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Abstract

Restricted Boltzmann Machines (RBM) are well-studied generative models.
For image data, however, standard RBMs are suboptimal, since they do not
exploit the local nature of image statistics. We modify RBMs to focus on
local structure by restricting visible-hidden interactions. We model long-
range dependencies using direct or indirect lateral interaction between hidden
variables. While learning in our model is much faster, it retains generative
and discriminative properties of RBMs of similar complexity.

Keywords: Restricted Boltzmann Machines, Low-Level Vision, Generative
Models

1. Introduction

One of the main tasks in unsupervised learning is modelling the data
distribution. Generative graphical models, such as Restricted Boltzmann
Machines (RBM, Smolensky 1986) are a popular choice for this purpose,
especially since they were discovered to produce good initializations for
discriminative neural network training (Hinton et al. 2006). RBMs model
correlations of observed variables by introducing binary latent variables
(features) which are assumed to be conditionally independent given the
observed variables. This assumption is used since, in contrast to general
Boltzmann Machines, a fast learning algorithm exists (Contrastive Divergence,
Hinton 2002, and its variants). RBMs are generic learning machines and
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Figure 1: Visualization of our locally connected generative models with lateral
interaction. Dark nodes denote visible variables, light nodes hidden variables.
The impact area of the hidden variable at the top left (in the SLRBM, for one
mean field iteration) is depicted in light gray. Larger impact areas created
through indirect (b) and direct (c) lateral interaction ensure global consistency
in generated phantasies.

have been applied to many domains, including text, speech, motion data,
and images. The unsupervised learning procedure extracts features which are
then used to generate a hidden representation of the input. By sampling from
the distribution of hidden representations, one can then generate new data
from the training distribution. In the most commonly used form, however,
these models use global features, and do not take advantage of the topology
of the input space. Especially when applied to image data, global features
model long-range dependencies which are known to be weak in natural images
(Huang and Mumford, 1999).

We can observe that connectivity is problematic when we monitor learned
features during RBM training. Such features are often presented in the
literature (e.g. Hinton et al. 2006), where RBMs typically learned localized
features. A small localized detail is attended on, while most of the filter
has uniform weights. This is a result at the very late stages of the learning
process, however. In early stages, the filters are global, similar to what one
would expect from a PCA. We can conclude that much of the training time
is wasted on learning that far-away pixels have little correlation.

The obvious way to deal with this problem is to remove long-range
parameters from the model, as shown in Figure 1a. The advantage of this

2



approach is two-fold: first, local connectivity serves as a prior that matches
well to the topology of natural images, and second, the drastically reduced
number of parameters makes learning on larger images feasible. The downside
of local connectivity is that weaker long-distance interactions cannot be
modelled at all.

While local receptive fields are well-established in discriminative learning,
their counterpart in the generative case, which we call “local impact area”, is
not well understood. Generative models with local impact in the literature
(e.g. Osindero and Hinton 2008; Welling et al. 2002; Roth and Black 2009;
Hyvärinen and Hoyer 2001) do not try to sample whole images, only local
patches. Breaking down the properties of RBM architectures is further
complicated by the fact that RBMs are typically trained in an unsupervised
way to maximize the likelihood of the training data, but then used as “pre-
trained” initialization of discriminative neural network training. In Section 7,
we therefore analyze two questions

(Q1) What do we gain? That is, how fast do local impact RBMs converge,
when compared to dense models?

(Q2) What do we loose? That is, how do local impact areas affect the
representational power of the RBM? How well-suited for classification
are the pre-trained RBMs?

Obviously, when generating whole images from a local impact RBM, the
architecture has no way to ensure that the generated images are globally
consistent. For example, when the input distribution is images of Latin
characters, local features are lines and crossings. Due to overlapping features,
lines will be continued and crossings introduced as observed in the training
images. However, the global statistics of characters is never represented, and
therefore the architecture might generate Latin and Cyrillic characters with
equal probability.

