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Abstract
Understanding and forecasting future scene states is critical for autonomous agents to plan
and act effectively in complex environments. Object-centric models, with structured latent
spaces, have shown promise in modeling object dynamics and interactions in order to pre-
dict future scene states, but often struggle to scale beyond simple synthetic datasets and
to integrate external guidance, limiting their applicability in robotic environments. To ad-
dress these limitations, we propose TextOCVP, an object-centric model for video prediction
guided by textual descriptions. TextOCVP parses an observed scene into object represen-
tations, called slots, and utilizes a text-conditioned transformer predictor to forecast future
object states and video frames. Our approach jointly models object dynamics and interac-
tions while incorporating textual guidance, enabling accurate and controllable predictions.
TextOCVP’s structured latent space offers a more precise control of the forecasting process,
outperforming several video prediction baselines on two datasets. Additionally, we show that
structured object-centric representations provide superior robustness to novel scene config-
urations, as well as improved controllability and interpretability, enabling more precise and
understandable predictions. Videos and code are available on our project website.

1 Introduction

Understanding and reasoning about the environment is essential for enabling autonomous systems to better
comprehend their surroundings, predict future events, and adapt their actions accordingly. Humans achieve
these capabilities by perceiving the environment as a structured composition of individual objects that
interact and evolve dynamically over time (Kahneman et al., 1992). Neural networks equipped with such
compositional inductive biases have shown the ability to learn structured object-centric representations of
the world, which enable desirable properties, such as out-of-distribution generalization (Dittadi et al., 2022),
compositionality (Greff et al., 2020), or sample efficiency (Mosbach et al., 2025).

Recent advances in unsupervised object-centric representation learning have progressed from extracting
object representations in synthetic images (Locatello et al., 2020; Lin et al., 2020) to modeling objects in
video (Kipf et al., 2022; Singh et al., 2022) and scaling to real-world scenes (Seitzer et al., 2023). These
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Figure 1: Overview of TextOCVP. (a) Our model parses a reference frame X1 into its object components S1.
(b) Our TextOCVP predictor jointly models object dynamics and interactions guided by text, generating
future object states and frames that align with the provided textual instructions.

developments have enabled object-level dynamics modeling for future prediction and planning. Notably,
approaches like SlotFormer (Wu et al., 2023) or OCVP (Villar-Corrales et al., 2023) introduced object-
centric prediction models that explicitly model spatio-temporal relationships between objects, shifting away
from image-level approaches that ignore scene compositionality. Despite these advancements, current object-
centric methods struggle with complex object appearances and dynamics, and lack mechanisms to incorporate
external guidance, thus limiting their scalability and broader applicability.

To address these challenges, we propose TextOCVP, a novel object-centric model for video prediction guided
by textual instructions, illustrated in Fig. 1. Given a reference image and text instruction, TextOCVP
extracts object representations and predicts their evolution using a text-conditioned object-centric trans-
former. This predictor forecasts future object states by explicitly modeling their dynamics and interactions
over time, while integrating textual information via a text-to-slot attention mechanism. By jointly modeling
spatio-temporal object relationships and incorporating textual guidance, TextOCVP predicts future object
states and frames aligned with the input instruction.

We evaluate our approach for text-conditioned video prediction through extensive experiments on two dis-
tinct datasets. Our results show that TextOCVP outperforms several other text-conditioned video prediction
methods by effectively leveraging structured object-centric representations, particularly on scenes featuring
multiple moving objects. Furthermore, we conduct an in-depth analysis of TextOCVPto verify the effective-
ness of object-centric representations for text-guided video prediction. Specifically, we demonstrate that its
structured latent space enables accurate and controllable video prediction by aligning language instructions
with the corresponding objects, outperforming baselines that rely on holistic scene representations. Beyond
generation quality, TextOCVP offers improved interpretability and exhibits strong robustness to novel scene
configurations, including varying numbers of objects or previously unseen colors.

