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Abstract

For interaction with its environment, a robot is required
to learn models of objects and to perceive these models
in the livestreams from its sensors. In this paper, we pro-
pose a novel approach to model learning and real-time
tracking.
We extract multi-resolution 3D shape and texture rep-
resentations from RGB-D images at high frame-rates.
An efficient variant of the iterative closest points al-
gorithm allows for registering maps in real-time on a
CPU. Our approach learns full-view models of objects
in a probabilistic optimization framework in which we
find the best alignment between multiple views. Finally,
we track the pose of the camera with respect to the
learned model by registering the current sensor view to
the model.
We evaluate our approach on RGB-D benchmarks and
demonstrate its accuracy, efficiency, and robustness in
model learning and tracking. We also report on the suc-
cessful public demonstration of our approach in a mo-
bile manipulation task.

Introduction
Object perception is a fundamental capability for an intelli-
gent robot. Many robotic tasks involve the interaction with
objects. Either the robot observes and manipulates them for
a purpose, or the robot needs to understand the actions on
objects by other agents. In this paper, we present a novel
approach for learning 3D models of objects using RGB-D
cameras. Our method allows to track the camera pose with
regard to a model at high frame-rates.

Our approach to 3D modelling and tracking is based on an
efficient yet robust probabilistic registration method. From
RGB-D measurements, we extract multi-resolution shape
and texture representations. We propose a method that is
suitable for registering maps generated from single images
as well as maps that aggregate multiple views.

For model learning, we fuse several views within a prob-
abilistic optimization framework into a full-view map. We
construct a graph of spatial relations between views and op-
timize the likelihood of the view poses. For this purpose, we
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assess the uncertainty of the registration estimates. The ac-
quired models can then be used for tracking the camera pose
with respect to the models in real-time on a CPU. By the
multi-resolution nature of our maps, our method keeps track
of the object in a wide range of distances and speeds.

We evaluate the accuracy of our approach to object mod-
elling on publicly available RGB-D benchmarks. We also
measure the robustness, accuracy, and efficiency of our
tracking approach. Finally, we report on the successful pub-
lic demonstration of our method in a mobile manipulation
task.

Related Work
Modeling the geometry of objects from multiple views has
long been investigated in robotics and computer graphics. A
diverse set of applications exists for such explicit geometric
map representations like, for instance, object recognition or
manipulation planning.

One early work (Chen and Medioni 1992) registers sev-
eral range images using an iterative least squares method.
In order to acquire full-view object models, the authors pro-
pose to take four to eight views on the object. Each view is
then registered to a map that is aggregated from the preced-
ing views. Compared to pair-wise registration of successive
views, this procedure reduces accumulated error.

Recently, Newcombe et al. 2011 proposed KinectFusion.
They acquire models of scenes and objects by incrementally
registering RGB-D images to a map. Although it achieves
impressive results, this approach still accumulates drift in
the map estimate over long trajectories, since it does not
optimize jointly for the view poses. In our approach, we
find a best alignment of all views by jointly optimizing
spatial relations between views. We determine the relative
pose between views and the uncertainty of this estimate us-
ing our registration method. Afterwards, we obtain a full-
view model given the RGB-D images in the optimized view
poses.

Our approach is strongly related to the simultaneous lo-
calization and mapping (SLAM) problem in robotics. Over
the last decade, some approaches have been proposed that
estimate the 6 degree-of-freedom (DoF) trajectory of a robot
and a 3D map by means of 3D scan registration (Nuechter
et al. 2005; Magnusson, Duckett, and Lilienthal 2007; Se-
gal, Haehnel, and Thrun 2009). However, these approaches
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have been designed for mapping measurements of 3D laser-
scanners. Weise et al. 2009 match surface patches be-
tween range images and align them globally to recon-
struct 3D object models. Krainin et al. 2011 extract tex-
tured surface patches from RGB-D images, register them
using ICP (Besl and McKay 1992) to the model, and ap-
ply graph-optimization to obtain accurate maps of indoor
environments and objects, respectively. Our approach pro-
vides shape-texture information in a compact representation
that supports pose tracking from a wide range of distances,
since the model contains detail at multiple scales. Engelhard
et al. 2011 match SURF features between RGB-D frames
and refine the registration estimate using ICP. Our registra-
tion method incorporates shape and texture seamlessly and
is also applicable to textureless shapes.

