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Layer-wise Learning of Feature Hierarchies
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Abstract Hierarchical neural networks for object recog-

nition have a long history. In recent years, novel methods

for incrementally learning a hierarchy of features from

unlabeled inputs were proposed as good starting point

for supervised training. These deep learning methods—

together with the advances of parallel computers—made

it possible to successfully attack problems that were not

practical before, in terms of depth and input size. In this

article, we introduce the reader to the basic concepts of

deep learning, discuss selected methods in detail, and

present application examples from computer vision and

speech recognition.

Keywords hierarchical feature learning · unsupervised

learning · object categorization

1 Introduction

Supervised learning tasks, such as assigning a class label

to images, are given as a set of example input-output

pairs where the output must be predicted. Different

learning architectures, such as support vector machines,

neural networks, decision trees, and memory-based meth-

ods (e.g. k nearest neighbors) can be used to approxi-

mate the desired classification function not only for the

given examples, but also for unseen test images.

Frequently, classification is not done directly on the

raw pixel input, but an intermediate representation—
a vector of features—is extracted first which is then

classified, resulting in a two-stage computation. This
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approach performs very well if the features represent

the essential information needed for classification. Obvi-

ously, feature extraction is not free of parameters and

depends on the type of data and the task. For example,

we might expect a different set of features is useful for

detecting cars in images than for detecting people. Per-

haps surprisingly, however, some types of features, like

localized edges for natural images, can be adopted to a

range of tasks (Bottou, 2011). These features seem to

be generic representations of the input signal. Finding

these generic features is difficult though—often feature

extractors are hand-crafted and selected by testing them

on many similar learning problems.

Other methods, such as feed-forward neural net-

works with a single hidden layer, learn features from
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Fig. 1: Schematic overview of layer-wise learning of

feature hierarchies. Increasingly complex features are

determined from input using unsupervised learning. The

features can be used for supervised task learning.
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the training set by optimizing the parameters of feature

extraction and the classifier simultaneously. While such

networks can in principle represent almost any func-

tion (Cybenko, 1989), the number of required feature

detectors in the hidden layer can be exponential in the

number of inputs. This property is a generalization of the

circuit complexity result that any Boolean function can

be represented by two layers of conjunction and disjunc-

tion of inputs (Shannon, 1949). Often however, Boolean

functions can be represented more space-efficiently by

multi-stage binary decision diagrams that are less wide
and hence need less logic units. The gain in efficiency

is made possible by reusing the results of lower-level

circuits at higher levels. Applying this finding to the

feed-forward neural network context, we can save space—

and time in sequential processing—by combining lower-

level features to more abstract features when we allow

multiple hidden layers and create a feature hierarchy.

Hierarchical neural networks for object categoriza-

tion in images have a long history. They are motivated

by the hierarchical structure of the ventral stream of

the visual cortex, where a sequence of retinotopic repre-

sentations is computed that represents the field-of-view

with decreasing spatial resolution, but increasing feature

complexity. This network structure reflects the typical

hierarchical structure of images, where edges can be

grouped to parts, which form objects (Figure 1).

One of the earliest hierarchical neural networks for

object recognition was the Neocognitron proposed by

Fukushima (1980). In a sequence of feature extracting

and pooling layers—which create invariance to local

shifts—the network was able to recognize handwritten

digits and letters, even if they had been deformed. Other
prominent hierarchical neural networks for object recog-

nition include LeNet by LeCun et al (1989), the HMAX

network by Riesenhuber and Poggio (1999), and the

Neural Abstraction Pyramid by Behnke (2003b). Hierar-

chical features are also learned in the hierarchy of parts

proposed by Fidler and Leonardis (2007). Finally, hier-

archy is a key feature in state-of-the-art architectures

for object recognition. While shallow, extremely wide

architectures perform very well (Coates et al, 2010),

the best-performing classifiers for standard datasets are

currently very deep with up to ten levels of features
(Cireşan et al, 2012).

