find their actual position on the field.
Thus, not the complete robot is relevant but only its foot point. The new module pro-
vides the positions of other players on the field by processing visual information and
comprises the following stepwise analysis:



– Pre-selection of interesting areas out of a whole image making use of the region
analysis of the B-Human framework.

– Calculation of color histograms for the pre-selected areas.
– Down-scaling histograms to a fixed size which reduces their dimensionality.
– Utilization of a neural network to classify the reduced data.
– Consistency checks ensure the final representation only consists of the bottommost

detection at a certain x-position assuming that this position refers to the feet of the
robot feet whereas the ones above most likely belong to the same robot.

– Transformation of the center of the areas where robots are detected into the actual
field position.

Subsequently, the steps of processing are described in further detail and the prepa-
ration of training data is stated.

4.1 Finding Potential Robot Locations
During the region analysis within the B-Human system, white regions are classified
whether they potentially belong to lines or not. Those regions which do not meet the
criteria for lines, such as a certain ratio length and width, a certain direction, and only
little white in the neighborhood, are collected as so called non-line spots. The region
classification has a low false positive rate, hence it takes most of the actual line frag-
ments but no more. This means, the non-line spots include regions belonging to robots,
to lines, in particular crossings of lines, and sometimes also to the net and to the boards.
Non-line spots, associated to robots, usually belong to the lower part of the robot body
as only objects below the field border are considered for region building. In the case
where a robot is standing, the upper body part normally appears above the field border
and thus cannot cause non-line spots except the field border is distorted.

As the classification whether a spot is a robot or not is done as often as there are
potential robot positions, these non-line spots are merged in advance if they are close
to each other. Proximity is defined relative to the expected width of a robot at the same
location. Hence less classifications are needed which increases efficiency. The result of
two merged locations is represented by a point with the average x-coordinate and the
maximum y-coordinate of the original locations. The origin of the image coordinate
system is at the upper left corner. The y-direction is not averaged, as the foot points of
the robots are most important because they are needed to project the image position to
the field. Non-line spots that cannot be merged are reduced to their own maximum y-
and average x-coordinate.

This merging reduces the number of potential positions immensely, so that unless a
robot is very close, it is usually represented by a single potential spot located between
its feet. Importantly, from one frame to another, the potential robot locations deviate
slightly. This is caused by deviations in the exact positions of the non-line spots to
merge. As a consequence, the detection algorithm is required to be robust against such
displacements.

4.2 Histograms and Linear Interpolation for Complexity Reduction
The neural network detection algorithm expects all classifier input to have the same
dimension, as is the case for most classifiers. Additionally, the complexity of the algo-



(a) Crossing. (b) Penalty spot. (c) Robot feet. (d) Robot foot.

Fig. 1. Horizontal color histograms of potential robot positions. The original windows are shown
at the top. Note that they are not necessarily quadratic due to overlay with the image border.

rithm heavily depends on the dimensionality of the input. Thus, some effort is made for
preparing the input data accordingly.

For each potential robot position, a quadratic window of the expected robot-width
at the respective position is extracted out of the color-classified image. More precisely,
the window is quadratic unless there is an image border which crops the window.

The first step of dimensionality reduction is to obtain the color histogram of each
window. To this end, every window is traversed pixel-wise. While traversing, the sum of
pixels of each color is recorded for each row. As this summation is done on an already
color-classified image, the number of different colors is usually three: white, green and
“none”. There exist some more colors which do not occur in the majority of windows
of interest, such as orange, blue and yellow, which are disregarded.

The second step is to scale each histogram to a common length of 20, which is a
sufficient size. Thereby, histograms of non-quadratic windows are brought to a con-
sistent size. For scaling, linear interpolation is applied to each color of the histogram
separately. Hence, the final input vector is of dimension 60.

Figure 1 shows a variety of windows obtained from potential robot positions as well
as their respective scaled histograms.