In summary, our contributions are as follows:

• We propose TextOCVP, a text-guided video prediction model, featuring a text-conditioned object-
centric predictor that integrates textual guidance into the prediction process via a text-to-slot at-
tention mechanism.

• Through extensive evaluations, we show that TextOCVP outperforms other existing text-conditioned
video prediction models by leveraging object-centric representations.

• We demonstrate that TextOCVP is controllable, seamlessly adapting to diverse textual instructions,
while exhibiting interpretability and robustness to novel setups.

2 Related Work

2.1 Object-Centric Learning

Representation learning—the ability to extract meaningful features from data—often improves model perfor-
mance by enhancing its understanding of the input space (Bengio et al., 2013). Object-centric representation
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methods aim to parse an image or video into a set of object components in an unsupervised manner. These
objects are typically represented as unconstrained embeddings (called slots) (Locatello et al., 2020; Kipf
et al., 2022; Singh et al., 2022), patch-based representations (Lin et al., 2020), factored latent vectors (Greff
et al., 2019), or object prototypes (Villar-Corrales & Behnke, 2022; Monnier et al., 2020). These methods
have demonstrated promise in learning object representations across diverse domains, ranging from synthetic
images (Locatello et al., 2020; Lin et al., 2020) to videos (Kipf et al., 2022; Singh et al., 2022), and real-world
scenes (Seitzer et al., 2023; Zadaianchuk et al., 2024). The learned object representations benefit downstream
tasks, such as reinforcement learning (Mosbach et al., 2025) or visual-question answering (Wu et al., 2023).

2.2 Video Prediction

Video prediction (VP) is the task of forecasting the upcoming T video frames conditioned on the preceding C
seed frames (Oprea et al., 2020). Several methods have been proposed to address this task, using 2D convolu-
tions (Gao et al., 2022; Chiu et al., 2020), 3D convolutions (Tulyakov et al., 2018), recurrent neural networks
(RNNs) (Denton & Fergus, 2018; Villar-Corrales et al., 2022; Wang et al., 2022), transformers (Rakhimov
et al., 2021; Ye & Bilodeau, 2022), or diffusion models (Höppe et al., 2022; Ho et al., 2022).

2.2.1 Object-Centric Video Prediction
Object-centric VP presents a structured approach that explicitly models the dynamics and interactions
of individual objects to forecast future video frames. These methods typically involve three main steps:
parsing seed frames into object representations, predicting future object states using a dynamics model,
and rendering video frames from the predicted object representations. Various approaches have addressed
this task using different architectural priors, such as RNNs (Creswell et al., 2021; Nguyen et al., 2024) or
transformers (Wu et al., 2021; 2023; Villar-Corrales et al., 2023; Daniel & Tamar, 2024). Despite promising
results, these models are limited to simple deterministic datasets or rely on action-conditioning (Mosbach
et al., 2025; Villar-Corrales & Behnke, 2025). In contrast, our model forecasts future frames conditioned on
past object slots and text descriptions.

2.2.2 Text-Conditioned Video Prediction
Text-conditioned VP models leverage text descriptions to provide appearance, motion and action cues that
guide the generation of future frames. This task was first proposed by Hu et al. (2022), who utilized a
VQ-VAE to encode images into visual token representations, and modeled the scene dynamics with an axial
transformer to jointly process visual tokens with text descriptions. Similarly, approaches like TVP (Song
et al., 2024) and MMVG (Fu et al., 2023) address this task using RNNs or masked transformers, respectively.
More recently, several methods leverage diffusion models for text-guided VP (Blattmann et al., 2023; Ni et al.,
2023; Chen et al., 2024; Xing et al., 2024; Chen et al., 2023; Gu et al., 2024). These approaches encode video
frames into discrete token sequences via pretrained quantized autoencoders, and leverage pretrained language
models to guide the diffusion-based generation with text features. To further improve temporal coherence
and semantic alignment, several diffusion-based methods leverage specialized conditioning strategies (Xing
et al., 2024; Chen et al., 2023) or attention mechanisms (Gu et al., 2024), among others. While effective,
these models operate on holistic or spatial representations, and require large-scale compute and data. In
contrast, TextOCVP adopts a more structured and efficient approach, explicitly modeling object dynamics
using slot representations, where each object in the scene is represented by a distinct embedding.

