
Accelerating Large-scale Convolutional Neural
Networks with Parallel Graphics Multiprocessors

Dominik Scherer and Sven Behnke
Autonomous Intelligent Systems
Institute of Computer Science VI

University of Bonn, Germany
{scherer@ais, behnke@cs}.uni-bonn.de

Abstract
Training convolutional neural networks (CNNs) on large sets of high-resolution
images is too computationally intense to be performed on commodity CPUs. Such
architectures however achieve state-of-the-art results on low-resolution machine
vision tasks such as the recognition of handwritten characters. We have adapted
the inherent multi-level parallelism of CNNs for Nvidia’s CUDA GPU architec-
ture to accelerate the training by two orders of magnitude. This dramatic speedup
permits to apply CNN architectures to pattern recognition tasks on datasets with
high-resolution natural images.

1 Introduction
Biologically-inspired convolutional neural networks (CNNs) have achieved state-of-the-art results
for the recognition of handwritten digits [8] and for the detection of faces [1, 6]. Since gradient-based
learning of CNNs is computationally intense it would require weeks to train large-scale CNNs on
commodity processors. It therefore remains a largely unexplored question whether CNNs are viable
to categorize objects in high-resolution camera images. Both general neural networks and convo-
lution operations are inherently parallel, which makes convolutional neural networks a particularly
promising candidate for a parallel implementation. Modern graphics cards consist of several hun-
dred parallel processing cores which can be harnessed for general purpose computations. To account
for the peculiarities of such CUDA-capable devices (Section 2) we had to slightly divert from com-
mon CNN architectures while retaining sufficient flexibility for a large range of machine vision
tasks. To minimize data transfers our parallel backpropagation algorithm employs a circular buffer
strategy. This implementation achieves a speed-up factor between 95 and 115, which scales well
with both the network and input size, as shown in Section 5.

2 Massively Parallel Computing on GPUs
Modern GPUs have evolved from pure graphics rendering machines into massively parallel gen-
eral purpose processors, recently peaking at 1 TFLOPS [5]. The CUDA (Compute Unified Device
Architecture) framework introduced by Nvidia allows the development of parallel applications for
graphics cards through “C for CUDA”, an extension of the C programming language.
Computations on the GPU are initiated through kernel functions which essentially are C-functions
being executed N times in N parallel threads. Semantically, threads are organized in 1-, 2- or 3-
dimensional groups of up to 512 threads, called blocks, as shown in Figure 1. Each block is sched-
uled to run separately from all others on one multiprocessor. They can be executed in arbitrary order
– simultaneously or in sequence depending on the system’s resources. However, this scalability
comes at the expense of restrictions to the communication between threads. Each thread has a small
private local memory space. In addition, all threads within the same block can communicate with
each other through the low-latency shared memory. The much larger global memory has a higher
latency and can be accessed by the CPU, thus being the only communication channel between CPU

1

behnke
Schreibmaschine
In Proceeding of NIPS 2009 Workshop on Large-Scale Machine Learning: Parallelism and Massive Datasets,
Whistler, Canada, December 2009

Figure 1: Grids are divided into blocks, which in turn
consist of many parallel threads. (adapted from [5])

Figure 2: Architecture of our CNN. The lower convo-
lutional layers are locally connected with one convo-
lutional kernel for each connection.

and GPU. The GeForce GTX 285 graphics card running in our system consists of 30 multiprocessors
with 8 stream processors each, resulting in a total of 240 cores and yielding a maximum theoretical
speed of 1,063 GFLOPS. Each multiprocessor contains 16 KB of on-chip shared memory as well
as 16,384 registers. The GPU-wide 1024 MB of global memory can be accessed with a maximum
bandwidth of 159.0 GB per second. Multiple memory accesses can be coalesced into one memory
transaction if consecutive threads access data elements from the same memory segment. Following
such specific access patterns can dramatically improve the memory bandwidth and is essential for
optimizing the application’s performance.

