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Abstract. A common practice to gain invariant features in object recog-
nition models is to aggregate multiple low-level features over a small
neighborhood. However, the differences between those models makes
a comparison of the properties of different aggregation functions hard.
Our aim is to gain insight into different functions by directly comparing
them on a fixed architecture for several common object recognition tasks.
Empirical results show that a maximum pooling operation significantly
outperforms subsampling operations. Despite their shift-invariant proper-
ties, overlapping pooling windows are no significant improvement over
non-overlapping pooling windows. By applying this knowledge, we achieve
state-of-the-art error rates of 4.57% on the NORB normalized-uniform
dataset and 5.6% on the NORB jittered-cluttered dataset.

1 Introduction

Many recent object recognition architectures are based on the model of the
mammal visual cortex proposed by Hubel and Wiesel [8]. According to their
findings, the visual area V1 consists of of simple cells and complex cells. While
simple cells perform a feature extraction, complex cells combine several such local
features from a small spatial neighborhood. It is assumed that spatial pooling is
crucial to obtain translation-invariant features.

Supervised models based on those findings are the Neocognitron [6] and
Convolutional Neural Networks (CNNs) [10]. Many recent state-of-the-art fea-
ture extractors employ similar aggregation techniques, including Histograms of
Oriented Gradients (HOG) [3], SIFT descriptors [12], Gist features [22], and the
HMAX model [20].

These models can be broadly distinguished by the operation that summarizes
over a spatial neighborhood. Most earlier models perform a subsampling oper-
ation, where the average over all input values is propagated to the next layer.
Such architectures include the Neocognitron, CNNs and the Neural Abstrac-
tion Pyramid [2]. A different approach is to compute the maximum value in a
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neighborhood. This direction is taken by the HMAX model and some variants of
CNNs.

While entire models have been extensively compared, there has been no
research evaluating the choice of the aggregation function so far. The aim of our
work is therefore to empirically determine which of the established aggregation
functions is more suitable for vision tasks. Additionally, we investigate if ideas
from signal processing, such as overlapping receptive fields and window functions
can improve recognition performance.

2 Related Work

Many computer vision architectures inspired by studies of the primary visual
cortex use a multi-stage processing of simple and complex cells. Simple cells
perform feature detection at a high resolution. Translation-invariance and gen-
eralization is achieved by complex cells, which combine activations over a local
neighborhood.

One of the earliest models employing this technique is the Neocognitron [6].
Here, each of the so-called C-cells receives excitatory input connections from
feature extraction cells at slightly different positions. A C-cell becomes active
if at least one of their inputs is active, thus tolerating slight deformations and
transformations.

In Convolutional Neural Networks (CNNs), such as LeNet-5 [10], shift-invari-
ance is achieved with subsampling layers. Neurons in these layers receive input
from a small non-overlapping receptive field of the previous layer. Each neuron
computes the sum of its inputs, multiplies it by a trainable coefficient, adds a
trainable bias and passes the result through a non-linear transfer function. A
similar computation is performed in the recurrent Neural Abstraction Pyramid [2].
More recently, the subsampling operation in CNNs has been replaced with a max
pooling operation [18]. Here, only the maximum value within the receptive field
is propagated to the next layer.

In the global scene description computed by the Gist model [22], the feature
extractor is not trainable, but performs similar computations. Low-level center-
surround features are computed from color and intensity channels at different
scales and orientations. Subsequently, each channel is divided into a 4× 4 grid of
sub-regions. The 16-dimensional Gist feature vector of this channel is computed
by averaging the values in each region.

The SIFT [12] (scale-invariant feature transform) keypoint descriptor is
computed by sampling the dominant orientation and the gradient magnitude
around the keypoint location. These values, weighted by a Gaussian window
function, are then accumulated into arrays of 4 × 4 orientation histograms
summarizing the content over 4× 4 positions. Pyramids of such local orientation
histograms computed on a dense, overlapping grid of image patches have proven
to be well suited scene and object representations for recognition tasks [9].
Experiments with locally normalized Histogram of Oriented Gradients (HOG)
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Fig. 1. Architecture of our CNN for NORB experiments, consisting of alternating
convolutional and pooling layers. Pooling layers can implement either subsampling
operations or max pooling.

descriptors have shown that fine-scale gradients and coarse-scale spatial binning
yield good recognition performance for human detection [3].