Despite the above examples, difficulties in learning

the feature hierarchies often prevented better perfor-

mance of deep architectures, as compared to the convex

optimization of shallow models like the Support Vec-

tor Machine. To overcome these difficulties, Hinton et

al.—who coined the term deep learning—proposed to

initialize supervised training of deep networks with a

feature hierarchy that was learned in an unsupervised
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Fig. 2: Visualization of a deep architecture

way, layer by layer from the data (Hinton and Sala-

khutdinov, 2006; Hinton et al, 2006). The impressive

performance of this method—together with massively

parallel computation by GPUs—triggered a revival of

neural networks research.

2 Notation

To ease the following discussion, let us first define the

terms. A deep architecture (as shown in Figure 2) with

depth L is a function h(L) with

h(l)(x) = σ
(
W (l)h(l−1)(x) + b(l)

)
, h(0)(x) = x. (1)

Here, x ∈ RN is the input vector, σ(·) is an elementwise

sigmoid function such as σi(z) = (1 + exp(−zi))−1. The

weight matrices W (l) ∈ RNl×Nl−1 and the biases b(l) ∈
RNl constitute the layer parameters θ(l). Intermediate

h(l)(x) ∈ RNl are referred to as hidden layers. When

unambiguous, we omit the dependency on x and write

h(l). While Eq. (1) is based on dot products of input and

weight vectors, it is also possible to rely on differences

between the two vectors instead and set σ(·) to a radial

basis function.

Our features correspond to the rows of W (l) and can

be determined by learning. We first formalize the task

using a loss function which is minimal when the task is

solved. Learning is then to find parameters such that

the loss function is minimal on some training data D.

For example, we might choose the mean square loss

`MSE

(
θ(1), θ(2), . . . , θ(L),D

)
=

D∑

d=1

N∑

n=1

(
h(L)
n (xd)− xdn

)2
(2)

for an i.i.d. dataset D =
{
x1,x2, . . . ,xD

}
with Gaussian

noise model. This is an unsupervised task where the in-

put is reconstructed from the features. If for some l < L

we have Nl < N0, this requires learning to compress and



Deep Learning 3

decompress the input. Supervised tasks provide some de-

sired output or label in addition to the input data. If we

assume binary labels y ∈ {0, 1}M with
∑M

m=1 ym = 1,

our dataset is D =
{

(x1,y1), (x2,y2), . . . , (xD,yD)
}

,

and we learn a classification task by minimizing the

cross-entropy loss

`CE

(
θ(1), θ(2), . . . , θ(L),D

)
=

−
D∑

d=1

M∑

m=1


ydm · log

exp
(
h
(L)
m (xd)

)

∑M
m′=1 exp

(
h
(L)
m′ (x

d)
)


 . (3)

In networks with at least one non-linear hidden layer,

both losses are non-convex in the parameters. They are

typically minimized by gradient descent, where the gradi-

ents are efficiently (linearly in the number of parameters)

computed with the backpropagation algorithm.

3 Difficulties in Learning Deep Architectures

The principles of learning architectures with many levels

have been known since the proposal of the backpropaga-

tion algorithm for multi-layer perceptrons (Rumelhart

et al, 1986). In practice, however, using more than one

hidden layer was neither common nor successful.

Erhan et al (2009) investigated the reasons for the

often unsatisfying performance of deep architectures.

They conclude that the problem stems from the learning

phase, as

1. increasing depth increases the probability of finding
poor local minima of the non-convex loss, and

2. training the lower layers (close to the input) is more

difficult than training the higher layers (close to

the teacher). A reason might be vanishing gradi-

ents, comparable to gradient propagation problems

in recurrent neural networks (Hochreiter et al, 2001).

To remedy both problems, various strategies can be

employed, which we will now discuss.