In computer vision, much research focusses on the learn-
ing of sparse interest point models. In many of these ap-
proaches, structure from motion is obtained through bun-
dle adjustment, e.g., (Klein and Murray 2007). Recently,
dense structure from motion approaches have been pro-
posed that estimate dense depth from monocular intensity
image sequences (Stuehmer, Gumhold, and Cremers 2010;
Newcombe, Lovegrove, and Davison 2011). Steinbruecker
et al. 2011 propose a method for dense real-time registra-
tion of RGB-D images. They model the perspective warp
between images through view pose changes and optimize
for the best pose that explains the difference in intensity. In
our approach, we construct 3D representations of the images
and optimize for the relative pose between them. Note that
our registration method is more general, since our represen-
tation can be easily extended to incorporate 3D data from
arbitrary sources. Hence, it can be employed for the regis-
tration of images to maps that aggregate multiple views.

Multi-Resolution Surfel Maps
Map Representation
We represent joint color and shape distributions at multi-
ple resolutions in a probabilistic map. We use octrees as
a natural data structure to represent spatial data at multi-
ple resolutions. In each node of the tree, we store statistics
on the joint spatial and color distribution of the points P
within its volume. We approximate this distribution with
sample mean µ and covariance Σ of the data, i. e., we model
the data as normally distributed in a node’s volume. In-
stead of directly maintaining mean and covariance in the
nodes, we store the sufficient statistics S(P) :=

∑
p∈P p

and S2(P) :=
∑

p∈P pp
T of the normal distribution. From

these, we obtain sample mean µ(P) = 1
|P|S(P) and covari-

ance Σ(P) = 1
|P|S

2(P)− µµT .
We not only model shape by the distribution of 3D point

coordinates in the nodes. We also add the RGB informa-
tion of a point. By simply maintaining the joint distribu-
tion of 3D coordinates and color in a 6D normal distribu-
tion, we also model the spatial distribution of color. In order
to separate chrominance from luminance information, we
choose a variant of the HSL color space. We define the Lαβ
color space as L := 1

2 (max{R,G,B}+ min{R,G,B}),

Figure 1: Top left: RGB image of the scene. Top right: Max-
imum node resolution coding, color codes octant of the leaf
in its parent’s node (see text for details). Bottom: Color and
shape distribution at 0.025 m (left) and at 0.05 m resolution
(right).

α := R − 1
2G −

1
2B, and β :=

√
3
2 (G − B). We obtain

the chrominances α and β from the polar hue and saturation
representation. Despite the simple and efficient conversion,
this color space provides chrominance cues that are almost
invariant to illumination changes.

Since we build maps of scenes and objects from all per-
spectives, multiple distinct surfaces may be contained within
a node’s volume. We model this by maintaining multiple sur-
fels in a node that are visible from several view directions.
We use six orthogonal view directions according to the nor-
mals on the six faces of a cube. When adding a new point to
the map, we determine the view direction onto the point and
associate it with the surfels belonging to the most similar
view direction.

Shape-Texture Descriptor
We construct descriptors of shape and texture in the local
context of each surfel (at all resolutions). Similar to FPFH
features (Rusu, Blodow, and Beetz 2009), we first build his-
tograms of surfel-pair relations between the query surfel and
its 26 neighbors in the octree resolution. Each surfel-pair
relation is weighted with the number of points in the cor-
responding voxel. Afterwards, we smooth the histograms
to better cope with discretization effects by adding the his-
togram of neighboring surfels with a factor γ = 0.1.

Similarly, we extract local histograms of luminance and
chrominance contrasts. We bin luminance and chrominance
differences between neighoring surfels into positive, neg-
ative, or insignificant. Note, that pointers to neighboring
voxels can be efficiently precalculated using look-up ta-
bles (Zhou et al. 2011).

Real-Time RGB-D Image Aggregation
The use of the sufficient statistics allows for an efficient in-
cremental update of the map. In the simplest implementa-



tion, the sufficient statistics of each point is added individu-
ally to the tree. Starting at the root node, the sufficient statis-
tics is recursively added to the nodes that contain the point
in their volume.