4.3 Classification of Potential Robot Locations

The scaled histograms serve as input to the a neural network which is implemented
and trained to decide whether a histogram originates from a robot or not. The utilized
network implementation follows a fully connected feed-forward architecture. It has 60



input neurons, as this is the size of the histograms to classify, and 2 output neurons
representing the classes “robot” and “non-robot”. All non-input neurons use the Fermi
function as non-linear activation function. Training is accomplished by backpropagation
of error. In order to find a good network configuration, several architectures have been
explored empirically.

4.4 Preparation of Training Data

The training data sets are derived from a simulated as well as a real scene. The simu-
lated data is obtained from the camera of one robot out of three robots moving around
the field. For the samples, taken from a real scene, only the recording robot is moved
around while the two others are standing still at different positions on the field. The
color-classified windows of potential robot locations are sorted manually into three sub-
groups. One group is formed by positive data, meaning the pictures which clearly show
the feet of a robot. One group consists of pictures showing for instance line fragments
or parts of the board, which is the negative data. The third group contains all pictures for
which both answers are valid. For example, if a robot hand is shown in the picture, this
is considered neither positive nor negative. Either result is acceptable, because hands
usually occur above the feet in about the same x-position and the detection module only
considers the windows with maximum y-coordinates for each position. Excluding such
ambiguous samples keeps the learning task simple and thus allows for a rather simple
network architecture.

Out of the sets of positive and negative data, training patterns are generated. For each
picture, the 3× 20-dimensional color histogram is calculated. This histogram serves as
input pattern, whereas the expected output is defined by means of a 1-of-2 encoding.

The prepared training patterns from the real scene as well as from the simulated
scene comprise about 1000 positive examples and 1000 negative examples each which
are used for training. The remaining patterns are retained for testing the trained net-
works: For the samples derived from simulation, there is the same amount of test pat-
terns as for training. The amount of test patterns for the reality-derived samples is 250.

5 Evaluation

5.1 Choice of Network Structure

With respect to the contrary requirements of maximal accuracy and minimal compu-
tation time, it is worth choosing a network architecture which is as cheap as possible
regarding time consumption while providing a reasonable capability to classify the po-
tential robot locations. On the basis of training data obtained from the simulation, two
out of the possible architectures are studied in detail regarding their performance for
different variants of the network input.

The types of network input analyzed are horizontal as well as vertical color his-
tograms. Vertical histograms are computed by the amount of pixels of each color per
column unlike those described in Sect. 4.2 for the case of horizontal histograms. Also
the benefit of normalizing this histogram data by subtracting the mean before present-
ing it to the network is examined. Furthermore, the use of only two-colored histograms



Architecture Input type Accuracy (%) Computational cost
Training set Test set (# multiplications)

60 - 2 Vertical histograms 90.4 88.6 122
60 - 20 - 2 Vertical histograms 98.9 95.1 1262

60 - 7 - 3 - 2 Vertical histograms 99.1 94.0 459
60 - 8 - 2 Vertical histograms 98.3 93.2 506

60 - 7 - 3 - 2 Horizontal histograms 98.8 96.5 459
60 - 8 - 2 Horizontal histograms 99.0 96.4 506

60 - 7 - 3 - 2 Normalized horizontal histograms 98.4 91.0 459
60 - 8 - 2 Normalized horizontal histograms 98.6 91.7 506

40 - 7 - 3 - 2 Two-colored vertical histograms 82.7 82.5 319
400 - 7 - 3 - 2 Full color-classified image 99.1 84.8 2839

Table 1. Accuracy and computational cost of different networks with different types of input. All
networks are trained and tested using data obtained from simulation. Learning the classification
task with horizontal histograms as input yields the highest accuracy. Especially the generalization
capability is enhanced compared to all other variants with at least equally high accuracy on the
training set. The number of multiplications is derived assuming a fully connected feed-forward
network and a bias neuron in each non-output layer.

is considered. This is motivated by the fact that detection windows mostly consist of
exactly three colors. Thus, in three-colored histograms, one color can be expressed
by subtraction of the two others from the maximum histogram height. Omitting one
color yields a histogram of size 2 × 20 referring to the column-wise amount of green
and white pixels, and accordingly, the network input is of dimension 40. Moreover the
complete color-classified detection windows scaled to a size of 20 × 20 are taken as
400-dimensional network input in order to determine whether the use of histograms is
at all preferable over larger input dimensions.