4 Deep Learning Strategies

4.1 Greedy Layer-wise Training

In their influential work on data reduction with neural

networks, Hinton and Salakhutdinov (2006) introduced

a first solution to the problems stated in Section 3.

Before minimizing the loss of the deep network with L

levels, they optimized a sequence of L − 1 singe-layer

problems using restricted Boltzmann machines (RBM).
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Fig. 3: Building blocks for greedy pre-training. (a) A

restricted Boltzmann machine (RBM) is an undirected

graphical model where variables are depicted as circles.

Gray circles signify observed variables. (b) Auto-encoder

network, reconstructing h(l−1) with ĥ(l−1).

An RBM is a graphical model displayed in Figure 3 (a)

that represents the log-linear probability distribution

p(h(l−1),h(l)) = Z−1

· exp
(
b(l−1)Th(l−1) + b(l)Th(l) + h(l)TW (l)h(l−1)

)
,

where Z is the partition function which ensures that∫∫
p(·, ·) dh(l−1) dh(l) = 1. Here, h(l) and h(l−1) denote

vectors of binary random variables. The parameters

are chosen such that, when we marginalize out h(l),

they minimize the negative log-likelihood of the data

distribution

`DD(θ(l),D) = −
D∑

d=1

log
∑

h(l)

p
(
h(l−1)(xd),h(l)

)
. (4)

At first glance, we note that this loss is very different

from Eqs. (2) and (3). Determining the gradient of

Eq. (4) analytically is usually unfeasible since calculating

the partition function Z in p(·, ·) scales exponentially

with min(Nl, Nl−1). Instead, approximations such as

contrastive divergence (Hinton, 2002; Tieleman, 2008)

are used. Due to the factorization of the graphical model,
however, the expected conditional probability of h(l)

given h(l−1) can be calculated analytically as

p
(
h(l)

∣∣∣h(l−1)
)

= σ
(
W (l)h(l−1) + b(l)

)
(5)

—which closely resembles Eq. (1)! After minimizing

`DD(θ(l),D), Hinton and Salakhutdinov transform D
using Eq. (5) and iterate the process for θ(l+1). Once

all parameters of a feature hierarchy have been pre-

trained in this way, they are fine-tuned with the original

objective (e.g. (3)).

While the precise definitions of pre-training and

fine-tuning loss vary, this general approach is preva-

lent in the deep learning literature. Most prominently,
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auto-encoders (Bengio et al, 2006) are widely employed

for pre-training, since their gradient can be calculated

exactly. An auto-encoder (Figure 3 b) is a function

ĥ(l−1) = W (l)Th(l)(x) + b′
(l−1)

. In its hidden layer h(l),

it creates a feature representation (encoding) of its input

h(l−1). The encoding is used for two purposes. Firstly,

we optimize `MSE to reconstruct h(l−1) from the fea-

tures. Secondly, similar to RBMs, the features are used

as input for h(l+1), where the next-level auto-encoder

is trained in the same fashion. The close connection

between RBMs and auto-encoders has been investigated

by Vincent (2011).

Why can we get away with changing the loss function

between pre-training and fine-tuning seemingly at will?

There are at least two reasons which have been identified:

1. The discussed pre-training methods identify generic

features of the input, which resemble largely inde-

pendent constituents. Higher-level features detect

common co-occurrence patterns of lower level fea-

tures. Intuitively, such features are likely to play a

role in many objectives, termed the structure as-

sumption in Weston et al (2008).

2. Pre-training can be seen as a regularization of fine-
tuning. It moves the weights to a region in parameter

space that has better generalization properties, and

can therefore be seen as a form of semi-supervised

learning (Erhan et al, 2010).

Additionally, by training only one layer at a time, we

solve simpler problems with fewer local minima and

cleaner gradients (as discussed in Section 3)—and post-

pone dealing with the complete, hard problem to the

fine-tuning phase.