Adding each point individually is, however, not the most
efficient way to generate the map. Instead, we exploit that by
the projective nature of the camera, neighboring pixels in the
image project to nearby points on the sampled 3D surface
— up to occlusion effects. This means that neighbors in the
image are likely to belong to the same octree nodes.

We further consider the typical property of RGB-D sen-
sors that noise increases with the distance of the measure-
ment. We thus adapt the maximum octree resolution at a
pixel to the pixel’s squared distance from the sensor. In ef-
fect, the size of the octree is significantly reduced and the
leaf nodes subsume local patches in the image (see top-right
Fig. 1). We exploit these properties and scan the image to ag-
gregate the sufficient statistics of contiguous image regions
that belong to the same octree node. The aggregation of the
image allows to construct the map with only several thou-
sand insertions of node aggregates for a 640×480 image in
contrast to 307,200 point insertions.

After the image content has been incorporated into the
representation, we precompute mean, covariance, surface
normals, and shape-texture features for later registration pur-
poses.

Handling of Image and Virtual Borders
Special care must be taken at the borders of the image and
at virtual borders where background is occluded. Nodes that
receive such border points only partially observe the under-
lying surface structure. When updated with these points, the
surfel distribution is distorted towards the partial distribu-
tion. In order to avoid this, we determine such nodes by
sweeping through the image and neglect them.

Robust Real-Time Registration of
Multi-Resolution Surfel Maps

The registration of multi-resolution surfel maps requires two
main steps that need to be addressed efficiently: First, we as-
sociate surfels between the maps. For these associations, we
then determine a transformation that maximizes their match-
ing likelihood.

Multi-Resolution Surfel Association
Since we model multiple resolutions, we match surfels only
in a local neighborhood that scales with the resolution of
the surfel. In this way, coarse misalignments are corrected
on coarser scales. In order to achieve an accurate registra-
tion, our association strategy chooses the finest resolution
possible. This also saves redundant calculations on coarser
resolutions.

Starting at the finest resolution, we iterate through each
node in a resolution and establish associations between the
surfels on each resolution. In order to choose the finest res-
olution possible, we do not associate a node, if one of its
children already has been associated. Since we have to iter-
ate our registration method multiple times, we can gain ef-

ficiency by bootstrapping the association process from pre-
vious iterations. If a surfel has not been associated in the
previous iteration, we search for all surfels in twice the res-
olution distance in the target map. Note, that we use the cur-
rent pose estimate x for this purpose. If an association from a
previous iteration exists, we associate the surfel with the best
surfel among the neighbors of the last association. Since we
precalculate the 26-neighborhood of each octree node, this
look-up needs only constant time.

We accept associations only, if the shape-texture descrip-
tors of the surfels match. We evaluate the compatibility by
thresholding on the Euclidean distance of the descriptors. In
this way, a surfel may not be associated with the closest sur-
fel in the target map.

Our association strategy not only saves redundant com-
parisons on coarse resolution. It also allows to match sur-
face elements at coarser scales, when fine-grained shape and
texture details cannot be matched on finer resolutions. Fi-
nally, since we iterate over all surfels independently in each
resolution, we parallelize our association method.

Observation Model
Our goal is to register an RGB-D image z, from which we
construct the source map ms, towards a target map mm. We
formulate our problem as finding the most likely pose x that
optimizes the likelihood p(z|x,mm) of observing the target
map in the current image z. We express poses x = (q, t) by a
unit quaternion q for rotation and by the translation t ∈ R3.

We determine the observation likelihood by the matching
likelihood between source and target map,

p(ms|x,mm) =
∏

(i,j)∈A

p(ss,i|x, sm,j), (1)

where A is the set of surfel associations between the maps,
and ss,i = (µs,i,Σs,i), sm,j = (µm,j ,Σm,j) are associated
surfels. The observation likelihood of a surfel match is the
difference of the surfels under their normal distributions,

p(ss,i|x, sm,j) = N (di,j(x); 0,Σi,j(x)) ,

di,j(x) := µm,j − T (x)µs,i,

Σi,j(x) := Σm,j +R(x)Σs,iR(x)T ,

(2)

where T (x) is the homogeneous transformation matrix for
the pose estimate x and R(x) is its rotation matrix. We
marginalize the surfel distributions for the spatial dimen-
sions.