To resolve the problem of global consistency, in this paper we investigate
the capabilities of two Boltzmann-Machine-like graphical models: Stacks of
local impact RBMs and RBMs with local lateral connections between the
hidden units. We show how to avoid problems of generic Boltzmann machine
learning in these models and attempt to answer the third question,

(Q3) Can we recover from some of the negative effects of local impact areas
using stacking or lateral connections?
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We train our architectures on the well-known MNIST database of handwrit-
ten digits (LeCun et al., 1998). Our experiments demonstrate the efficiency
of learning in locally connected RBMs. We also show how local impact areas
can be efficiently implemented on Graphics Processing Units (GPU).

As common in the deep learning literature (Bengio et al., 2008), the
parameters learned in unsupervised training provide a good starting point for
discriminative training of deep networks for classification. This also holds for
RBMs with local impact areas. We show that when pre-training is used, the
classification performance increases significantly in our models. Finally, we
compare the classification performance of a model that exploits the image
topology with a fully connected model.

2. Related Work

There is a great body of work on generative models exploiting local
structure (e.g. Osindero and Hinton 2008; Welling et al. 2002; Roth and
Black 2009; Hyvärinen and Hoyer 2001), however, these models only provide
generative models for image patches. While in principle these can also be used
to generate whole images, this is not attempted – there is nothing in these
methods ensuring global consistency. Consequently, the main application of
these models is image denoising, that is, the correction of effects within patch
range. We believe that for truly building generative models of images, it is
essential to understand how the compatibility of neighbouring features can
be assured.

Related to the limited modelling capabilities discussed above, models such
as Fields of Experts or Product of Student-t are “flat” in the sense that they
are limited to a certain level of abstraction. To move beyond low-level vision,
it is necessary to build a “deep” hierarchy of features. We believe that stacked
RBMs and their variants pose a promising approach to higher-level feature
modelling.

Learned features are typically hard to evaluate. They are therefore often
used for classification, directly, or after supervised fine-tuning. We also
follow this approach in this paper, when other evaluation methods, such as
determining or estimating the true log-likelihood of the data distribution, are
infeasible. A well known supervised learning approach that makes use of the
local structure of images is the convolutional neural network by LeCun et al.
(1998). Another approach to exploit local structure for supervised training
of recurrent networks has been suggested by Behnke (2003). LeCun’s ideas
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where transfered to the field of generative graphical models by Lee et al. (2009)
and Norouzi et al. (2009). None of these approaches have been used with
pretraining. Their models, which employ weight sharing and max-pooling,
discard global image statistics. Our model does not suffer from this restriction.
For example, when training landscapes, our model would be able to learn,
even on the lowest layer, that sky is usually depicted in the upper half of the
image.

To achieve globally consistent representations despite the local impact
area, we make use of lateral connections between the latent variables. Such
connections can be modelled in two ways, stacking and lateral interaction,
discussed in the following paragraphs.

Stacked RBMs as in Deep Belief Networks (DBN, Hinton et al. 2006)
or Deep Boltzmann Machines (DBM, Salakhutdinov 2009) have an indirect
lateral interaction between hidden variables through the features of the upper
layer. Stacks of more than two RBMs, however, are not guaranteed to
improve the data likelihood. In fact, even stacks of two RBMs do not improve
a lower likelihood bound empirically (Salakhutdinov, 2009). Stacking locally
connected RBMs, on the other hand, trivially yields larger effective impact
areas for higher layers and thus can enforce more global constraints.

A more direct way to model lateral interaction is to introduce pairwise
potentials between observed or between latent variables. The former case,
without restrictions to local impact areas, was studied by Osindero and
Hinton (2008). However, this model mainly whitens the input, whereas
our model ensures consistency of the hidden representations. Furthermore,
Salakhutdinov (2008) trained general Boltzmann Machines (BMs) with dense
lateral interactions between both observed and latent variables on small
problems. Due to long training times, this general approach seems to be
infeasible for larger problem sizes. Finally, it is not clear how to greedily
train a stack BMs, as there would be two kinds of lateral interactions in each
intermediate layer.