The two network architectures for which different input kinds are analyzed are built
up as follows: The first network has a 60-dimensional input layer followed by one hid-
den layer with 8 neurons and an output layer of 2 neurons. This architecture is denoted
as 60-8-2. The second one has two hidden layers, the first one with 7 neurons and the
second with 3 neurons, which is hereafter referred to as 60-7-3-2. In both architectures
neighboring layers are fully connected. In order to justify the choice of these two ar-
chitectures for detailed analysis, also the network architectures 60-2 and 60-20-2 are
evaluated in terms of their ability to solve the classification task. Accuracy as well as
the computational complexity are compared. The comparison is based on an input of
vertical histograms and is summarized in Table 1.

The most accurate networks are obtained by utilizing three-colored horizontal his-
tograms. Utilizing these, the test data can be classified 96.5% accurate by a 60-7-3-2
network as well as a 60-8-2 network.

5.2 Application on the Real System

For analyzing the performance on real data networks with 8 and with 7-3 hidden neu-
rons and horizontal three-colored histograms as input type are considered. Training is



Architecture Training set Accuracy on test set (%)
Real Simulated

60 - 7 - 3 - 2 Simulated 69.9 96.5
60 - 8 - 2 Simulated 71.8 96.4

60 - 7 - 3 - 2 Real 95.5 85.0
60 - 8 - 2 Real 96.0 83.9

60 - 7 - 3 - 2 Mixed 95.9 95.8
60 - 8 - 2 Mixed 93.4 93.0

Table 2. Accuracy for different input data sets. Test data obtained from the simulation can be
classified more accurate by a network trained on simulation data than by a network trained with
real data and vice versa. If pattern of both, the real and the simulated data are presented during
training, the resulting network can perform equally well on both types of data.

repeated with samples from the real system and with a set of mixed samples from the
real as well as the simulated environment. An overview on the results is given in Ta-
ble 2 where cross tests between simulated, real and mixed training and validation sets
are conducted.

The best 60-7-3-2 network obtained after training on a mixed data set can classify
unknown real data with an accuracy of 95.9% and performs equally well on simulated
data. This shows that detection of robots is transferable between the real and the sim-
ulated system and also suggests that due to the color space discretization, the robot
detection is fairly independent from the lighting conditions on the field if the network
has learned the concept of what a robot is in a sufficiently abstract manner.

5.3 Evaluation of Speed

For measuring the average processing speed of the robot detector a real scene is consid-
ered. The setting resembles the one shown in Fig. 2 except that real robots are used.

If the robot detector utilizes a 60-8-2 network, about 1.1 ms of computation time
are needed for evaluation of one image. For a 60-7-3-2 network, the processing time is
only 1 ms. For comparison, the processing takes on average about 4.7 ms when utilizing
a 400-7-3-2 network. Hence, the robot detector is usable in the real-time vision system
which provides 30 frames per second.

Fig. 2. Reconstruction of the setting for evaluating speed. The experiment has been conducted on
the real system. The blue robot records data. All robots are standing still.



5.4 Evaluation of Accuracy
Accuracy of the robot detection module is accessed on two different levels. One is to
measure the quality of the classification provided by the neural network. The other is
to measure how accurate position of other robots can be estimated with the developed
robot detector.