Other local learning methods that have been applied

to learn feature hierarchies include competitive learning

(Fukushima, 1980; Behnke, 1999), slow feature analysis

(Wiskott and Sejnowski, 2002), non-negative matrix fac-

torization (Behnke, 2003a), and deconvolutions (Zeiler

et al, 2011).

4.2 Regularization

There are some restrictions on the type of building block

we can use in deep learning. An important requirement

is that we should not learn trivial features of the input.

Commonly, data is normalized by centering and some-

times whitening. Still, if the number of features is large

enough, the identity function can be learned, which does

not yield new insights to be used in higher layers.

One way to enforce learning of novel features in

auto-encoders is to keep the number of features small

with respect to the number of inputs, such that for all

l < L : Nl+1 < Nl. Intuitively, we learn to represent

the input using fewer bits and minimize the information

loss.

Sometimes it is useful to learn highly overcomplete

(Nl � Nl−1) feature hierarchies, e.g. for decomposing

the signal for use in linear classifiers (Boureau et al,

2010). In this case, we can amend the auto-encoder loss

function by approximately minimizing the number of

non-zero entries of the hidden representation, resulting

in

`MSE+S(θ(l),D) = `MSE(θ(l),D) + λ

D∑

d=1

∥∥∥h(l)(xd)
∥∥∥
1
.

Optimizing this objective is related to sparse coding

(Kavukcuoglu et al, 2010).

Large datasets allow better generalization to unseen

test data from the same distribution. We can artificially

introduce new data to profit from this effect, even if

the generated data is not strictly i.i.d. In auto-encoders,
this is achieved by adding noise to the input, and re-

constructing the original, noise-free data (Vincent et al,

2010). This also requires to learn non-trivial features,

since any single input is likely to be corrupted by noise.

The learning algorithms for RBMs have built-in random

sampling, which has a similar effect (Vincent, 2011).

If inputs are natural images, we can further exploit

their two-dimensional structure to regularize learning.
Pixels have much stronger correlation with their imme-

diate neighbors than with far-away ones (Huang and

Mumford, 1999). As a consequence, image features are

strongly localized, i.e. mostly zero, and local weight ma-

trices can be used which assign each feature a set of

non-zero weights only in a small image region.

Even with local weight matrices, we can anticipate

that the filters will be very redundant. All edge fea-

tures, to choose a simple example, need to be learned

at all image locations. LeCun et al (1998) introduced

weight sharing to eliminate this redundancy. Every fea-

ture detector is applied at all image locations, which

can be efficiently implemented using convolutions in-

stead of the matrix multiplication in Eq. (1). Absolute
image position can still be incorporated by adding non-

convolutional layers at later stages in the hierarchy.

5 Applications

Deep learning techniques have been applied to numerous

domains and spurred a plethora of extensions. In this

section, we highlight a few approaches selected to give

an impression of the broad domain of applications and

the vitality of deep learning.

In their seminal work, Hinton and Salakhutdinov

(2006) showed that the deep learning approach with
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Fig. 4: Example segmentations by Schulz and Behnke

(2012) for three datasets: MSRC-9 (top row), MSRC-21

(center row), and IG02 (bottom row). Left column shows

original image, center column our output, right column

ground truth. MSRC has ground mask of unlabeled

pixels from ground truth superimposed.

unsupervised RBM pre-training is useful for compression

of handwritten digits and faces. For this purpose, the

authors pre-trained a feature hierarchy with depth L = 4

using RBMs and then fine-tuned for a reconstruction

task. The same unsupervised learning technique was

also successful in embedding text documents in a low-

dimensional space where distances then corresponded

to given labels better than for other methods.

Lee et al (2009a) extended the RBM to convolutional

weights for image recognition. To increase translational

invariance, the authors generalized maximum-pooling

of convolutional feed-forward neural networks (Scherer

et al, 2010) to probabilistic max-pooling, which can

be used in generative models. The authors used their

model to generate missing parts in images of faces and

for classification.