3. Background on Boltzmann Machines

A BM is an undirected graphical model with binary observed variables
v ∈ {0, 1}n (visible nodes) and latent variables h ∈ {0, 1}m (hidden nodes).
The energy function of a BM is given by

E(v,h, θ) = −vTWh− vT Iv − hTLh− bTv − aTh, (1)

5



where θ = (W, I, L,b, a) are the model parameters, namely pairwise visible-
hidden, visible-visible and hidden-hidden interaction weights, respectively.
The variables b and a are the biases of visible and hidden activation potentials.
The diagonal elements of I and L are always zero. This yields a probability
distribution p(v; θ)

p(v; θ) =
1

Z(θ)
p∗(v; θ) =

1

Z(θ)

∑
h

e−E(v,h,θ),

where Z(θ) is the normalizing constant (partition function) and p∗(·) denotes
unnormalized probability.

In RBMs, I and L are set to zero. Consequently, the conditional distribu-
tions p(v|h) and p(h|v) factorize completely. This makes exact inference of
the respective posteriors possible. Their expected values are given by

〈v〉p(v) = σ(Wh + b) and 〈h〉p(h) = σ(Wv + b) . (2)

Here, σ denotes element-wise application of the logistic sigmoid:

σ(x) = (1 + exp(−x))−1 .

The true gradient of the model is given by

∂ ln p(v)

∂W
= 〈vhT 〉+ − 〈vhT 〉−. (3)

Here, 〈·〉+ and 〈·〉− refer to the expected values with respect to the data
distribution and the model distribution, respectively. In practice, however,
Contrastive Divergence (CD, Hinton et al. 2006) is used to approximate the
true parameter gradient by a Markov Chain Monte Carlo algorithm. The
expected value of the data distribution is approximated in the “positive
phase”, while the expected values of the model distribution are approximated
in the “negative phase”. For CD in RBMs, 〈·〉+ can be calculated in closed
form, while 〈·〉− is estimated using n steps of a Markov chain, started at
the training data. Recently, Tieleman (2008) proposed a faster alternative
to CD, called Persistent Contrastive Divergence (PCD), which employs a
persistent Markov chain to approximate 〈·〉−. This is done by maintaining a
set of “fantasy particles” {(vF , hF )i} during the whole training. The chains
are also governed by the transition operator in Equation (2) and are used to

6



calculate 〈vhT 〉− as the expected value with respect to the Markov chains
〈vFhTF 〉. We use PCD throughout this paper.

When I is not zero, the model is called a Semi-Restricted Boltzmann
Machine (SRBM, Osindero and Hinton 2008). This model can be trained
with a variant of CD by approximating p(v|h) using a few damped mean field
updates instead of many sequential rounds of Gibbs sampling. In SRBMs,
lateral connections only play a role in the negative phase. We will later
introduce our model, where lateral connections are used both in the positive
and in the negative phase.

RBMs can be stacked to build hierarchical models. The training of stacked
models proceeds greedily layer-wise. After training an RBM, we calculate
the expected values 〈h〉p(h|v) of its hidden variables given the training data.
Keeping the parameters of the first RBM fixed, we can then train another
RBM using 〈h〉p(h|v) as its input.

4. Local Impact Boltzmann Machines

We now introduce two modifications to the classical RBM architectures
described in Section 3.

Stacks of Local Impact RBMs. Firstly, we restrict the impact area of each
hidden node. To this end, we arrange the hidden nodes in multiple grids,
called maps, each of which resembles the visible layer in its topology. As
a result, each hidden node hj can be assigned a position pos(hj) ∈ N2 in
the input (pixel) coordinate system and a map map(hj). This approach is
similar to the common approach in convolutional neural networks (LeCun
et al., 1998). We then allow wij to be non-zero only if | pos(vi)− pos(hj)| < r
for a small constant r, where pos(vi) is the pixel coordinate of vi. In contrast
to the convolutional procedure, we do not require the weights to be equal for
all hidden units within one grid. We call this modification of the RBM the
Local Impact RBM or LRBM. This model will help us to answer questions
Q1 and Q2.