Concurrently with our work, Wang et al. (2025) and Jeong et al. (2025) also combine object-centric learning
with autoregressive diffusion models and transformers for text-guided video prediction on simple synthetic
datasets. In contrast, we evaluate on more complex robotic simulations, and perform an in-depth analysis
of the properties of object-centric representations for text-conditioned video prediction.

3 Method

We propose TextOCVP, a novel object-centric model for text-conditioned video prediction. Given an initial
reference image X1 and a text caption C, TextOCVP generates the T subsequent video frames X̂2:T +1,
which maintain a similar appearance and structural composition as the reference image, and follow the
motion described in the text caption.
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Figure 2: Overview of TextOCVP. Our model parses the reference frame X1 into object representations S1.
The text-conditioned object-centric predictor models object dynamics, incorporating information from the
description C to predict future object states Ŝ2:T +1, which can be decoded into video frames X̂2:T +1.

TextOCVP, which is illustrated in Fig. 2, implements an object-centric approach, in which the reference
frame X1 is first decomposed with a scene parsing module (Sec. 3.1) into a set of NS D-dimensional object
representations called slots S1 ∈ RNS×D, where each slot represents a single object in the image. The object
slots are fed to a text-conditioned transformer predictor (Sec. 3.2), which jointly models their spatio-temporal
relations, and incorporates the textual information from the caption C as guidance for predicting the future
object slots Ŝ2:T +1. Finally, the predicted slots are decoded to render future video frames (Sec. 3.3).

We propose two different TextOCVP variants, which differ in the underlying object-centric decomposition
modules. Specifically, TextOCVPSAVi leverages SAVi (Kipf et al., 2022), whereas TextOCVPDINO extends
DINOSAUR (Seitzer et al., 2023) for recursive object-centric video decomposition and video rendering.

3.1 Scene Parsing

The scene parsing module decomposes a video sequence X1:τ into a set of permutation-invariant object
representations called slots S1:τ = (S1, . . . , Sτ ), with St = (s1

t , . . . , sNS
t ), where each slot s ∈ RD represents

a single object. For scene parsing, we adopt the recursive object-centric video decomposition framework
from Kipf et al. (2022).

At time step t, the corresponding input frame Xt is encoded with a feature extractor module into a set of
Dh-dimensional feature maps ht ∈ RL×Dh representing L spatial locations. The feature extractor is a con-
volutional neural network in our TextOCVPSAVi variant and a DINO-pretrained vision transformer (Caron
et al., 2021) in TextOCVPDINO. These feature maps are processed with Slot Attention (Locatello et al.,
2020), which updates the previous slots St−1 based on visual features from the current frame following an
iterative attention mechanism. Namely, Slot Attention performs cross-attention, with the attention weights
normalized over the slot dimension, thus encouraging the slots to compete to represent parts of the input.
It then updates the slots using a Gated Recurrent Unit (Cho et al., 2014) (GRU). Formally, Slot Attention
updates the previous slots St−1 by:

A = softmax
NS

(
q(St−1)k(ht)T

√
D

)
∈ RNS×L, (1)
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St = GRU(Wtv(ht), St−1) with Wi,j = Ai,j∑L
l=1 Ai,l

, (2)

where k, q and v are learned linear projections that map input features and slots into a common dimension.
The output of this module is a set of slots St that represents the objects of the input frame.