Varying the type of the learned feature, Ranzato and

Hinton (2010) extended the restricted Boltzmann ma-

chine to model not only pixel means, but also covariances

in images. To generate samples from the model distribu-

tion, block Gibbs sampling of standard RBMs cannot be

used. Instead the authors rely on a hybrid Monte Carlo

technique. After training their model on natural image

patches, knowledge of few pixels was sufficient to fill out

large image regions. The mean-covariance features can

also be used as inputs to an RBM stack, resulting in

improved performance on an image classification task.

Using purely supervised pre-training of a convolu-

tional deep neural network, Grangier et al (2009), as well

as Schulz and Behnke (2012) achieved very good per-

formance on multiple object-class segmentation bench-

marks. Here, the task is to label each pixel in an image

with one of a given set of object class labels. Schulz and

Behnke improved the method by reusing the not-yet-
optimal pre-training results of lower layers as inputs for

higher layers. Figure 4 shows sample segmentations.

For natural language processing, Collobert and We-

ston (2008) proposed to use a deep neural network to

simultaneously perform part-of-speech tagging, deter-

mining semantic roles, and semantic similarity. Similar

to images, the authors use convolutions to become in-

dependent of sentence length. By repeatedly marking

single input words as “to be labeled”, whole sentences

can be interpreted by the network. To optimize all objec-

tives at once, the authors share parameters between the

various classifiers and observe that task performances

improve when multi-task learning is used.

Lee et al (2009b) apply deep learning principles to

the audio domain. While in images, learned features

correspond to edges, here the features represent phones
and phonemes and improve the performance in multi-

ple audio recognition tasks. More recently, Dahl et al

(2012) built upon previous work on the combination

of artificial neural networks for feature extraction and

hidden Markov models (HMM) for context. By choosing

deep (up to five layer) neural networks instead of shal-

low ones and by employing RBM pre-training, they

significantly out-performed state-of-the-art on large-

vocabulary speech recognition. They further boosted

their results by enlarging their set of labels for supervised

fine-tuning using the posterior probabilities of senomes

(learned tied triphone HMM states), which significantly

outnumber the set of classical phonemes.

On a variety of benchmark datasets for image clas-

sification, the currently best-performing approach is

the multi-column deep neural network by Cireşan et al

(2012). Here, very deep convolutional networks are trai-

ned on random variations of the training set. By care-

fully handcrafting a model of transformations conform-

ing with the input distribution, ten-layer architectures

could be learned even without pre-training. Additional

gains were achieved by training multiple networks (“col-
umns”), each with a different preprocessing procedure,

and averaging the results.

6 Conclusion

We gave a brief overview of the ideas behind deep learn-

ing, a field of machine learning creating and analyzing

the building blocks of feature hierarchies.

Feature hierarchies provide a space and time-efficient

decomposition of inputs, which can be useful in various

tasks such as classification, denoising, and compression.

For a long time it was not clear how feature hierarchies

can be learned. We discussed the problems encountered

during learning—the large number of local minima and

gradient dilution.

The deep learning solution to learning feature hier-

archies is to solve a sequence of simple shallow problems

first. In each step, deep methods learn a new level of

features—gaining new insights into the input data distri-

bution on the way. The resulting feature hierarchy can
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finally be adopted to an arbitrary (usually supervised)

task.

While deep learning has progressed tremendously

over the last years, many challenges remain. The de-

scribed building blocks of deep learning are restricted

and cannot represent arbitrary features, since the en-

coder has no hidden layer. We believe that unsupervised

pre-training of two-layer encoders is more promising

for the future. The set of learned invariances should be

extended to include transformations (Taylor et al, 2010;

Memisevic, 2011) and hierarchies of transformations, so
that image sequences can be modeled. Another open

problem is to model the 3D structure of scenes to deal

with occlusions. Finally, it is a challenge to scale up the

proposed techniques to large real-world datasets such

as ImageNet, and investigate whether the results can

compete with current computer vision approaches there.
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