Like RBMs, LRBMs can be stacked to yield deep feature hierarchies.
Aside from the local impact areas, these models are not new. RBM stacks are
typically trained greedily layer by layer to avoid problems with general Boltz-
mann machine learning (and then finetuned if desired, e.g. Salakhutdinov and
Hinton 2009). However, they have been primarily introduced to generate more
abstract features. In this work, stacked RBMs are trained to represent more
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abstract features and more global statistics. Specifically, a high-level feature
generated through stacking represents the statistics of low-level features which
have a combined impact area wider than the impact area of a single low-level
feature (Figure 1b). We show that straight-forward extension to a hierarchical
feature organization helps to reduce the inconsistencies introduced through
locality (question Q3) and is also helpful for classification (question Q2)

LRBMs with Lateral Connections in the Hidden Layer. Similarly to stacking,
direct (“lateral”) interactions between local features could provide an answer
to question Q3. The lateral connections can ensure compatibility of activations
and therefore enforce global consistency, as depicted in Figure 1c. We avoid
the hardness of general Boltzmann machine training by demonstrating that
for local lateral connections between local features, mean field updates are a
feasible approach to learning.

We allow lij to be non-zero if

(i) i 6= j (lij is not a self-connection),
(ii) map(hi) = map(hj) (i and j are on the same map) and
(iii) | pos(hi)− pos(hj)| < r′ (i and j are sufficiently close to each other).

Here, r′ is a small constant denoting the size of the lateral neighbourhood.
For simplicity, we assume L to be symmetric. Note that this assumption does
not restrict the energy function in Equation (1), since E(v,h, θ) is symmetric
in L.

Learning in this model proceeds as follows. We initialize W with a normal
distribution wij ∝ N (0, 1/

√
z), where z is the number of parameters directly

influencing hj. L is initially set to zero.
In the positive phase, the visible activations are given by the input and

the hidden units form a conditional MRF with the biases of the hidden units
determined by the visible units. To quickly minimize energy in the MRF,
we resort to mean field inference and show in Section 7 that this choice is
justified. The (damped) mean field updates are determined by

h(0) = σ(W Tv + b),

h(k+1) = αh(k) + (1− α)σ(W Tv + b + LTh(k)). (4)

In the negative phase, we employ PCD to estimate 〈vhT 〉−. The state of
the persistent Markov chain is denoted (vF ,hF ). In the negative phase, we
continue the persistent Markov chain by sampling vF from

p(vF |hF ) = σ(WhF + a).
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We then generate a new hidden state by sampling from p(h
(k+1)
F |vF ), again

estimated using mean field updates of Equation (4). We call this model
LSRBM. Note that in contrast to SRBM (Osindero and Hinton 2008), the
lateral connections play a crucial role in the positive phase.

Avoiding Trivial Solutions. A common problem in training convolutional
RBMs and convolutional neural networks is that the overcomplete represen-
tation of the visible nodes by the hidden nodes enables the filters to learn
a trivial identity, where each filter has only one non-zero weight (Lee et al.,
2009; Norouzi et al., 2009). Note that this is usually a bad solution, since
examples not in the training data are also reconstructed perfectly. The above
models therefore need an additional, heuristic sparsity bias. The methods
proposed here do not suffer from this problem. First, we use PCD instead of
CD-1 for training. While the weight update is zero in CD-1 learning when
a training example can be perfectly reconstructed by the RBM, this is not
the case for the PCD weight update in Equation (6), due to the PCD chain
used. The particles (vF ,hF ) of the PCD chain are sampled independently of
the training data. Second, since in contrast to convolutional architectures no
weight sharing is used, for a trivial solution to occur, all filters need to learn
the identity separately, which is highly unlikely.

5. Finetuning LRBM Weights for Classification Tasks

In many object recognition applications, it was shown that initializing the
weights of a neural network with an unsupervised feature extraction algorithm
improved the classification results. This procedure is commonly known as
unsupervised pre-training and supervised fine-tuning in the deep learning
literature.

We use a locally connected neural network (LCNN, e. g. Uetz and Behnke
2009) for classification. Instead of randomly initializing the weights of the
LCNN, we copy the LRBM weights into the LCNN after the LRBM was
trained. Using the weights learned in a Local Impact Restricted Boltzmann
Machine for initialization is straight-forward, since the arrangement of neurons
in a LCNN matches the arrangement of hidden nodes in the LRBM. Finally,
we connect an output layer to the LRBM by adding randomly initialized
weights connecting each output (classification) unit to all units in the last
layer of the LRBM.

