
Learning Two-Layer Contractive Encodings

Hannes Schulz and Sven Behnke

Rheinische Friedrich-Wilhelms-Universität Bonn
Institut für Informatik VI, Friedrich-Ebert-Allee 144, 53113 Bonn

{schulz,behnke}@ais.uni-bonn.de

Abstract. Unsupervised learning of feature hierarchies is often a good
initialization for supervised training of deep architectures. In existing
deep learning methods, these feature hierarchies are built layer by layer in
a greedy fashion using auto-encoders or restricted Boltzmann machines.
Both yield encoders, which compute linear projections followed by a
smooth thresholding function. In this work, we demonstrate that these
encoders fail to find stable features when the required computation is in
the exclusive-or class. To overcome this limitation, we propose a two-layer
encoder which is not restricted in the type of features it can learn. The
proposed encoder can be regularized by an extension of previous work on
contractive regularization. We demonstrate the advantages of two-layer
encoders qualitatively, as well as on commonly used benchmark datasets.

1 Introduction

Unsupervised learning of feature hierarchies—pre-training—has often been used
in recent years for the initialization of supervised learning of deep architectures,
e.g. for the categorization of images. This initialization was found to improve
results for many-layered—so-called deep—neural networks [1, 2] and has spurred
research on understanding and improving feature learning methods [e.g. 3–6].
Classical pre-training for a multi-layer perceptron is performed layer-wise in
a greedy fashion, that is, after training the parameters of one layer, they are
fixed for the training of the next higher layer parameters. After pre-training, all
parameters are fine-tuned jointly in a supervised manner on the task.

The greedy initialization steps successively build more complex features and
at the same time avoid problems occurring when training deep architectures
directly. Erhan et al. [3] argue that many-layered architectures have more local
minima and that gradients are becoming less informative when passing through
many layers. In contrast, commonly employed auto-encoders (AE) and restricted
Boltzmann machines (RBM) are shallow. They have fewer local minima and
gradients are not diluted.

In some cases, layer-wise pre-training might not help fine-tuning, e.g. when
extracted features bear no relation with the desired output. Recently, Rifai et al.
[6] showed that stable features of the training data are useful for supervised
training on wide range of datasets. The failure mode we address in this paper is
when these stable features cannot be recognized by the pre-training method. AEs
and RBMs both yield encoders which consist of a linear projection followed by a

In Proceedings of International Conference on Artificial Neural Networks (ICANN), pp. 620-628, September 2012.

2 Hannes Schulz and Sven Behnke

smooth thresholding function. This is a highly restricted function class. In fact,
Minsky and Seymour [7] showed that such a one-layer neural network is not able
to learn the class of not linearly separable functions, of which the well-known
XOR problem is the simplest example. We argue here that deep architectures
pre-trained with the common one-layer encoders often fail to discover features
which are of the XOR class (which we shall refer to as non-linear features), and
that fine-tuning cannot repair this defect. We construct problems that cannot
profit from pre-training and show that pre-training is even counter-productive in
these cases.

The problem cases can be solved for auto-encoders by introducing a hidden
layer in the encoder, yielding a compromise between the advantages of increased
expressiveness and disadvantages of increased depth. To remedy the problem
of increased depth, we propose to extend contractive regularization [6] to two-
layer auto-encoder pre-training. We show that this regularization can resolve the
constructed cases and performs better than greedy pre-training on benchmark
datasets.

The remainder of the paper is organized as follows. Sec. 2 discusses related
work. In Sec. 3, we introduce technical details of auto-encoders and the pre-
training protocol. Sec. 4 shows where greedy pre-training of auto-encoders fails and
introduces our proposed solution. We demonstrate the benefits of our approach
in the experiments of Sec. 5.

2 Related Work

The representational power of deep architectures has been thoroughly analyzed
[8, 9]. Le Roux and Bengio [8] showed that in principle, any distribution can
be represented by an RBM with M + 1 hidden units, where M is the number
of input states with non-zero probability. The question which features can be
represented, however, is not addressed. Bengio and Delalleau [9] analyzed the
representational power of deep architectures and find they can represent some
functions with exponentially less units than shallow architectures. However, the
authors did not take into account the fundamental limits of their building blocks.

