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Abstract. In this paper, we propose a new partially supervised multi-
class image segmentation algorithm. We focus on the multi-class, single-
label setup, where each image is assigned one of multiple classes. We
formulate the problem of image segmentation as a multi-instance task
on a given set of overlapping candidate segments. Using these candi-
date segments, we solve the multi-instance, multi-class problem using
multi-instance kernels with an SVM. This computationally advantageous
approach, which requires only convex optimization, yields encouraging
results on the challenging problem of partially supervised image segmen-
tation.

1 Introduction

The task of multi-class image segmentation is to create a pixel-wise labeling of
an input image into regions belonging to one of several semantic classes. Most
algorithms for this setting work with strong supervision: a pixel-wise labeling of
training images. Methods that are used in this setting include random forests [24]
and support vector machines (SVM). Usually the output of such algorithms
is further processed by a conditional random field (CRF [14, 11, 13]). While
these methods reach high accuracy, it is very time consuming to create pixel-
level ground truth for real-world applications. This problem can be addressed
in several ways: the LabelMe effort [23] tries to use the “wisdom of crowds” to
obtain human labelings. Another possibility is to use only weak supervision,
which is the approach we follow here.

In the weakly supervised setting, the ground truth for a given image is a list
of semantic classes that occur in this image, instead of a pixel-level labeling as in
the strongly supervised setting. Image-level labels are much easier to obtain, e. g.
through online image libraries such as flickr and facebook.

The task of multi-class segmentation is often split up in a segmentation and
a recognition part. Random forest methods often classify each pixel separately
and segment using predicted classes [24] while SVM-based methods often work
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on an over-segmentation of the image, called superpixels [14, 11]. Superpixels
avoid the computational burden of classifying each pixel separately, but have two
drawbacks:

1. A single superpixel does not provide enough context for classification [9].
2. Segment boundaries are decided on the lowest level by generating superpixels.

This decision cannot be corrected afterwards [12].

In our approach, we work with a set of candidate segments, generated using
constrained parametric min-cuts [2]. For each image, these segments are a set of
overlapping, object-like regions, which serve as candidates for object locations.

We formulate weakly supervised multi-class image segmentation as a multi-
instance problem, based upon candidate segments. In multi-instance learning [6],
each training example is given as a multi-set of instances, called a bag. Each
instance is represented as a feature vector x and a label y. A bag is labeled
positive if it contains at least one positive example, and negative otherwise.
During training, only the labels of the training bags, not of the instances inside
the bags, are known. The goal is to learn a classifier for unseen bags. Formally,
let X be the set of instances. To simply notation, we assume that bags are simply
sets, not multi-sets. Then a bag is an element of the power set 2X and the task
is to learn a function

fMI : 2X → {−1,+1} (1)

from a set of training examples of the form (Xi, yi) with bags Xi ⊂ X and labels
yi ∈ {−1,+1}. The fMI function stems from the so-called underlying concept,
given by an (unknown) function fI : X → {−1,+1}, with

fMI(X) = max
x∈X

fI(x). (2)

Sometimes, the goal of finding fMI is extended to finding labels not only on
bag-level but also for all the instances within a bag [17, 31], i. e. finding fI .
Even though finding fI is sometimes included in the task statement, there has
been very little work that actually reported accuracy on instance label prediction.
Part of the reason for this might be that for many of the datasets used in
multi-instance learning no ground truth exists.

We look explicitly at accuracy on instance-level since we are interested in
actually segmenting images, not just classifying them. For multi-class image
segmentation, there are some hand-labeled datasets that provide ground truth on
pixel level. We use this ground truth to evaluate the performance of our method.
This approach does not exactly correspond to instance-level ground truth – since
the instances are segments, not pixels – but relates to it closely.

In this work, we explore the application of multi-instance learning algorithms
to the task of partially supervised image segmentation. Multi-instance learning is
a natural formulation for image classification and has been successfully applied in
this task [35]. We propose to go a step further and apply multi-instance learning
to the task of object-class segmentation in natural images. To our knowledge, all
previous methods in the field use strong supervision, meaning manual pixel-wise
annotation of training images. This approach does not scale to larger datasets,
especially if one expects consistency and quality in the segmentations.