Detection Rates in Comparison to k-Nearest Neighbors k-Nearest Neighbors (kNN)
is a popular classification algorithm since it is straightforward and easy to implement.
Like in the context of handwritten digit recognition [8, 7], kNN is incorporated as a
benchmark in order to rate the performance of the neural network based robot detection.

For the comparison, the kNN algorithm is initialized with the mixed set used to
train the 60-7-3-2 network in Sect. 5.2 and k = 1. It yields an accuracy of 96.4% on
the test data. The trained network can classify the same set of samples with an accuracy
of 95.8% which shows that the performance of the network is similar, if not equal the
benchmark.

Accuracy of Positions of Detected Robots The accuracy of the position estimation
of the robot detector is determined by comparing the detected positions to indepen-
dently derived position information. For this purpose, a scene with a defined setting
is examined in simulation and on the real field. For the latter, a motion capture sys-
tem is used to obtain an independent measurement of the robot positions. The scene
itself is constituted by two robots on the field. One is standing still on the penalty spot,
which is at position (1.2m, 0m). The other starts at the opposite goal line, coordinates
are (−3m, 0m), and moves towards the standing robot. Meanwhile, its estimated dis-
tances to the standing robot are recorded. In order to minimize distortion, the head of the
recording robot is kept still at zero degrees. This scene is played in the simulator as well
as on the real field. In the simulation, to confirm that the detection is view-independent,
the simulated scene is replayed with the standing robot oriented to the side as well as
the back. Also, the scene is recorded with this robot lying on the penalty spot.

Setting Error in distance estimation Error in angle estimation
Distance

dependent
(%/m)

Distance
indepen-
dent (%)

RMSD Distance
dependent

(deg/m)

Distance
indepen-

dent (deg)

RMSD

Simulation, frontal view 4.9 -2.0 7.1 0.29 -0.87 1.44
Simulation, back view 1.3 11.7 16.5 0.97 -2.14 2.35
Simulation, side view 14.3 -8.8 11.9 0.57 -2.01 1.85

Simulation, lying robot -1.2 16.4 6.6 -0.00 3.74 2.90
Real scene, frontal view 3.8 2.4 11.5 -0.61 0.82 3.58

Table 3. Position estimation error in each experiment. The overall observed error in distance and
angle is subdivided into three components. Distance dependent refers to the offset in slope of
the fit of the detections compared to the reference. The distance independent error refers to the
y-intercept of the fit, i. e. the permanent offset towards the reference. The RMSD value yields
from analysis of the deviation of detections towards the fit.



 0

 20

 40

 60

 80

 0 0.5 1 1.5 2 2.5 3 3.5 4

R
el

at
iv

e 
D

ev
ia

tio
n 

of
 D

is
ta

nc
e 

(%
)

Actual Distance to Robot (m)

Reference
Measurements (Upper Camera)
Measurements (Lower Camera)
Linear Regression

-30

-20

-10

 0

 10

 20

 30

 0 0.5 1 1.5 2 2.5 3 3.5 4

D
ev

ia
tio

n 
of

 A
ng

le
 (d

eg
)

Actual Distance to Robot (m)

Reference
Measurements (Upper Camera)
Measurements (Lower Camera)
Linear Regression

(a) Deviation of distance and angle during the scene.

(b) Field view of the trajectory of the
moving robot as well as its detec-
tions, including discarded ones.

Fig. 3. Real field, frontal view: Position estimation accuracy of the robot detector in a real scene
with frontal view of the robot to detect. The plots in (a) show the deviation of measured distances
and angles towards the standing robot throughout the captured scene. The deviation in distance
measurements is depicted as a percentage of the actual distance while negative distances refer to
measurements shorter than the reference. The deviation of the angle is depicted in degrees relative
to the reference. Colors encode which camera a measurement originates from. Detections in the
blind spot between the fields of view of the cameras have been discarded. The dotted line in each
plot denotes the fit obtained by linear regression on all depicted data points.
(b) provides a field view of the perceptions. The color encoding refers to the cameras as in (a).
Additionally, pale red spots indicate locations of discarded perceptions. The movement of the
recording robot yields the trajectory visualized in black. The robot to be detected is located at the
upper penalty spot, in the real scene this is position (1.24m, 0.07m).