3 CNN Architectures for SIMD Processors

The main concept of CNNs is to extract local features at a high resolution. These features are succes-
sively combined into more complex features at lower resolutions [3]. The loss of spatial information
is compensated by an increasing number of feature maps in the higher layers. Usually, CNNs consist
of two alternating kinds of layers: convolutional layers and subsampling layers. Each convolutional
layer performs a discrete folding of its source image with a filter kernel. The subsampling layers
reduce the size of the input by averaging neighboring pixels. Our architecture – as shown in Fig-
ure 2 – diverges from this typical model because both the convolution and subsampling operations
are performed together. This modification was necessary due to the memory constraints of the GPU
hardware: During the backpropagation step it is required to remember both the activities and the
error signal for each feature map and each pattern. When combining both processing steps, the
memory footprint of each feature map can be reduced by a factor of four.
For our implementation we chose to use 8×8 filters which are overlapping by 6 pixels in each
dimension. The receptive field of a neuron increases exponentially on higher layers. Each neuron in
layer L4 “sees” an area of 106×106 pixels of the input image. Another, more technical advantage
of this choice is that the 8×8 = 64 filter elements can be processed by 64 concurrent threads. In the
CUDA framework, those 64 threads are coalesced into two warps of 32 concurrent threads each.
The filter weights are adapted with the gradient decent algorithm backpropagation of error. Because
of the subsampling operation in the filter kernels, implementing the backpropagation step for con-
volutional layers is not straight-forward. Thus, we are employing a technique that Simard et al. [8]
call “pushing” the error signals, as opposed to “pulling” them. Figure 3 illustrates the difference
between those operations for a one-dimensional case. When the error is “pulled” by a neuron from
the lower layer, it is tedious to determine the indices of the weights and neurons involved. On the
other hand, “pushing” the error signal can be considered as the inversion of the forward pass, which
enables us to use similar implementation techniques.
Determining a suitable learning rate can be difficult. Randomly initialized deep networks with more
than three hidden layers often converge slowly and reach an inadequate local minimum [2]. One of
the reasons for this is that the partial derivative of the error function is much smaller on the lower
layers. For shared weights the learning rate should additionally depend on the number of connections
sharing this weight [3]. Hence, it proved impossible to empirically choose an appropriate learning
rate for each layer. To overcome this problem, we implemented the RPROP algorithm [7] which
maintains an adaptive learning rate for each weight.

2

4 Implementation
To accelerate an application with the CUDA framework, it is necessary to split the problem into
coarse-grained sub-problems which can be solved independently. We decided to assign each training
pattern to one block, which implies that a mini-batch learning scheme has to be applied. In a batch
learning pass, every pattern uses the same network parameters and weights. The number of training
patterns to be processed in parallel is restricted by the limited amount of global memory. With
32-bit precision, a feature map of 512×512 pixels occupies 1 MB of memory. Depending on the
number of feature maps per layer and the size of the feature maps, up to 10 MB might be required
for each pattern. When using the GeForce 285 GTX this means that only a few dozen patterns
can be processed concurrently. At a finer scale, i.e. within a block, we perform the convolution of
one source feature map onto eight target feature maps simultaneously. With this setup the activities
of the source feature map need to be loaded only once for every eighth target feature map. This
dramatically reduces the amount of memory transfers.
Because shared memory is extremely limited, it is critically important to reuse loaded data as often
as possible. Even if the whole 16 KB of shared memory are used, it can only hold a small fraction of
the source feature map. For this reason, we are utilizing the shared memory as a circular buffer which
only holds a small region of the source feature map, as shown in Figure 4. During each iteration
only two rows of this buffer need to be exchanged. The 8×8 convolutional filter is applied at every
second pixel, thus fitting exactly 32 times into this 70×8 window. Data transfers are minimized as
each pixel loaded is reused 128 times (at 16 positions for each of the 8 target maps). The result
of our optimizations is that the runtime is bounded by the maximum arithmetic performance of the
hardware as opposed to being bounded by the memory bandwidth.
During the backpropagation step, two tasks are performed simultaneously: the weight gradients are
calculated for each element of the eight convolutional filters and the error signal is accumulated
on the lower layer. For both operations the error signal of the higher layer is required, hence it is
reasonable to reuse this data once it is loaded. We are again handling eight convolutional filters
during one device function call: 512 threads can be employed for this, one for each of the eight 8×8
filters. Similar to the forward pass, we are using a circular buffer to load the activities of the source
map. An additional circular buffer is used as an accumulator for the backpropagated error signals.
The ratio between arithmetic operations and memory transactions for the backpropagation pass is
high, because the error signals of the target maps are reused 64 times.