2 Related Work

2.1 Proposal Object Segments

Most work on multi-class segmentation focuses on strong supervision on superpixel
level. There is still little work on using candidate segments. The method we use for
generating candidate segments is Constraint Parametric Min-Cuts (CPMC) from
Carreira and Sminchisescu [2]. This method creates a wide variety of overlapping
segments. Support vector regression (SVR) is trained on these segments to
estimate the overlap of segments with ground truth object-class labeling from the
Pascal VOC dataset [8]. This provides a ranking of candidate segments, according
to how “object-like” they are, which allows for selecting only a limited number
of very object-like segments. The method performed well on a variety of datasets.
A similar approach was investigated by Endres and Hoiem [7].

2.2 Multi-Instance Methods

Multi-instance learning was formally introduced in Dietterich et al. [6]. Since then,
many algorithms were proposed to solve the multi-instance learning problem
using many different approaches [1, 10, 34, 18, 33, 21, 15, 4]. We will discuss only
those that are relevant to this work.

Gärtner et al. [10] introduced the concept of a multi-instance kernel on bags,
defined in terms of a kernel on instances. The basic principle of multi-instance
kernel is similar to a soft-max over instances in each bag. This can be viewed
as approximating the kernel value of the “closest pair” given by two bags. They
show that the multi-instance kernel is able to separate bags if and only if the
original kernel on instances is able to separate the underlying concepts. The
method of Gärtner et al. [10] has a particular appeal in that it neatly transforms
a multi-instance problem into a standard classification problem by changing the
kernel. The downside of this approach is that it does not directly label instances,
only bags.

Zhou et al. [34] explicitly address non-i.i.d. labels, leading to an algorithm
that can take advantage of correlations inside bags. Computational costs of their
algorithm does not scale well with the number of instances, although a heuristic
algorithm is proposed to overcome this restriction. Zhou et al. [34] demonstrated
only a slight advantage of their algorithm over the MI-kernel of Gärtner et al.
[10], so we use the MI-kernel for better scalability.

Li and Sminchisescu [17] compute likelihood ratios for instances, giving a new
convex formulation of the multi-instance problem. Using these likelihood ratios,
classification can be performed directly on the instances, provided an appropriate
threshold for classifying instances as positive is known. We circumvent this
problem by applying the same classifier to instances and bags, thereby obtaining
hard class decisions for each instance.



2.3 Semantic Scene Segmentation via Multi-Instance Learning

Recently, several methods have been proposed to obtain semantic segmentations
of images using only image-level supervision [29, 27, 28]. Vezhnevets et al. [29],
for example, report impressive results on the MSRC dataset.

While semantic segmentation is closely related to multi-class image segmenta-
tion, there are important distinctions: In semantic segmentation, each pixel has a
semantic annotation, also containing “background” classes like “sky”, “grass” and
“water”. In multi-class image segmentation, the focus is on objects, with possibly
large parts of the image being labeled as unspecific “background”. The unspecific
background class contains much more clutter than for example “grass” and is
therefore much harder to model. This makes disseminating the interesting part
in multi-class object recognition challenging, since it is not necessary possible to
identify non-object regions easily.

3 Multi-Instance Kernels for Image Segmentation

3.1 Constraint Parametric Min Cuts (CPMC)

To generate proposal segments, we use the CPCM framework from Carreira and
Sminchisescu [2]. We construct initial segments using graph cuts, on the image
graph. The energy function for these cuts uses pixel color and the response of
the global probability of boundary (gPb) detector [20]. As much as ten thousand
initial segments are generated from foreground and background seeds. A fast
rejection based on segment size and ratio cut [30] reduced these to about 2000
overlapping segments per image. Then, the segments are ranked according to
a measure of object-likeness that is based on region and Gestalt properties.
This ranking is computed using an SVR model [2], which is available online.
For computing the global probability of boundary (gPb), we used the CUDA
implementation of Catanzaro et al. [3], instead of the original one, for speed.