Importantly, although the detection algorithm does not involve filtering, some de-
tections are not considered for the analysis. The robot does not move the head while
recording in the experiments. Thus there is a blind spot between the image of the upper
and the lower camera. Detections are considered not meaningful if they occur at the
lower border of the upper camera image which traces back to the feet of the standing
robot being in the blind spot. Likewise, if detections originate from the upper camera
while the lower camera provides perceptions, they are discarded. Such detections often
refer to the upper body parts of the robot of which the feet are perceived through the
lower camera. The majority of discarded perceptions originates from the hands of the
robot which do not look too different from the feet.

Overall, the position estimation is found to provide a reasonable amount of accuracy
for any perspective. As summarized in Table 3, distance estimations deviate by at most
16.5%. The angle deviates by 2.9◦ in the worst case. Yet, for the case of side view, the
deviation in distance is enlarged due to detections of the body instead of the feet (see
Fig. 4c). Such larger deviations for far-away robots are acceptable as they most likely



 0

 20

 40

 60

 80

 0 0.5 1 1.5 2 2.5 3 3.5 4

R
el

at
iv

e 
D

ev
ia

tio
n 

of
 D

is
ta

nc
e 

(%
)

Actual Distance to Robot (m)

Reference
Measurements (Upper Camera)
Measurements (Lower Camera)
Linear Regression

-30

-20

-10

 0

 10

 20

 30

 0 0.5 1 1.5 2 2.5 3 3.5 4

D
ev

ia
tio

n 
of

 A
ng

le
 (d

eg
)

Actual Distance to Robot (m)

Reference
Measurements (Upper Camera)
Measurements (Lower Camera)
Linear Regression

(a) Frontal view.

 0

 20

 40

 60

 80

 0 0.5 1 1.5 2 2.5 3 3.5 4

R
el

at
iv

e 
D

ev
ia

tio
n 

of
 D

is
ta

nc
e 

(%
)

Actual Distance to Robot (m)

Reference
Measurements (Upper Camera)
Measurements (Lower Camera)
Linear Regression

-30

-20

-10

 0

 10

 20

 30

 0 0.5 1 1.5 2 2.5 3 3.5 4

D
ev

ia
tio

n 
of

 A
ng

le
 (d

eg
)

Actual Distance to Robot (m)

Reference
Measurements (Upper Camera)
Measurements (Lower Camera)
Linear Regression

(b) Back view.

 0

 20

 40

 60

 80

 0 0.5 1 1.5 2 2.5 3 3.5 4

R
el

at
iv

e 
D

ev
ia

tio
n 

of
 D

is
ta

nc
e 

(%
)

Actual Distance to Robot (m)

Reference
Measurements (Upper Camera)
Measurements (Lower Camera)
Linear Regression

-30

-20

-10

 0

 10

 20

 30

 0 0.5 1 1.5 2 2.5 3 3.5 4

D
ev

ia
tio

n 
of

 A
ng

le
 (d

eg
)

Actual Distance to Robot (m)

Reference
Measurements (Upper Camera)
Measurements (Lower Camera)
Linear Regression

(c) Side view.

 0

 20

 40

 60

 80

 0 0.5 1 1.5 2 2.5 3 3.5 4

R
el

at
iv

e 
D

ev
ia

tio
n 

of
 D

is
ta

nc
e 

(%
)

Actual Distance to Robot (m)

Reference
Measurements (Upper Camera)
Measurements (Lower Camera)
Linear Regression

-30

-20

-10

 0

 10

 20

 30

 0 0.5 1 1.5 2 2.5 3 3.5 4

D
ev

ia
tio

n 
of

 A
ng

le
 (d

eg
)

Actual Distance to Robot (m)

Reference
Measurements (Upper Camera)
Measurements (Lower Camera)
Linear Regression

(d) Lying robot.