Riesenhuber and Poggio originally proposed to use a maximum operation
to model complex cells in 1999 [20]. In the HMAX model [21], each complex
cell receives input from a distinct patch of a simple cell map. This approach
was further refined by Mutch et al. [14], introducing sparsification and lateral
inhibition. Here, max pooling is performed on overlapping patches with an overlap
factor of two in a spatial neighborhood and across scales.

Even though all of these methods resemble the concept of simple and complex
cells, they differ by the type of inputs, the method of feature extraction, the
training algorithm, and the classifier used. Additionally, each method emulates
complex cells slightly different. Due to those variations a thorough analysis how
a particular choice of this component affects overall performance is impossible. In
order to empirically compare the sole influence of different aggregation functions,
we chose an otherwise fixed model architecture, described in the following section.

3 Model Architecture

This section describes the architecture of the feature extraction and classification
system, as well as the training procedure used in our experiments. We chose
to perform our evaluations within the framework of a Convolutional Neural
Network (CNN). CNNs have achieved state-of-the-art results for the recognition
of handwritten digits [23] and for the detection of faces [17]. They are deployed in
commercial systems to read checks [10] and to obfuscate faces and license plates
in Google StreetView [5].

3.1 Base Model

CNNs are representatives of the multi-stage Hubel-Wiesel architecture, which
extract local features at a high resolution and successively combine these into
more complex features at lower resolutions. The loss of spatial information is
compensated by an increasing number of feature maps in the higher layers. CNNs
consist of two altering kinds of layers: convolutional layers (C layers), which



resemble the simple cells, and pooling layers (P layers), which model the behavior
of complex cells. Each convolutional layer performs a discrete 2D convolution
operation on its source image with a filter kernel and applies a non-linear transfer
function. The pooling layers reduce the size of the input by summarizing neurons
from a small spatial neighborhood. Our choice of a CNN is largely motivated by
the fact that the operation performed by pooling layers is easily interchangeable
without modifications to the architecture. The general architecture is shown in
Figure 1 and is identical to the models by LeCun et al. [11] and Ahmed et al. [1].

3.2 Convolutional Layers

Computations for the forward pass and the backprogagation in the convolutional
layer follow the standard procedure in the literature, and have trainable filters
and one trainable bias per feature map. A hyperbolic tangent function is applied
to activations in this layer. Our experiments have shown that a sparse connection
between feature maps does not improve recognition performance compared to
fully connected feature maps as long as the number of parameters is equal. Thus,
in a convolutional layer, each map is connected to all of its preceding feature
maps.

3.3 Pooling Layers

The purpose of the pooling layers is to achieve spatial invariance by reducing
the resolution of the feature maps. Each pooled feature map corresponds to one
feature map of the previous layer. Their units combine the input from a small
n × n patch of units, as indicated in Figure 1. This pooling window can be of
arbitrary size, and windows can be overlapping.

We evaluate two different pooling operations: max pooling and subsampling.
The subsampling function

aj = tanh(β
∑

N×N

an×n
i + b) (1)

takes the average over the inputs, multiplies it with a trainable scalar β, adds a
trainable bias b, and passes the result through the non-linearity. The max pooling
function

aj = max
N×N

(an×n
i u(n, n)) (2)

applies a window function u(x, y) to the input patch, and computes the maximum
in the neighborhood. In both cases, the result is a feature map of lower resolution.

3.4 Backpropagation

All layers of the CNN model are trained using the backprogagation algorithm. For
error propagation and weight adaptation in fully connected, convolutional, and
subsampling layers we follow the standard procedure. In the max pooling layers,
the error signals are only propagated to the position at arg maxN×N (an×n

i u(n, n)).
Thus, error maps in max pooling layers are sparse. If overlapping pooling windows
are used, it might be necessary to accumulate several error signals in one unit.



Fig. 2. A few examples of preprocessed
images from the Caltech-101 dataset.

Fig. 3. Images from the NORB
normalized-uniform dataset.

4 Experimental Results

The purpose of our experiments is threefold: (1) to show that max pooling is
superior to subsampling, (2) to determine if overlapping pooling windows can
improve recognition performance and (3) to find suitable window functions. All
experiments were conducted with the same random initialization unless noted
otherwise.

To speed up the training, we implemented the CNN architecture on Graphics
Processing Units (GPUs) using NVIDIA’s CUDA programming framework [16].
Convolution operations utilize routines kindly provided by Alex Krizhevsky1.
Most other operations are accelerated with our publicly-available CUV library [13].
For mini-batch learning, with only a few patterns being processed in parallel, we
achieve a speedup of roughly two orders of magnitude compared to our CPU
implementation.