3.2 Multi-Instance Learning using MI-Kernels

Since scalability is very important in real-world computer vision applications,
and natural images might need hundreds of segments to account for all possible
object boundaries, we use the efficient multi-instance kernels [10]. Multi-instance
kernels are a form of set kernels that transform a kernel on instance level to
a kernel on bag level. We reduce the multi-instance multi-class problem to a
multi-instance problem by using the one-vs-all approach.

With kI denoting a kernel on instances x, x′ ∈ X , we define the corresponding
multi-instance kernel kMI on bags X,X ′ ∈ 2X as

kMI(X,X ′) :=
∑

x∈X,x′∈X′

kp(x, x′), (3)

where p ∈ N is a parameter [10]. As we use the RBF-kernel krbf as kernel on X
and powers of RBF-kernels are again RBF-kernels, we will not consider p in the
following.



We normalize the kernel kMI [10] using

k(X,X ′) :=
kMI(X,X ′)√

kMI(X,X)kMI(X ′, X ′)
. (4)

Training an SVM with this kernel produces a bag-level classifier for each class,
which we will refer to as MIK. This procedure is very efficient since the resulting
kernel matrix is of size number of bags, which is much smaller than a kernel matrix
of size number of instances, as is commonly used in the literature [1, 22, 32].
Another advantage over other methods is, that it uses a single convex optimization,
whereas other approaches often use iterative algorithms [1] or need to fit complex
probabilistic models [31].

While using MIK has many advantages, it produces only an instance-level
classifier. We propose to transform a bag-level classifier fMI as given by the SVM
and Equation (3) into an instance-level classifier by setting fI(x) := fMI({x}),
in other words, by considering each instance as its own bag.

3.3 Segment Features

To describe single segments, we make use of densely computed SIFT [19] and
ColorSIFT [26] features, from which we compute bag of visual word histograms.
Additionally, we use histograms of oriented gradients [5] on the segments. We
use RBF-kernels for all of the features, constructing one MI-kernel per feature.
These are then combined using multiple kernel learning to produce a single kernel
matrix. This kernel matrix can then be used for all classes, making classification
particularly efficient.

3.4 Combining Segments

The framework described above yields an image-level and a segment-level classifi-
cation. In our setup, each segment might be given multiple labels. To obtain a
pixel-level object-class segmentation, we have to combine these. When building
the segmentation for a given image, we only consider classes whose presence
was predicted on image level. Since we do not make use of the ground truth
segmentation during training, we cannot learn an optimal combination as in Li
et al. [16] but perform a simple majority vote instead. We merge segments into
pixel-level class labels by setting the label yx of a pixel x according to

yx = argmaxy∈Y #{Si|p ∈ Si ∧ ySi
= y}, (5)

where Y = {car, bike, person}, Si enumerates all segments within an image and
ySi

is the label of segment Si. In words: each pixel is assigned the class with the
highest number of class segments containing it. This simple heuristic yields good
results in practice.
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Fig. 1. Overview of our method. See text for details.

4 Experiments

4.1 Instance-Level Predictions using Multi-Instance Kernels

To assess the validity of instance-level predictions using multi-instance kernels, we
transform fI back to an instance-level classifier, using the multi-instance learning
assumption (Equation (2)). We refer to these instance-based MIK predictions as
MIK-instance. In all experiments, the parameters of the MI-Kernel and SVM
are adjusted using MIK and then used with both MIK and MIK-instance. This
facilitates very fast parameter scans since MIK is very efficient to compute. Note
that we cannot adjust parameters using instance prediction error, as we assume
no instance labels to be known.

Table 1. Bag level performance of various MIL algorithms on the standard Musk
datasets. All but MIK provide instance-level labeling.