There is numerous evidence that performance of deep architectures can be
improved when the greedy initialization procedure is relaxed. Salakhutdinov
and Hinton [10] report advantages when performing simultaneous unsupervised
optimization of all layer parameters of a stack of RBMs. The authors rely on
a greedy initialization, however, which we demonstrate here might establish a
bad starting point. Ngiam et al. [11] train a deep belief network without greedy
initialization and also report good results. Their approach might not scale to
many-leveled hierarchies though, and relies on a variant of contrastive divergence
to approximate the gradient. Recently, Cireşan et al. [12] obtained top results on a
number of image classification data sets with deep neural networks. They did not
rely on pre-training, but used other regularization methods, such as convolutional
network structure with max-pooling, generation of additional training examples
trough transformations, and bagging.

Learning Two-Layer Contractive Encodings 3

3 Auto-Encoders

An auto-encoder consists of an encoder and a decoder. The encoder typically has
the form

h = fenc(x) = g(Wx), (1)

where gi(x) = (1 + exp(−xi))−1 is a component-wise sigmoid non-linearity. The
encoder transforms the input x ∈ RN to a hidden representation h ∈ RM via the
(learned) matrix W ∈ RM×N . The decoder is then given by

x̂ = fdec(h) = W ′h ∈ RN , (2)

where we restrict ourselves to the symmetric case W ′ = WT . Even though
biases are commonly used, we omit them here for clarity. The main objective for
auto-encoders is to determine W such that x̂ is similar to x. For binary x, this
amounts to minimizing the the cross-entropy loss

`bin(x,W) = −
N∑
i

(xi log(x̂i) + (1− xi) log(1− x̂i)) . (3)

Auto-encoders have gained popularity as a method for pre-training of deep
neural networks [e.g. 1]. In deep neural networks, gradient information close to
the input layer is “diluted” since it was passed through a series of randomly
initialized layers. This effect increases the difficulties in learning good high-level
representations [13]. Pre-training moves weights to an area where they relate to
the input and therefore allow for cleaner gradient propagation.

Pre-training typically proceeds in a greedy fashion. Consider a deep network
for a classification task, y = g(V h(L)), with h(l) = g(W (l)h(l−1)), where y is
the output layer, h(l), l ∈ 1, . . . , L are hidden layers, and h(0) = x is the input
layer. Then, L auto-encoders are learned in succession, minimizing `·(h

(l−1),W (l))
and keeping W (l′<l) fixed. It is frequently observed that following this proto-
col, successively higher-level representations of the inputs are attained [1]. This
pre-training is greedy though; a joint optimization of all layers might yield su-
perior results in theory. In practice, however, joint optimization suffers from
the same gradient dilution problem as originally addressed by the deep-learning
methodology and yields bad performance [14]. After pre-training, all parame-
ters (W (1), . . . ,W (L), V) are optimized according to the supervised classification
objective. This final step is termed fine-tuning.

3.1 Contractive Auto-Encoder Regularization

To avoid overfitting the training data, or in the overcomplete case where M > N ,
it is common to regularize the auto-encoder learning. One possibility is to extend
the training set by corrupting x with random noise and optimizing a denoising
objective [15]. A more recent method is the contractive auto-encoder (CAE) [6].

4 Hannes Schulz and Sven Behnke

1

10

r

s

1

10

r

s

p

q

y
r

s

V W

x h xh h

V V
1

10

p

q

A B

Fig. 1. Auto-encoder pre-training can be counter-productive. The simple network on
the left should learn y = p Y q. Pre-training of V makes an uninformed choice between
representations A and B (w.l.o.g.), but only B is linearly separable and helps fine-tuning.

The CAE minimizes the squared Frobenius norm of the Jacobian Jfenc of fenc
w. r. t. the input x. The combined objective is given as

`CAE(h(l−1),W) = `·(h
(l−1),W) + λ‖Jfenc‖2, (4)

where λ is the regularization strength. This regularizer yields very good results
on a variety of datasets by identifying features which are invariant to small
perturbations of the inputs. In the next section, we show that not all stable
features can be computed by a CAE, severely restricting the types of invariances
which can be learned.