4.1 Datasets

We evaluated different pooling operations on the Caltech-101 [4] and NORB [11]
datasets. Recognition rates with other CNN architectures have been published
for both datasets by various authors.

The Caltech-101 dataset consists of 101 object categories and one background
category. There is a total of 9144 images of different sizes of roughly 300× 300
pixels. We preprocessed the images by fitting them into a 140 × 140 image frame,
while retaining their aspect ratio. The padding was filled with the image mean
for each color channel. We faded the image border into the padding to remove
side effects caused by the image edge, as shown in Figure 2. The resulting images
are normalized per channel to have a mean of zero and a variance of one to
accelerate learning.

We follow the common experiment protocol in the literature for Caltech-101,
which is to randomly choose 30 images from each category for training and use
1 http://www.cs.utoronto.ca/~kriz



the remainder for testing. The recognition rate is measured for each class and we
are reporting the average over all 102 classes.

In addition, we conduct experiments on the NORB normalized-uniform
dataset, which consists of only five object categories. The training and test-
ing set each contain five instances of toy objects for each category, photographed
from different angles and under different illuminations. Each pattern consists
of a binocular pair of 96 × 96 grayscale images, with a total of 24,300 training
patterns and the same amount of testing patterns.

4.2 Max Pooling versus Subsampling

In order to keep our results comparable, we deliberately designed the networks
to resemble the one by Huang and LeCun [7] for NORB and the one by Ahmed
et al. [1] for Caltech-101.

For NORB, the input layer with two feature maps of size 96× 96 is followed
by a convolutional layer C1 with 5 × 5 filters and 16 maps of size 92 × 92. P2
is a 4 × 4 pooling layer, reducing the size to 23 × 23. Convolutional layer C3
employs 6× 6 filters and has 32 maps with dimensions of 18× 18 pixels. Pooling
layer P4 with 3× 3 pooling windows yields 6× 6 feature maps which are fully
connected to 100 hidden neurons. The output layer takes input from all 100
neurons and encodes the object class with 5 neurons. This six-layer network is
shown in Figure 1.

Two variations of the network were trained: In the first case, the pooling layers
performed a subsampling operation, in the second case, this was replaced with
max pooling. Note that the subsampling network has slightly more parameters
owing to the trainable scalar and bias, as described in Section 3. After 1,000
epochs of backprogagation training with mini-batches of 60 patterns, there is a
striking discrepancy between the recognition rates. For each network, five trials
with different weight initializations were performed and we are reporting the
average error rate as well as the standard deviation. The subsampling network
achieves a test error rate of 7.32% (± 1.27%), compared to 5.22% (± 0.52%) for
the max pooling network.

For Caltech-101, the input layer consists of three feature maps of size 140×140,
followed by a convolutional layer C1 with 16 × 16 filters and 16 feature maps.
The subsequent pooling layer P2 reduces the 125 × 125 maps with 5 × 5 non-
overlapping pooling windows to a size of 25× 25 pixels. Convolutional layer C3
with 6× 6 filters consists of 128 feature maps of size 20× 20. Pooling layer P4
uses a 5× 5 non-overlapping pooling window. The neurons of those 128 feature
maps of size 4× 4 are fully connected to the 102 output units.

After 300 epochs using the RPROP [19] batch-learning algorithm, we eval-
uated the normalized recognition performance for Caltech-101. When using a
subsampling operation, the network achieved a test error rate of 65.9%. Substi-
tuting this with a max pooling operation yielded an error rate of 55.6%.

For both NORB and Caltech-101 our results indicate that architectures with
a max pooling operation converge considerably faster than those employing



NORB Caltech-101

train set test set train set test set

no overlap 0.00% 6.40% 1.28% 52.29%

2 pixels overlap 0.00% 6.48% 2.29% 52.74%

4 pixels overlap 0.00% 6.37% 3.92% 52.42%

6 pixels overlap 0.01% 7.27% 4.55% 53.82%

8 pixels overlap 0.00% 6.84% 7.43% 55.79%

10 pixels overlap 0.01% 7.21% 10.17% 57.32%

Table 1. Recognition rates on NORB normalized uniform (after 300 epochs) and
Caltech-101 (after 400 epochs) for networks with different amounts of overlap in the
max pooling layers.

a subsampling operation. Furthermore, they seem to be superior in selecting
invariant features and improve generalization.