Fig. 4. Position estimation accuracy during the simulated scenes with the standing robot oriented
to different directions. For plot details see Fig. 3a. In (d), the linear regression is applied on upper
camera measurements only. Perceptions from the lower camera are considered not meaningful,
as the lying robot horizontally fills the complete image and hence there is no specific foot point.

have no impact during play. Detecting a robot at a distance of 4.0 m which is in fact only
3.5 m away under an accurate angle will usually not make any difference to a player’s
behavior. In case the detected robot is lying, the position estimation seems to provide
no meaningful results if the distance is shorter than 1 m (see Fig. 4d). This imprecision
however is not necessarily a drawback. As a lying robot actually covers more ground
than a standing one, the curve necessary to pass this robot might need to be larger than
if it was standing. The amount of deviation in the angle estimation could be used as a
hint whether the detected robot is lying on the ground.

In the experiment conducted on the real field, the recording robot is not moving
autonomously but slided along the route in order to minimize distortion factors in this
experiment. As depicted in Fig. 3, the obtained results correspond to the findings in the



simulated experiments. In total, there is only a small error, in particular a distance inde-
pendent offset of 2.4% and additionally an error of 3.8%/m dependent on the distance.
The root mean square deviation (RMSD) of the data towards the fit is 11.5% as there is
a number of detections which deviate by approximately 30% from the reference. These
detections mainly occur at a distance of 2 m to 3 m and probably refer to the upper legs
or chest of the robot like observed in simulation. The angle estimation as well matches
the results from simulation. Though, the RMSD of 3.58◦ is remarkably larger due some
outliers which this measure accounts for.

Notably, the angle estimations which originate from the lower camera only deviate
to one direction unlike observed in the experiments before. This might be caused by
inaccurate calibration of either the motion capture system or the transformation matrix
of the robot. Another reason could be that the position of the standing robot changed
slightly between measuring its position and capturing the scene. Likewise, it is possible,
that the detection window is not central on the feet for most of the perceptions. But as
this issue has not been encountered during simulation and the distance estimation is for
the same perceptions as well more than 10% too large, a calibration issue is the more
likely explanation.

6 Conclusion and Future Work

The presented neural network based algorithm is suitable for the robot detection task. It
provides reasonable accuracy and is sufficiently efficient in terms of computational cost.
The major contributions to efficiency are the pre-selection of potential robot positions,
the reduction of image regions to color histograms and the use of a network with a small
hidden layer.

Still, there is room for improvements. The most obvious one is a filtering algorithm
such as a Kalman filter [14]. During evaluation, perceptions from the upper camera
have been omitted if there are results from the lower one and also perceptions from
the lower border of the upper camera have been considered as invalid. Including these
criteria into the algorithm will also be an enhancement. Additionally, as robots are never
detected closer than they actually are but sometimes further away, a confidence factor
could weight perceptions more the closer they are.

In terms of accuracy, possible improvements can be made to the overall detection
rate as well as to the precision of estimated positions of robots. The latter could be
enhanced by explicit calculation of the foot point of the detected robot. Currently, the
place where a detected robot meets the ground is assumed to be the same as the center
of the detection window. This assumption holds as long as the feet are actually detected.
But if knees, waist, shoulders or arms yield positive detections, this assumption is no
longer valid. As the image segmentation already exists, the exact foot point could be de-
rived by traversing continuous white segments within the detection window downwards
until a green region is found.

In this work, the robot detection approach has been considered in an isolated way.
The next steps would be to integrate the resulting new perceptions into the behavior
control system and to combine them with other perceptions.