4 Where Pre-Training of One-Layer Encoders Fails

Let us assume that we want to approximate the Boolean function f(p, q) := pY q,
where ·Y · denotes the exclusive-or relation (XOR). For this purpose, we consider
the neural network with a two-unit hidden layer shown in Fig. 1 (left) and perform
auto-encoder pre-training for the first-layer matrix V . During the pre-training
phase, two filters have to be learned, mapping the input vector again to a two-
dimensional space h = (r, s). Without further information, this mapping might
choose a representation which is not linearly separable (denoted “A” in Fig. 1). In
this case, pre-training does not aid fine-tuning, it chooses a feature representation
that is not helpful for the classification task. Of course, this argument merely
stresses the distinction between supervised and unsupervised learning. It does
not follow that pre-training is not helpful per se. Our observation has, however,
important consequences for greedy pre-training.

We can easily extend the argument of the previous paragraph to a case
where greedy pre-training does not find stable non-linear features that are
obvious from the data. Let us assume we have a dataset of three variables, where
x(i) = (p, q, p Y q). The only stable feature of this dataset is p Y q, i.e. a two-

layered denoising auto-encoder should be able to recover x
(i)
3 from the first two

components and any of the p, q from the other variable and p Y q. If unfortunate
greedy training of the first layer prevents the second layer from learning that p
and q are XOR-related—as demonstrated in the previous section—the second
layer will fail to discover this relation. Even worse, pre-training might leave
the weights in a state where recovery using fine-tuning is not possible. We will
experimentally verify these claims in Sec. 5.

Learning Two-Layer Contractive Encodings 5

Table 1. Hyper-parameter distribution used in our experiments.

Hyper-parameter Distribution

Auto-encoder learnrate logU(0.01, 0.2)
MLP learnrate logU(0.01, 0.2)
Regularization strength (λ) U(0.001, 2)

4.1 Contractive Regularizer for Two-Layer Encoders

Considering the failure mode of one-layer encoders discussed above, an intuitive
extension is to add a hidden layer h′ ∈ RK to the encoder, such that fenc(x) =
h = g(Wh′) = g(Wg(V x)),with x ∈ RM , V ∈ RK×M , W ∈ RN×K . Extending
contractive regularization [6] to two-layer encoders yields

‖Jfenc
(x)‖2F =

N∑
n

M∑
m

(
hn(1− hn)

)2(K∑
k

wnkvkmh
′
k(1− h′k)

)2

. (5)

In contrast to other pre-training regularizers, Eq. (5) does not directly constrain
the first-layer features. Instead, first-layer features are chosen in a way to ensure
stable second -layer representations. Thus, our encoder is able to recognize non-
linear features as being stable in a dataset. While the time complexity of the
forward and backward pass for a (mini-) batch of size B is O(B(NK+KM)), the
complexity of the regularizer amounts to O(BNKM) for both passes. In practice,
we reduce the computation time to O(NKM) by calculating the regularization
gradient only for one randomly selected instance in a batch.

5 Experiments

Our experiments follow a common protocol. For a fixed architecture, we re-
peatedly sample all free hyper-parameters from the distributions detailed in
Tab. 1. Random search is faster at finding optima than grid or manual search
[16]. For a weight matrix W ∈ RN×M , weights are initialized uniformly with

wij ∼ U
(
−
√

6/N+M,
√

6/N+M

)
as proposed by Glorot and Bengio [5]. The

dataset is split in training, validation and testing sets. We stop each training
stage before the loss on the validation set increases. The model with the best final
validation error is trained again using training and validation set, for the same
number of epochs as determined in the validation phase, and is finally evaluated
on the test set.