Note that due to the difference in view poses between the
images, the scene content is differently discretized between
the maps. We compensate for inaccuracies due to discretiza-
tion effects by trilinear interpolation between target surfels.

Pose Optimization
We optimize the observation log likelihood

J(x) =
∑

(i,j)∈A

log(|Σi,j(x)|) + dTi,j(x)Σ−1i,j (x)di,j(x) (3)

for the pose x in a multi-stage process combining gradient
descent and Newton’s method.



Figure 2: Examplary key view graph.

Since the stepsize for gradient descent is difficult to
choose and the method converges only linearly, we use New-
ton’s method to find a pose with high precision. For robust
initialization, we first run several iterations of gradient de-
scent to obtain a pose estimate close to a minimum of the
log-likelihood.

In each step, we determine new surfel associations in the
current pose estimate. We weight each surfel association ac-
cording to the similarity in the shape-texture descriptors.
Our method typically converges within 10-20 iterations of
gradient descent and 5-10 iterations of Newton’s method to
a precise estimate. We parallelize the evaluation of the gra-
dients and the Hessian matrix for each surfel which yields a
significant speed-up on multi-core CPUs.

Estimation of Pose Uncertainty
We obtain an estimate of the observation covariance using a
closed-form approximation (Censi 2007),

Σ(x) ≈
(
∂2J

∂x2

)−1
∂2J

∂z∂x
Σ(z)

∂2J

∂z∂x

T (
∂2J

∂x2

)−1
, (4)

where x is the pose estimate, z denotes the associated sur-
fels in both maps, and Σ(z) is given by the covariance of
the surfels. The covariance estimate of the relative pose be-
tween the maps captures uncertainty along unobservable di-
mensions, for instance, if the maps view a planar surface.

Model Learning and Tracking
Model Learning
We aim at the learning of object models from several views.
While the camera moves through the scene, we obtain a tra-
jectory estimate using our registration method. Since small
registration errors may accumulate in significant pose drift
over time, we establish and optimize a graph of probabilistic
spatial relations between similar view poses (see Fig. 2). We
denote a view pose in the graph as key view.

We register each current frame to the most similar key
view in order to keep track of the camera. Similarity is mea-
sured by distance in translation and rotation between view
poses. At large distances, we add a new key view for the
current frame to the graph. This also adds a spatial relation
between the new key view and its reference key view. In ad-
dition, we check for and establish relations between similar
key views.

Our probabilistic registration method provides a mean and
covariance estimate for each spatial relation. We obtain the
likelihood of the relative pose observation z = (x̂,Σ(x̂)) of
the key view j from view i by

p(x̂|xi, xj) = N (x̂; ∆(xi, xj),Σ(x̂)) , (5)
where ∆(xi, xj) denotes the relative pose between the key
views under their current estimates xi and xj .

From the graph of spatial relations we infer the probabil-
ity of the trajectory estimate given the relative pose observa-
tions

p(x1,...,N |x̂1, . . . , x̂M ) ∝
∏
k

p(x̂k|xi(k), xj(k)). (6)

We solve this graph optimization problem by sparse
Cholesky decomposition using the g2o framework (Kuem-
merle et al. 2011). Finally, we fuse the key views in a full-
view map using the optimized trajectory estimate. We ex-
tract object models from the key views within volumes of
interest.

Pose Tracking
We apply our registration method to estimate the pose of the
camera with respect to a model. We aggregate the current
RGB-D image in a multi-resolution surfel map and register
it to the object model. In order to safe unnecessary computa-
tions, we process the image in a volume of interest close to
the last pose estimate. We only process image points that are
likely under the spatial distribution of the model. Mean and
covariance of this distribution are readily obtained from the
sum of surfel statistics |P|, S(P), and S2(P) over all view
directions in the root node of the tree.