SVM-SVR EMDD mi-SVM MI-SVM MICA MIK MIK-instance

Musk1 87.9 84.9 87.4 77.9 84.3 88.0 88.0
Musk2 85.4 84.8 83.6 84.3 90.5 89.3 85.2

We compared the performance of MIK, MIK-instance and state-of-the-art
MI methods on the Musk benchmark datasets [6], see Table 1. Results were
obtained using 10-fold cross-validation. While the computational complexity of
MIK-instance is very low compared to the other methods, it achieves competitive
results. Using instance-level labels results in a slight loss of accuracy of MIK-
instances, compared to MIK. This small degradation of performance is quite
surprising, since the model was not trained to provide any instance-level labels.

For multi-class image segmentation, it is beneficial to have a low witness rate,
i. e. only a few instances are assumed to be positive in a positive bag. Since an
object might not be very prominent in an image, only a fraction of segments might
correspond to the object. Table 2 compares the witness rates of MIK-instance,



miSVM [1] and SVR-SVM [17] on the Musk datasets. MIK-instance is able to
achieve similar accuracy with much less witnesses than the other methods. Note
that Musk1 consists of very small bags while Musk2 contains significantly larger
bags, more similar to the image/segment setup.

Table 2. MIL algorithms and the empirical witness rates of the classifiers.

Musk1 Musk2
accuracy witness-rate accuracy witness-rate

mi-SVM 87.4 100% 83.6 83.9%
SVM-SVR 87.9 100% 85.4 89.5%
MIK-instance 88.0 99% 85.2 62.3%

4.2 Partially Supervised Image Segmentation on Graz 02

We evaluate the performance of the proposed algorithm for object-class segmen-
tation on the challenging Graz-02 dataset. This dataset contains 1096 images
of three object classes, bike, car and person. Each image may contain multiple
instances of the same class.

We adjusted parameters on a hold-out validation set using bag-level in-
formation and used the training and test sets as given by the dataset. It is
straight-forward to extend the binary MIK method to the multi-class setting
using a one-vs-all strategy. We train one MKL-SVM per class using MIK and
predict class labels on segment level using MIK-instance. If at least one SVM
classifies a segment as positive, it is associated with the most confident class.
Otherwise, it is assigned “background” or no class. This yields a classification
of each segment into one of four classes: car, bike, person, or background. We
merge segments into pixel-level class labels as described in Section 3.4.

Table 3. Pixel-level accuracy on the Graz-02 dataset.

car bike person

Segment based MIK-instance (proposed method) 0.30 0.45 0.43
Best strongly supervised approaches [9, 25] 0.72 0.72 0.66

Per-class pixel accuracies are reported in Table 3; some qualitative results are
shown in Figure 2. The overall accuracy on images labels, which is the task that
was actually trained, is 90%. The performance of our multiple-instance based
approach is far from current methods that use pixel-level annotations, whose
pixel-level accuracy is around 70% [9, 25] on pixel-level. This is no surprise as our
method has no access to the pixel labels. Rather, it is noteworthy that learning
segmentation is possible without pixel labels at all.



Fig. 2. Qualitative results on on the Graz-02 dataset. Top: Results on category “car”.
Bottom: Results on category “person”. From left to right: original image, ground truth
segmentation, segment votes for correct class, segment votes against correct class (red
many, blue few votes).

5 Conclusions

We proposed an algorithm for object-class segmentation using only weak su-
pervision based on multiple-instance learning. In our approach, each image is
represented as a bag of object-like proposal segments.

We described a way to extend bag-level predictions made by the multi-
instance kernel method to instance level while remaining competitive with the
state-of-the-art in bag label prediction.

Finally, we evaluated the proposed object-class segmentation method on the
challenging Graz02 dataset. While not reaching the performance of methods
requiring strong supervision, our result can serve as a baseline for further research
into weakly supervised object-class segmentation.

In future work, we plan to scale our approach to much larger image datasets.
As much more images with weak annotations are available than with pixel-
level segmentation, we hope that we can improve upon the state-of-the-art in
object-class segmentation by making use of larger bodies of training images.
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