Figure 3: Top: Pulling the error signals from the
higher layer. Bottom: Pushing the error signals
to the lower layer.

Figure 4: Convolution operation. A region of the source
map is loaded from global memory into the circular buffer
in shared memory. Each thread performs one convolution
on this section and writes the result back into the target
map located in global memory.

5 Evaluation
We evaluated our CNN architecture on the normalized-uniform NORB dataset [4], consisting of
each 24,300 binocular grayscale training and testing images. After training on the raw pixel data for
360 epochs (equal to 291,000 mini-batch updates), an error rate of 8.6% on the test set was achieved.
The speed of our implementation was benchmarked on a system with an Intel Core i7 940 (2.93 GHz)
CPU and a GeForce GTX 285. For a comparison of the runtime we implemented an equivalent
single-threaded, sequential CPU version which was optimized for speed by the compiler. The most
critical components of the parallel implementation are the forward pass and the backpropagation of
error. For both, several patterns are processed in parallel, and it is to be expected that a larger speedup

3

 0

 20

 40

 60

 80

 100

 120

 0 30 60 90 120 150

S
pe

ed
up

 c
om

pa
re

d
to

 C
P

U

Number of patterns

Forward propagation
Backpropagation

Figure 5: Speedup factor of the GPU implementation
for the number of patterns trained in parallel (com-
pared to a serial CPU version).

Figure 6: Two desktop supercomputers, each consist-
ing of eight GPUs, for a total of 3840 multiprocessor
cores.

can be achieved for an increasing number of patterns. As shown in Figure 5, the highest speedup
was achieved when the number of patterns is a multiple of 30, because the GTX 285 consists of
30 multiprocessors. If more then 30 patterns are scheduled, the remaining patterns are queued until
another multiprocessor has finished. One of the largest networks tested consists of four 512×512
pixel input maps and 8, 32, 64 and 64 feature maps on the successive convolutional layers, followed
by two fully-connected layers with 100 and 10 neurons, respectively. One training pass (including
all memory transactions) required 34.1 ms per pattern on GPU, compared to 3751.8 ms on CPU. We
found that data transfer times are negligible compared to forward and backward propagation. From
further benchmarks with various reasonably sized networks we can deduce that neither network
size, nor the size of the input has a significant influence on the speedup of our implementation. In all
cases, the gradient descent mini-batch learning was accelerated by a factor ranging from 95 to 115.

6 Conclusions
Our work shows that current graphics cards programming frameworks with their hierarchy of threads
are very well suited for a parallel implementation of CNNs. In comparison to a serial CPU imple-
mentation we were able to significantly speed up the learning algorithm by a factor ranging from
95 to 115 on a single GPU. Until now it was impossible to study deep CNNs with high-resolution
input images due to the tremendous computational power required for their training. The aim for
our future work is to extend this approach to systems with multiple GPUs (shown in Figure 6) and to
apply such large-scale CNNs to pattern recognition tasks using datasets with high-resolution natural
images.

References
[1] S. Behnke. Hierarchical Neural Networks for Image Interpretation, volume 2766 of Lecture Notes in

Computer Science. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003.

[2] H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin. Exploring Strategies for Training Deep Neural
Networks. The Journal of Machine Learning Research, pages 1–40, 2009.

[3] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-Based Learning Applied to Document Recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[4] Y. LeCun, F. Huang, and L. Bottou. Learning Methods for Generic Object Recognition with Invariance to
Pose and Lighting. In Proceedings of CVPR’04. IEEE Press, 2004.

[5] Nvidia Corporation. CUDA Programming Guide 2.2, Apr. 2009.

[6] M. Osadchy, Y. LeCun, and M. Miller. Synergistic Face Detection and Pose Estimation with Energy-Based
Models. Journal of Machine Learning Research, 8:1197–1215, 2007.

[7] M. Riedmiller and H. Braun. RPROP – A fast adaptive learning algorithm. In Proceedings of the Int.
Symposium on Computer and Information Science VII, 1992.

[8] P. Y. Simard, D. Steinkraus, and J. C. Platt. Best Practice for Convolutional Neural Networks Applied to
Visual Document Analysis. In ICDAR, IEEE, Los Alamitos, pages 958–962, 2003.

4