Experiments
We evaluate our approach on a public RGB-D dataset (Sturm
et al. 2011). The dataset contains RGB-D image sequences
with ground truth information for the camera pose. The
ground truth has been captured with a motion capture
system. In addition, we generated complementary RGB-D
datasets for the evaluation of object tracking1. The dataset
is also annotated with ground truth acquired with a motion
capture system. It contains three objects of different sizes (a
chair, a textured box, and a small humanoid robot). For mod-
elling, we recorded each object from a 360◦ trajectory. For
evaluating tracking performance, we included three trajec-
tories for each object with small, medium, and fast camera
motion, respectively. Each dataset consists of 1000 frames
recorded at 30 Hz and VGA (640×480) resolution. We set
the maximum resolution of our maps to 0.0125 m through-
out the experiments which is a reasonable lower limit in
respect of the minimum measurement range of the sensor
(ca. 0.4 m). We evaluate timings of our method on an Intel
Xeon 5650 2.67 GHz Hexa-Core CPU using full resolution
(VGA) images.

Incremental Registration
We first evaluate the properties of our registration method
that underlies our object modelling and tracking approach.

1http://www.ais.uni-bonn.de/download/objecttracking.html



Figure 3: Median translational error of the pose estimate
for different frame skips k on the freiburg1 desk (left) and
freiburg2 desk (right) dataset.

dataset ours warp GICP
freiburg1 desk 4.62 mm 5.3 mm 10.3 mm

0.0092 deg 0.0065 deg 0.0154 deg
freiburg2 desk 2.27 mm 1.5 mm 6.3 mm

0.0041 deg 0.0027 deg 0.0060 deg

Table 1: Comparison of median pose drift between frames.

We chose the freiburg1 desk and freiburg2 desk datasets as
examples of fast and moderate camera motion, respectively,
in an office-like setting. The choice also allows for compar-
ison with the registration approach (abbreviated by warp)
in (Steinbruecker, Sturm, and Cremers 2011).

Our approach achieves a median translational drift of
4.62 mm and 2.27 mm per frame on the freiburg1 desk and
freiburg2 desk datasets, respectively (see Table 1). We ob-
tain comparable results to warp (5.3 mm and 1.5 mm), while
our approach also performs significantly better than GICP
(10.3 mm and 6.3 mm (Steinbruecker, Sturm, and Cremers
2011)). When skipping frames (see Fig. 3), however, our ap-
proach achieves similar accuracy than warp for small dis-
placements, but retains the robustness of ICP methods for
larger displacements when warp fails. The mean process-
ing time of our approach on the freiburg2 desk dataset is
100,11 msec (ca. 10 Hz).

Model Learning
We evaluate the accuracy of our object modelling approach
by comparing trajectory estimates with ground truth. We
characterize the trajectory error using the absolute trajectory
error (ATE) measure proposed by (Sturm et al. 2011). Cor-
respondences between poses in both trajectories are estab-
lished by comparing time stamps. The trajectories are then
aligned using singular value decomposition, and statistics on
the position error between corresponding poses are calcu-
lated. It can be seen from Fig. 4 that our approach is well ca-
pable of recovering the trajectory of the camera. We provide
the minimum, median, and maximum ATE of our trajectory
estimates in Table 2. The median accuracy is about 1 cm
for all datasets. It can also be seen that graph optimization
significantly improves the trajectory estimate. Fig. 5 shows
models learned with our approach.

We also evaluate our modelling approach on the
freiburg1 desk and freiburg2 desk datasets (see Fig. 6)
for comparison with a state-of-the-art RGB-D SLAM

Figure 4: Ground truth (black) and trajectory estimates ob-
tained without graph optimization (dashed green) and with
graph optimization (solid red) on the box dataset.

Figure 5: Learned object models at a resolution of 2.5 cm
visualized by samples from the color and shape surfel dis-
tributions. Left: humanoid, middle: box, right: chair (best
viewed in color).

method (Engelhard et al. 2011). Both approaches perform
similarly well on the shorter but challenging freiburg1 desk
dataset. The accuracy in this dataset is strongly influenced
by motion blur and misalignment effects between the RGB
and depth images. The freiburg2 desk dataset contains a
long trajectory in a loop around a table-top setting. Note
that we have not implemented special loop-closing tech-
niques. The drift of our incremental registration method is
low enough to detect the loop closure simply through the
similarity in the view poses. In addition, our registration
method is robust enough to find a correct alignment from
large view pose displacement. On this dataset, our method
clearly outperforms RGB-D SLAM.