3.2 Text-Conditioned Object-Centric Predictor
Our proposed text-conditioned predictor module, il-
lustrated in Fig. 3, autoregressively forecasts future
object states conditioned on the object slots from the
reference frame S1 and a text description C. This
design enables TextOCVP to predict temporally con-
sistent object dynamics that are grounded not only in
visual context, but also in high-level semantic intent
specified via natural language.
To condition the prediction process, the text descrip-
tion C is encoded into text token embeddings C using
an encoder-only transformer. These tokens provide
a global semantic prior guiding predictions at every
time step. We experiment with different encoder vari-
ants, including vanilla transformer encoder (Vaswani
et al., 2017) and pretrained T5 (Raffel et al., 2020).
At time step t, the predictor receives as input the
corresponding text embeddings C, as well as the pre-
vious object slots S1:t, which are initially mapped via
an MLP to the predictor token dimensionality. Ad-
ditionally, these tokens are augmented with a tem-
poral positional encoding, which applies the same
sinusoidal positional embedding to all tokens from
the same time step, thus preserving the inherent
permutation-equivariance of the objects.

C C

S1 S2 S3

Ŝ2 Ŝ3 Ŝ4

Figure 3: Overview of TextOCVP’s text-conditioned
object-centric video predictor transformer.

Each layer of our predictor module mirrors the transformer decoder architecture (Vaswani et al., 2017).
First, a self-attention layer enables every slot to attend to all other object representations in the sequence,
modeling the spatio-temporal relations between objects. Subsequently, a text-to-slot cross-attention layer
enhances the slot representations by incorporating relevant features from the text embeddings, guiding the
prediction process to align with the motion and dynamics described in the textual caption. Finally, an
MLP is applied for each token. This process is repeated in every predictor layer, resulting in the predicted
object slots of the subsequent time step Ŝt+1. Furthermore, we apply a residual connection from St to Ŝt+1,
which improves the prediction temporal consistency. This process is repeated autoregressively to obtain slot
predictions for T subsequent time steps.

3.3 Video Rendering

The video rendering module decodes the predicted slots Ŝt to render the corresponding video frame X̂t. We
leverage two variants of the video rendering module, for our TextOCVPSAVi and TextOCVPDINO variants.

TextOCVPSAVi Decoder This variant independently decodes each slot in Ŝt with a CNN-based Spatial
Broadcast Decoder (Watters et al., 2019), rendering an object image on

t and mask mn
t for each slot sn

t . The
object masks are normalized across the slot dimension, and the representations are combined via a weighted
sum to render video frames:

X̂t =
NS∑

n=1
on

t · m̃n
t with m̃n

t = softmax
NS

(mn
t ). (3)
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TextOCVPDINO Decoder This decoder variant decodes the object slots in two distinct stages. First,
following DINOSAUR (Seitzer et al., 2023), an MLP-based Spatial Broadcast Decoder (Watters et al., 2019)
is used to generate object features along with their corresponding masks. Similar to the TextOCVPSAVi
decoder, the object masks are normalized and combined with the object features in order to reconstruct the
encoded features ĥt ∈ RL×Dh . In the second stage, the reconstructed features ĥt are arranged into a grid
format and processed with a CNN decoder to generate the corresponding video frame X̂t.

3.4 Training and Inference

Our proposed TextOCVP is trained in two different stages.

Object-Centric Learning We first train the scene parsing and video rendering modules for parsing video
frames into object-centric representations by minimizing a reconstruction loss. In the TextOCVPSAVi variant
(LSAVi), these modules are trained by reconstructing the input images, whereas in TextOCVPDINO (LDINO)
they are trained by jointly minimizing an image and a feature reconstruction loss:

LSAVi = 1
T

T∑
t=1

||X̂t − Xt||22, LDINO = 1
T

T∑
t=1

(
||X̂t − Xt||22 + ||ĥt − ht||22

)
. (4)

Predictor Training Given the pretrained scene parsing and rendering modules, we train our TextOCVP
predictor for text-conditioned video prediction using a dataset containing paired videos and text descriptions.
Namely, given the object representations from a reference frame S1 and the textual embeddings C, the
predictor forecasts subsequent object slots Ŝ2, which are decoded into a predicted video frame X̂2. This
process is repeated autoregressively, i.e. the predicted slots are appended to the input in the next time step,
in order to generate the set of slots for the subsequent T time steps. This autoregressive training, in contrast
to teacher forcing, enforces our predictor to operate with imperfect inputs, leading to better modeling of
long-term dynamics at inference time. TextOCVP predictor is trained by minimizing the following loss:

LTextOCVP = 1
T

T +1∑
t=2

(λImgLImg + λSlotLSlot) , (5)

with LImg = ||X̂t − Xt||22 and LSlot = ||Ŝt − St||22, (6)

where LImg measures the future frame prediction error, and LSlot enforces the alignment of the predicted
object slots with the actual inferred object-centric representations.