4.3 Overlapping Pooling Windows

To evaluate how the step size of overlapping pooling windows affects recognition
rates, we essentially used the same architectures as in the previous section.
Adjusting the step size does, however, change the size of the feature maps and
with it the total number of trainable parameters, as well as the ratio between
fully connected weights and shared weights. Therefore, we are increasing the size
of the input feature maps accordingly, placing the input pattern in the center of
a feature map and zero-padding it. In the NORB architecture, for example, the
input feature maps are of size 106× 106, if a step size of two is chosen.

Table 1 lists the recognition rates for different step sizes on both datasets.
The performance deteriorates if the step size is increased. This might be owed to
the fact that there is no information gain if pooling windows overlap. Maxima
in overlapping window regions are merely duplicated in the next layer and
neighboring pixels are more correlated.

4.4 Window Functions

Small variations of the input image and shifts past the border of the pooling win-
dow can dramatically change the representation. For this reason we experimented
with smoother, overlapping pooling windows. Window functions are often used
to smooth an input signal in signal processing applications. We have evaluated
four different window functions, as shown in Table 2.

Again, the network architecture for those experiments was similar as in the
previous sections. For the NORB dataset, the network was modified to receive
128× 128 inputs and P2 pools from a 12× 12 window with an overlap of 8 pixels.
Units in P4 receive input from 9× 9 windows, which are overlapping by 6 pixels.
Thus, if a small rectangular window function is chosen, this is equivalent to the
non-overlapping network. Similarily, for Caltech-101, the input was padded to



No overlap Rectangular Cone Pyramid Triangle Binomial

NORB test error 5.56% 5.83% 6.29% 6.28% 10.92% 12.15%

Caltech-101 test error 52.25% 57.77% 52.36% 51.95% 69.95% 73.16%

Table 2. Test error rates for NORB (after 500 epochs of training) and for Caltech-101
(after 600 epochs). Applying a window function to an overlpping neighborhood is
consistently worse than using non-overlapping pooling windows.

230× 230 and layers P2 and P4 are pooling from 15× 15 and 18× 18 windows,
respectively.

As shown in Table 2, none of the window functions improved recognition rates
significantly. The binomial window function and the triangle window function
even yield substantially worse results than a rectangular window function.

4.5 Results on Other Datasets

To our knowledge, no results using max pooling operations have been published
on the MNIST dataset of handwritten digits [10] and the NORB jittered-cluttered
dataset [11]. Therefore, we applied our network model with non-overlapping max
pooling windows to both datasets.

For MNIST, we achieved 0.99% testing error with a rather shallow architecture.
Here, the 28 × 28 input layer was followed by a convolutional layer C1 with
9× 9 filters and 112 feature maps. In the subsequent max pooling layer P2 each
unit receives input from a 5 × 5 window and is connected to each of the ten
output neurons. We trained this architecture for 60 epochs of online updates
with backpropagation.

The NORB jittered-cluttered dataset was evaluated with the following archi-
tecture: The stereo input patterns of size 108 × 108 are convolved in C1 with
5× 5 filters into 16 feature maps and max pooled in P2 with 9× 9 windows and
an overlap of 4 pixels. They are convolved with 8× 8 filters in C3 to produce 32
feature maps of size 13× 13. Layer P4 reduces the size to 5× 5 pixels by pooling
from 5× 5 windows with an overlap of 3 pixels. Two fully connected layers with
100 neurons and six output neurons conclude the architecture. Training this
model for seven epochs with online learning and mini-batches of 60 patterns
yielded a test error rate of 5.6%. To our knowledge, this is the best published
result on this dataset so far.

We also improved our results on NORB normalized-uniform with a few
refinement passes using an emphasizing scheme. During these passes, difficult
patterns with above-average errors were trained more often. Here, we achieved a
test error rate of 4.57%, which exceeds the 5.2% reported by Nair and Hinton
[15], even though they used additional unlabeled data.



5 Conclusion

We have shown that a max pooling operation is vastly superior for capturing
invariances in image-like data, compared to a subsampling operation. For several
datasets, recognition results with an otherwise equivalent architecture greatly
improve over subsampling operations. On NORB normalized-uniform (4.57%)
and NORB jittered-cluttered (5.6%) we even achieved the best results published
to date.

However, using smoother, overlapping pooling windows does not improve
recognition rates. In future work, we will investigate further into finding suitable
window functions. Histograms (as in [3, 12]) can be seen as a third kind of
pooling operation which has not yet been thoroughly evaluated. Combining such
histogram operations with Convolutional Neural Networks might further improve
recogniton rates on vision tasks.
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