Object Tracking
In the following, we evaluate our object tracking method.
The results in Table 3 demonstrate that our approach tracks
the learned models with good accuracy in real-time. The
tracking performance depends on distance, relative angle,
and speed towards the object (see Fig. 7). For far view poses,



w/o graph optim. with graph optim.
dataset min median max min median max

humanoid 1.6 61.3 242.7 4.7 14.8 61.8
box 29.0 77.5 169.0 1.2 9.8 38.5
chair 3.8 138.0 328.3 0.9 12.3 55.1

Table 2: Absolute trajectory error in mm obtained by incre-
mental mapping w/o graph optim. and with our object mod-
elling approach (with graph optim.).

Figure 6: Comparison of the median absolute trajectory error
on two datasets.

the measured points on the object map to coarse resolutions
in the multi-resolution representation of the image. Thus,
our approach registers the image on coarse scales to the ob-
ject model and the accuracy decreases while the frame-rate
increases compared to closer distances. The shape of the ob-
ject may also influence the accuracy, such that it varies with
view angle.

We have demonstrated our real-time tracking method pub-
licly at RoboCup@Home competitions in 2011 and 20122.
In the Final at RoboCup 2011 our robot Cosero carried a
table with a human (Stückler and Behnke 2011) and baked
omelett. For carrying the table, we trained a model of the ta-
ble. Cosero registered RGB-D images to the model in real-
time to approach the table and grasp it. It detected the lifting
and lowering of the table by estimating its pitch rotation.
Similarly, Cosero approached the pan on a cooking plate by

2Videos of the demonstrations can be found at
http://www.nimbro.net/@Home.

all frames real-time
dataset ATE time ATE frames

(mm) (msec) (mm) used (%)
humanoid slow 19.5 36.04 ± 6.06 19.01 95.5
humanoid med. 25.28 31.68 ± 5.97 25.52 92.1
humanoid fast 32.35 33.12 ± 7.9 32.47 88.1

box slow 15.09 49.4 ± 9.34 15.25 41.7
box med. 31.78 49.45 ± 23.24 54.38 51.2
box fast 20.48 35.69 ± 27.78 23.95 60.4

chair slow 15.58 48.87 ± 8.34 16.91 47.1
chair med. 15.18 53.10 ± 12.19 15.31 49.3
chair fast 26.87 48.24 ± 13.00 27.77 51.7

Table 3: Median absolute trajectory error, avg. time ± std.
deviation, and percentage of frames used in real-time mode
for our tracking approach.

Figure 7: Tracking performance: Median translational (blue)
and rotational error (red) and their quartiles (dashed lines)
w.r.t. distance, vertical view angle, linear velocity, and rota-
tional velocity on the box tracking datasets.

tracking the object with our registration method. At German
Open 2012, Cosero moved a chair and watered a plant. It
perceived chair and watering can with the proposed method
even despite partial occlusions of the objects by the robot
itself. The demonstrations have been well received by juries
from science and media. Paired with the highest score from
the previous stages, we could win both competitions.

Conclusion
We proposed a novel approach to model learning and track-
ing of objects using RGB-D cameras. Central to our ap-
proach is the representation of spatial and color measure-
ments in multi-resolution surfel maps. We exploit measure-
ment principles of RGB-D cameras to efficiently acquire
maps from images. The transformation between maps is es-
timated with an efficient yet robust registration method in
real-time. Our approach utilizes multiple resolutions to align
the maps on coarse scales and to register them accurately on
fine resolutions. We demonstrate state-of-the-art registration
results w.r.t. accuracy and robustness.

We incorporate our registration method into a proba-
bilistic trajectory optimization framework which allows for
learning full-view object models with good precision. Our
approach compares well with a recent approach to SLAM
using RGB-D cameras. Finally, we use the learned models
to track the 6-DoF pose of objects in camera images accu-
rately in real-time. By the multi-resolution nature of our im-
age and object maps, our method inherently adapts its regis-
tration scale to the distance-dependent measurement noise.

In future work, we will investigate approaches to further
object perception problems such as object detection and ini-
tial pose estimation based on multi-resolution surfel maps.
We also will investigate the modelling of larger scenes that
requires robust techniques for the detection of loop-closures.
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