Inference At inference time, TextOCVP receives as input a single reference frame and a language instruc-
tion. Our model parses the seed frame into object slots and autoregressively predicts future object states
and video frames conditioned on the given textual description. By modifying the language instruction,
TextOCVP can generate a new sequence continuation that performs the specified task while preserving a
consistent scene composition.

4 Experiments

4.1 Experimental Setup

4.1.1 Datasets

We evaluate TextOCVP for text-conditioned video prediction on the CATER and CLIPort datasets:

CATER (Girdhar & Ramanan, 2020) is a dataset of long video sequences showing 3D objects in motion, each
paired with a descriptive caption. We used the CATER-hard variant (Hu et al., 2022), containing 30,000
sequences with 64 × 64 frames featuring two to eight objects, two of which follow the scripted motion.

CLIPort (Shridhar et al., 2022) is a robot manipulation dataset featuring video-caption pairs. We employ
21,000 336 × 336 sequences of the Put-Block-In-Bowl task, where each scene contains six objects, either a
block or a bowl, on a 2D table plane, and a robot arm. The caption describes placing a block into a bowl.
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Table 1: Quantitative evaluation on CATER and CLIPort datasets for prediction horizons of T = 9 and T =
19. TextOCVP outperforms the baselines. Best two results are shown in bold and underlined, respectively.

(a) Quantitative evaluation on CATER.

CATER1→9 CATER1→19

Method PSNR↑ SSIM↑ LPIPS↓ JEDi↓ PSNR↑ SSIM↑ LPIPS↓ JEDi↓

OCVP (Villar-Corrales et al., 2023) 29.08 0.874 0.078 4.16 28.11 0.854 0.101 8.08
Non-OC 29.68 0.874 0.092 3.04 28.39 0.849 0.112 8.62

SEER (Gu et al., 2024) 22.05 0.723 0.245 11.23 16.05 0.535 0.299 17.29
MAGE (Hu et al., 2022) 34.91 0.877 0.108 3.46 34.76 0.871 0.111 5.88

TextOCVP (Ours) 32.98 0.922 0.036 2.16 31.29 0.902 0.044 5.09

(b) Quantitative evaluation on CLIPort.

CLIPort1→9 CLIPort1→19

Method PSNR↑ SSIM↑ LPIPS↓ JEDi↓ PSNR↑ SSIM↑ LPIPS↓ JEDi↓

Non-OC 23.44 0.901 0.184 8.13 20.14 0.872 0.210 13.23
SEER (Gu et al., 2024) 21.01 0.887 0.141 6.80 11.30 0.622 0.331 8.29

MAGEDINO (Hu et al., 2022) 23.72 0.940 0.064 2.11 22.27 0.931 0.075 2.59
TextOCVP (Ours) 26.99 0.950 0.062 1.36 23.88 0.931 0.078 2.23

4.1.2 Baselines

We benchmark TextOCVP against established text-guided video prediction baselines and analyse key ar-
chitectural design choices. To assess the impact of text conditioning, we compare TextOCVP with OCVP-
Seq (Villar-Corrales et al., 2023), an unconditional object-centric prediction model. To evaluate the role of
object-centric representations, we introduce a TextOCVP variant (Non-OC ) replacing slot representations
with a single holistic embedding. We further compare TextOCVP with three transformer- or diffusion-based
text-conditioned prediction models: MAGE (Hu et al., 2022), MAGEDINO, and SEER (Gu et al., 2024).
Further details on baseline models are provided in Appendix C.