A promising combination is to merge the robot detections with data obtained from
the ultrasonic devices. At least within the range of up to 1.5 m the ultrasonic distance
measure is very accurate and thus can refine the distance estimation. At the same time,
the angle estimation which the ultrasonic sensors provide with an uncertainty of 60◦

can be refined by the neural network based detector.
Regarding behavior control, robot perceptions definitely conduce to reactive obsta-

cle avoidance as well as to planning paths on the field. In order to improve team play,
perceptions of robots could be combined with localization information. The self local-
ization is usually propagated via WLAN among the players of one team. As yet, it is
rather error prone and thus cannot be used to precisely pass the ball between players.
If the propagated position information can be verified and further refined by a robot
detection in the same place, passing the ball with sufficient precision becomes possible.

Acknowledgement

This work was partially funded by the German Research Foundation (DFG), grant BE
2556/2-3.

References
1. Aldebaran Robotics: Nao Robot Reference Manual, Version 1.10.10 (2010), internal Report
2. Bradski, G.R.: The OpenCV Library (2000), http://opencv.willowgarage.com/
3. Daniş, S., Meriçli, T., Çetin Meriçli, Akın, H.L.: Robot Detection with a Cascade of Boosted

Classifiers Based on Haar-like Features. In: RoboCup 2010: Robot Soccer World Cup XIV
4. Fabisch, A., Laue, T., Röfer, T.: Robot Recognition and Modeling in the RoboCup Standard

Platform League. In: Proc. 5th Workshop on Humanoid Soccer Robots at Humanoids (2010)
5. Fasola, J., Veloso, M.M.: Real-time Object Detection using Segmented and Grayscale Im-

ages. In: IEEE International Conference on Robotics and Automation. pp. 4088–4093 (2006)
6. Lange, S., Riedmiller, M.: Appearance-Based Robot Discrimination Using Eigenimages. In:

RoboCup 2006: Robot Soccer World Cup X, LNCS, vol. 4434, pp. 499–506 (2007)
7. Lee, Y.: Handwritten Digit Recognition Using K Nearest-Neighbor, Radial-Basis Function,

and Backpropagation Neural Networks. Neural Computation 3, 440–449 (September 1991)
8. Liu, C.L., Nakashima, K., Sako, H., Fujisawa, H.: Handwritten Digit Recognition: Bench-

marking of State-of-the-art Techniques. Pattern Recognition 36(10), 2271–2285 (2003)
9. Mayer, G., Kaufmann, U., Kraetzschmar, G., Palm, G.: Neural Robot Detection in RoboCup.

In: Biomimetic Neural Learning for Intelligent Robots, LNCS, vol. 3575 (2005)
10. Röfer, T., Laue, T., Müller, J., Bösche, O., Burchardt, A., Damrose, E., Gillmann, K., Graf,

C., de Haas, T.J., Härtl, A., Rieskamp, A., Schreck, A., Sieverdingbeck, I., Worch, J.H.:
B-Human Team Report and Code Release 2009 (2009)

11. Ruiz-del-Solar, J., Verschae, R., Arenas, M., Loncomilla, P.: Play ball! fast and accurate
multiclass visual detection of robots and its application to behavior recognition. Robotics
Automation Magazine, IEEE 17(4), 43 –53 (2010)

12. Sony Corporation: AIBO (1999), http://support.sony-europe.com/aibo/
13. Viola, P.A., Jones, M.J.: Rapid Object Detection using a Boosted Cascade of Simple Fea-

tures. CVPR 1, 511–518 (2001)
14. Welch, G., Bishop, G.: An Introduction to the Kalman Filter. Tech. Rep. 95-041, University

of North Carolina at Chapel Hill, Chapel Hill, NC, USA (1995)
15. Wilking, D., Röfer, T.: Realtime Object Recognition Using Decision Tree Learning. In:

RoboCup 2004: Robot Soccer World Cup VIII, LNCS, vol. 3276, pp. 556–563 (2005)