We can now proceed with the fine-tuning using gradient descent (back
propagation of error) on the cross-entropy error function. First, the output
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layer, which was not pre-trained, is adjusted while all other weights remain
fixed. This prevents problems induced by large errors in the randomly
initialized weights of the output layer destroying the pre-trained weights in
earlier layers. After 30 epochs, the output weights have converged and we
continue training the network as a whole.

6. GPU Acceleration

As the 2D structure of the input maps well to the architecture of Graphics
Processing Units (GPUs), we implemented the proposed architecture using the
NVIDIA CUDA programming framework. To this end, we created a matrix
library which, apart from common dense-matrix operations can operate on
sparse matrices in diagonal format (DIA). These so-called stencil matrices can
be used as weight matrices which are non-zero only at the local filter positions.
This enables us to efficiently process large images, where the corresponding
dense matrix W would not even fit in memory. Specifically, we implemented

H ← W TV , and V ← WH,

where H and V are dense matrices containing hidden/visible activations,
respectively, and W is a LRBM weight matrix. Top-down and lateral con-
nections have the same structure and therefore do not require additional
specialization. Efficiency is further improved by processing 16 images in
parallel. The gradient, ∆W ← V HT is calculated by multiplying all 16× 16
submatrices of V and H, where the resulting submatrix is cut by one of
the diagonals in ∆W . Our implementation, which focuses on ease of use by
exporting all functionality to Python and seamlessly integrating with NumPy,
gives an overall speedup of about 50 when compared to an optimized single
CPU version. The code is available on our website2.

7. Experimental Results

In our experiments we analyze the effects of local impact areas and lateral
interaction terms on RBMs. As a first step, we trained models with and
without local impact areas on the MNIST database of handwritten digits
(LeCun et al., 1998). The dataset is padded by a margin of four zero-pixels
from 28× 28 to 32× 32 for convenient power-of-two scaling.

2http://www.ais.uni-bonn.de/deep_learning/
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(a) first layer (b) second layer (c) third layer

Figure 2: Visualization of indirect lateral interaction. We show activations
associated with randomly selected hidden nodes in an LRBM, projected down
from the respective layer.

RBM-51 LRBM (12× 12) LRBM (7× 7)

log-prob. (nats) −125.58 −108.65 −109.95
#Parameters 40′819 39′818 27′058

Table 1: Test log-likelihood on MNIST for models with similar number of
parameters: Densely connected RBM with 51 hidden nodes, Local Impact
RBMs with varying impact area. For similar number of parameters, LRBMs
achieve much better log-likelihood.

We consider a stack of three LRBM and a (flat) LSRBM. The stack of
three LRBMs has one map at the lowest layer, the input image. The layers
above contain four, eight and 16 maps, respectively. Layer resolution is always
set to half of the resolution of the layer below, resulting in map sizes of 32×32,
16× 16, 8× 8 and 4× 4. The size of the local impact areas is 12× 12 in the
lowest layer, 10× 10 in the second layer and 8× 8 in the third layer. Since
the resolution of the third layer is 8× 8 as well, the last LRBM in the stack
is a common, densely connected RBM.

The LSRBM also has a local impact area of 12× 12, but the size of the
window for lateral connections is 15× 15. For damping in Equation (4) we
use α = 0.2 as taken from Osindero and Hinton (2008).

7.1. Data Modeling

To evaluate the power of the LRBM as a generative model, we approximate
the likelihood assigned to the test data under these models using Annealed
Importance Sampling (AIS, Salakhutdinov 2009). The likelihood is measured
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Network With Pretraining Without Pretraining