5.1 Detecting Constraint Violations in LDPC Codes

We now extend the toy example of Sec. 4 to a more realistic task. A low density
parity check (LDPC) code, also known as Gallager code [17], is a code that allows
error correction after transmission through a noisy channel. This is achieved
by relating the bits in the message with a set of random constraints known

6 Hannes Schulz and Sven Behnke

c

c

y

(c)

y

c

(c) (c)

hand-crafted encoder
learned auto-encoder

Wand Wor

(Wor)

(I)

(Wand)

Fig. 2. Constructed example where greedy auto-encoders fail. The matrices Wand and
Wor are hand-crafted to calculate

∑
i ci mod 2. Matrices and resulting representations

in parenthesis have to be recovered, i. e. learned, by the auto-encoder to solve the
reconstruction task.

to both sender and receiver. A constraint over a set of variables Xc is met iff
0 ≡ (

∑
x∈Xc

x) mod 2. Note, that the modulo operation generalizes the XOR
operation to multiple binary variables.

We consider a subproblem of decoding an LDPC code, namely detecting
constraint violations in the code. To this end, we construct a dataset where a
code word c ∈ {0, 1}N has N constraints Cn with three participating variables,
each. Each variable participates in three random constraints. The problem can
be solved perfectly by constructing a two-layer neural network with weights
Wand ∈ R4N×N such that∧

n∈{1,...,N}

∧
i∈{0,...,3}

1 = h
(1)
4n+i iff

∑
c∈Cn

c = 2i, and Wor ∈ RN×4N s. t.

∧
n∈{1,...,N}

1 = yn iff
∑

i∈{0,...,3}

h
(1)
4n+i > 0.

We now frame learning Wand and Wor as a task for the auto-encoder shown
in Fig. 2. The auto-encoder reconstructs the code word c and the constraint
violation vector y together:

(c1, c2, . . . , cn, y1, y2, . . . , yn) = x = fdec(fenc(x)), (6)

where fenc(x) = g(Wor g(Wand x)) (7)

and fdec(h) = g(WT
and g(WT

or(h))). (8)

Since ci ∼ Binomial(1, 0.5), c cannot be compressed to less than N bits. Hence,
a hidden layer size N creates a bottleneck where no more than the complete
codeword can be represented.

The dataset is constructed from all N = 15 bit strings and randomly split
into training (60%), validation (20%), and test set (20%). After pre-training,
the reconstruction loss `bin(x, (Wor,Wand)) is finetuned without regularization—
again using early stopping on the validation set. An instance x is classified
correctly if it could be reconstructed without errors, i. e.

∧
i(xi = bx̂i + 0.5c).

Learning Two-Layer Contractive Encodings 7

0.2 0.4 0.6 0.8
validation error

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

be
lo

w

LDPC Dataset

0.14 0.16 0.18 0.20 0.22 0.24 0.26
validation error

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

be
lo

w

MNIST-rot Dataset

1 L, contractive
2 L, greedy unregularized
2 L, greedy contractive
2 L, non-greedy contractive

Fig. 3. Comparison of pre-training effects for fixed architecture (30×75×15 for LDPC,
784×1000×500 for MNIST-rot). Graphs show fraction of draws from hyper-parameter
distribution which performs better than given validation error.

Table 2. Comparison of pre-training methods for fixed architecture.

Condition Test Error (%)

Layers Pre-Training Regularization LDPC MNIST-rot MNIST

1 no none 88.6 13.8 1.8
1 yes none 81.8 15.7 1.6
2 greedy contractive 6.8 13.2 1.6
2 greedy none 5.3 14.6 1.7
2 no none 0.0 12.5 1.7
2 non-greedy none 0.0 12.5 1.7
2 non-greedy contractive 0.0 11.4 1.4

The results are visualized in Fig. 3. We show the fraction of draws from the
hyper-parameters which performs better than a given validation error. For greedy
pre-training, the chances of finding a model which performs well on the validation
set are very small. This is reflected in the test errors displayed in Tab. 2. Only
conditions where both layers are trained simultaneously are able to solve the
task. This demonstrates: Greedy auto-encoders are only able to learn “linear”
features. Non-linear relations contained in the data cannot always be recovered
by higher layers.