Fully connected 1.49 1.63
LCNN 1.39 1.58

Table 2: MNIST classification error in percent

in “nats”, meaning the natural logarithm of the unit-less probabilities. We
compare the LRBM to a standard RBM model with 51 hidden units, so that it
has a slightly higher number of parameters than the locally connected model
with a hidden layer consisting of two maps of size 16× 16, and an impact area
of size 12× 12. The results are summarized in Table 1. The locally connected
model had a test log-likelihood of −108.65 nats whereas the standard RBM
had a test log-likelihood of −125.58 nats, showing a clear advantage of our
model. For comparison, a fully connected RBM with as many hidden units
as the local model achieves a test log-likelihood of −101.69 nats. However,
this model has eight times more parameters. As the number of parameters
scales quadratically with the image size, such dense matrices will not be an
alternative for larger images. Further decreasing the number of parameters
by reducing the size of the impact area by factor of 0.65 does not significantly
reduce the test log-likelihood (LRBM 7× 7, −109.95 nats).

We can therefore answer the first part of question Q2: For a given number
of parameters, the local model performs significantly better than the dense
model in terms of data likelihood. However, since dense models were shown
to learn local properties of the dataset and we simply force connections to be
local only, it is not clear why local models perform worse than large dense
models in the first place. We hypothesize that this loss stems from the fact
that the LRBM is not able to ensure global consistency. In Section 7.4, we
investigate possible solutions for this effect.

7.2. Classification

In order to assess the fitness of the extracted features for classification
(second part of question Q2), we train a locally connected neural network,
as described in Section 5, starting from the weights learned in the stack
of LRBMs. Since we aim at comparing different learning methods, we do
not augment the training set with deformed versions of the training data,
which generally guarantees performance improvements (e. g. LeCun et al.
1998). We want to show the advantage that LRBMs have over (dense) RBMs.
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For this purpose, we compare our approach with a vanilla fully connected
neural network, a locally connected network without pre-training and a fully
connected neural network, pre-trained with a standard RBM. In all cases, the
network output is represented by a one-out-of-ten code.

Using a parameter scan on a validation set, we found that the best result for
using a vanilla neural network are achieved with one hidden layer containing
400 neurons. Using this setup, we obtained a test error of 1.63%, which serves
as a baseline.

For this task, we replace the topmost layer of the stack of LRBMs with
ten neurons of the output layer. These neurons are fully connected to the
second hidden layer. Table 2 summarizes the obtained results. For selecting
the LRBM setup we also performed a parameter scan. Using a validation
set we selected a model with one hidden layer and 4 maps with a resolution
of 28× 28. From the table it is clear that locally connected networks have
an advantage over fully connected networks. This finding is expected and
indicates that local connectivity is indeed a useful prior for images.

We also find that pretraining the neural networks improves performance.
This is not only true for the fully connected network, as was repeatedly found
in the literature, but also for the LCNN. We can therefore conclude that the
restriction of connectivity enforced by local impact areas helps networks to
analyze images. However, it determines the resulting filters only so much that
they can still profit from unsupervised pretraining.

In conclusion, the answer of the second part of question Q2 is that LRBMs
are well suited for classification of images when they are used as weight-
initializations for locally connected neural networks in conformance with
standard deep learning methods.

7.3. Effectiveness of Mean Field Updates for Inference

The method used to learn lateral connections, as explained above, is
similar to the one used in Osindero and Hinton (2008) where it was applied
successfully to learning lateral connections between visible nodes. Since in
this work, it is used to learn lateral connections between hidden nodes, we
performed experiments to justify its use. First, we calculated the energy of
states inferred with both sequential Gibbs sampling and mean field updates

E(v,h, θ) = −vTWh− hTLh− bTv − aTh, (5)

of a one layer LRBM. Gibbs updates where run until the mean energy con-
verged, since this indicates arriving at the stationary distribution. Both before
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and after training, the distribution over energies on the training set using
sequential Gibbs sampling and mean field updates where indistinguishable.
These results suggest that mean field updates find states that are as probable
as those found by running sequential Gibbs updates.