5.2 Benchmark Datasets

We also compare our approach on two benchmark datasets, MNIST and the
rotated MNIST dataset MNIST-rot. Here, we fix the architecture of the network
to N = 784, K = 1000, M = 500 and choose a batch size of 16. Qualitatively,
we get the same results as in the constructed LDPC example for both datasets.
The two-layer regularized encoder is more robust with respect to choice of hyper-
parameters (Fig. 3) and finds better minima (Tab. 2). Additionally, we analyzed
the reconstruction error of the best-performing models after pre-training. On
the MNIST-rot validation set, the one-layer case achieves an error of 126.3,
greedy contractive pre-training yields 98.3, and the regularized two-layer encoder
reaches 88.9. The reconstruction results for MNIST have the same ranking. This
demonstrates that the features learned in the two-layer encoder are not only
better for classification, they are also better representations of the input.

8 REFERENCES

6 Conclusion

Common pre-training of deep architectures by RBM and AE simplifies one hard
deep problem to many less difficult single-layer ones. In this paper, we argued
that this simplification goes one step too far, to the extent where the class of
features which can be learned by the pre-training procedure is restricted severely.

Guided by the observation that one-layer neural networks cannot learn func-
tions in the exclusive-or class, we constructed a task to detect constraint violations
in low density parity check codes, which relies heavily on modulo computations.
For this dataset, layer-wise pre-training was counterproductive for fine-tuning
and only two-layer methods could solve the task.

To obtain unrestricted representational power, we used two-layer encoders,
which can be regularized using an adaption of the contractive regularizer [6]. We
demonstrated the superior performance of our approach on standard benchmark
datasets, and compared to one-layer and greedy two-layer approaches.

References

[1] Y. Bengio et al. “Greedy layer-wise training of deep networks”. In: NIPS. 2006, pp. 153–
160.

[2] G. Hinton et al. “A fast learning algorithm for deep belief nets”. In: Neural computation
18.7 (2006), pp. 1527–1554.

[3] D. Erhan et al. “The difficulty of training deep architectures and the effect of unsuper-
vised pre-training”. In: AISTATS. 2009, pp. 153–160.

[4] K. Cho et al. “Enhanced gradient and adaptive learning rate for training restricted
Boltzmann machines”. In: ICML. 2011.

[5] X. Glorot and Y. Bengio. “Understanding the difficulty of training deep feedforward
neural networks”. In: AISTATS. 2010.

[6] S. Rifai et al. “Contractive auto-encoders: Explicit invariance during feature extraction”.
In: ICML. 2011.

[7] M. Minsky and P. Seymour. Perceptrons. MIT press, 1969.
[8] N. Le Roux and Y. Bengio. “Representational power of restricted boltzmann machines

and deep belief networks”. In: Neural Computation 20.6 (2008), pp. 1631–1649.
[9] Y. Bengio and O. Delalleau. “On the expressive power of deep architectures”. In: Algo-

rithmic Learning Theory. Springer. 2011, pp. 18–36.
[10] R. Salakhutdinov and G. Hinton. “Deep Boltzmann machines”. In: Proc. of the Int.

Conf. on Artificial Intelligence and Statistics. Vol. 5. 2. 2009, pp. 448–455.
[11] J. Ngiam et al. “Learning deep energy models”. In: ICML. 2011, pp. 1105–1112.
[12] D. C. Cireşan et al. “Multi-column deep neural networks for image classification”. In:

CVPR. to appear. Providence, USA, 2012.
[13] D. Erhan et al. “Why does unsupervised pre-training help deep learning?” In: Journal

of Machine Learning Research 11 (2010), pp. 625–660.
[14] G. Hinton and R. Salakhutdinov. “Reducing the dimensionality of data with neural

networks”. In: Science 313.5786 (2006), pp. 504–507.
[15] P. Vincent et al. “Stacked denoising autoencoders: Learning useful representations in a

deep network with a local denoising criterion”. In: The Journal of Machine Learning
Research 11 (2010), pp. 3371–3408.

[16] J. Bergstra and Y. Bengio. “Random search for hyper-parameter optimization”. In:
Journal of Machine Learning Research 13 (2012), pp. 281–305.

[17] R. Gallager. “Low-density parity-check codes”. In: Information Theory, IRE Transac-
tions on 8.1 (1962), pp. 21–28.

	Learning Two-Layer Contractive Encodings