Since we are interested in the approximation of 〈hT 〉− mainly for calcu-
lating the weight updates during learning, we also compared weight updates
obtained by using mean field updates with those obtained by Gibbs sampling.
We measured the magnitude ‖∆W‖2 of the updates

∆W = 〈vhT 〉+ − 〈vhT 〉−. (6)

Let ∆WG be the update when sequential Gibbs sampling is used to approxi-
mate 〈vhT 〉− and ∆WM be the update if the mean field method is used. We
compare ‖∆WG‖2 and ‖∆WG − ∆WM‖2 to judge the impact of the mean
field method on the calculation of the update ∆W . Using different random
optimizations and different model parameters we consistently observed that
‖∆WG − ∆WM‖2 is at most 1

3
‖∆WG‖2. From this we conclude that our

learning algorithm does not significantly change the direction of the weight
updates compared with a more exact but more time consuming method.

7.4. Qualitative Analysis

Both RBMs and LRBMs model local features, LRBMs do so directly,
RBMs only after they have learned that only close-by pixels are correlated.
LRBMs would be the logical choice, then, if the LRBM model would not have
one central deficiency. In dense models, long-range interactions are weak, but
represented nevertheless. LRBMs cannot represent them at all.

We therefore evaluate the influence of direct and indirect lateral interac-
tions in the generative context, to recover global consistency and to answer
question Q3. To this end, we visualized filters and fantasies generated by
LRBM and LSRBM. The images in Figure 2 show weights in an LRBM
with three layers. In the first image, filters of the lowest hidden layer are
projected down to the visible layer. We observe that small parts of lines and
line-endings are learned. The second and third images display filters from
the second and third hidden layer, projected down to the visible layer. These
filters are clearly more global. With their size, the size of the recognized
structure increases as well.

The images in Figure 3 visualize direct lateral interactions in an LSRBM.
The first row shows randomly selected filters hj of the first hidden layer, while
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Figure 3: Visualization of direct lateral interaction in LSRBM. The first row
shows top-down filters, the second row shows lateral connections projected
to visible layer. The lateral filters learned to implicitly extend the top-down
filter at the same position, thereby enforcing consistency between hidden
activations.

the second row depicts a linear combination of all other filters hi, weighted
by their pairwise potential lij. Note that hj does not contribute to this sum,
since ljj = 0. We observe that through lateral interaction the filter is not
only replicated, it is even extended beyond its impact area to a more global
feature.

Figure 4 shows fantasies generated by LSRBM and a stack of LRBMs.
Markov chains for fantasies were started using binary noise in the visible
layer. Each Markov chain ran for 300 steps, followed by 100 mean field
updates. It is clear that fantasies produced by a single-layer LRBM are only
locally consistent and one can observe that stacking gradually improves global
consistency. Lateral connections in the hidden layer significantly improve
consistency even for a flat model. We also observed that LSRBM and stacked
models need less iterations of the Markov chain to converge to the model
distribution (data not shown).

These findings strongly support our initial claim that lateral interaction
compensates for the negative effects of the local impact areas, which answers
question Q3 to the affirmative.

8. Conclusions

In this work, we present a novel variation of the Restricted Boltzmann
Machine for image data, featuring only local interactions between visible
and hidden nodes. This structure matches well with the topology of images
and reflects the observation that long-range interactions are scarce in images,
anyway. In contrast to to dense RBMs, locally connected RBMs can be scaled
to realistic image sizes.
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(a) LSRBM, 1 layer (b) LRBM, 1 layer (c) LRBM, 2 layers (d) LRBM, 3 layers

Figure 4: Fantasies generated by our models from random noise. Lateral
connections as well as stacking enforce global consistency.

We analyze the local models and find that they perform very well when
compared to dense RBMs with similar number of parameters in terms of
data likelihood. As common in the deep learning literature, we use the
learned RBMs as initializations of deep discriminative, and in our case local,
neural networks. The results show that the local RBMs can also improve
classification performance, so that we believe this widely used technique can
be adopted to larger problems where dense RBMs are not an option anymore.

While learning in this model is fast and few parameters yield comparably
good data probabilities and classification performance, the model does not
enforce global consistency constraints when sampling fantasies from the model.
We showed that this effect can be at least partially compensated for by adding
lateral interactions between the latent variables, which we model directly by
pairwise potentials or indirectly through stacking.

Due to the small number of parameters and its computational efficiency,
our architecture has the potential to model images of a much larger size than
commonly used forms of RBMs. We are currently working towards this goal.
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