4.1.3 Implementation Details

All models are implemented in PyTorch and trained on a single NVIDIA A6000 (48Gb) GPU. TextOCVPSAVi
closely follows Kipf et al. (2022) for scene parsing and video rendering. TextOCVPDINO uses DINOv2 (Oquab
et al., 2024) as image encoder, a four-layer MLP Spatial-Broadcast Decoder (Watters et al., 2019) to decode
slots into object features and masks, and a CNN decoder to map the reconstructed scene features back to
images. On CATER, we use the TextOCVPSAVi variant with eight 128-dimensional object slots, whereas
on CLIPort we employ the TextOCVPDINO variant with ten 128-dimensional slots. Our predictor module
is an eight-layer transformer with 512-dimensional tokens, eight attention heads, and a hidden dimension of
1024. Further experimental details—including datasets, baselines, evaluation metrics, and implementation
details—are provided in Appendices B-E.

4.2 Results

4.2.1 CATER Results

On CATER, we train the models to predict nine future frames given a single reference frame and a text
caption. In Table 1a we report quantitative evaluations on CATER using the same setting as in training,
i.e. predicting T = 9 frames, as well as when predicting T = 19 future frames. In both settings, TextOCVP
outperforms all other models, demonstrating superior perceptual quality.

Fig. 4a qualitatively compares TextOCVP and MAGE on CATER. TextOCVP generates a sequence that
exhibits coherent object trajectories and accurate motion grounded in the input textual instruction. This
alignment is made possible by the explicit object-centric design, which disentangles the scene into structured
object representations and allows the model to reason about each object’s dynamics independently. In
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t = 1 2 10 20 30

MAGE

TextOCVP

‘the medium green metal sphere is sliding to (2, 1).
the small brown metal cube is picked up and placed to (-3, 1)’

Blurred

Changed

(a) Text-guided video prediction result on CATER. Top row depicts the ground truth frames. TextOCVP predicts
sharp and accurate frames, whereas MAGE blurs and misses objects.

‘put the blue block in the gray bowl’

MAGEDINO

TextOCVP

t = 1 20 30 40 50

Missing

(b) Qualitative evaluation on CLIPort for text-driven video prediction. Top row depicts the ground truth frames.
TextOCVP successfully completes the pick-and-place task, whereas in MAGEDINO the moved block disappears.

Figure 4: Qualitative comparison of TextOCVP and baseline methods on text-guided video prediction.

contrast, MAGE predictions feature multiple errors and artifacts, including missing objects, blurry contours,
and significant changes on object shapes. These issues arise from the difficulty of modeling object-specific
dynamics in pixel or token space without explicit object-level abstraction.

These results demonstrate the importance of structured, object-centric representations in capturing the
compositional and controllable nature of physical scenes, which is especially critical in tasks involving fine-
grained object manipulations.

4.2.2 CLIPort Results

Table 1b reports quantitative results for text-guided video prediction on CLIPort. TextOCVP outperforms
all baselines when evaluated on the same setting as in training (i.e. 1 → 9). For longer prediction horizons,
both MAGEDINO and TextOCVP perform well, with TextOCVP achieving the best scores on JEDi (Luo
et al., 2025)—a perceptual video metric evaluating motion quality and realism.
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Table 2: Ablation studies on key design choices in TextOCVP, including predictor depth (2a), text encoder
choice (2b), residual connections (2c), and slot count (2d).

(a) Effect of number of layers (NP) in pre-
dictor module.

CATER1→9

NP SSIM↑ LPIPS↓ JEDi↓

2 0.908 0.045 2.26
4 0.911 0.043 2.20
8 0.922 0.036 2.16

(b) Impact of different text encoders, including a transformer encoder
(TF) and two T5 variants, on CATER and CLIPort.

CATER1→19 CLIPort1→19

Text Enc. SSIM↑ LPIPS↓ JEDi↓ SSIM↑ LPIPS↓ JEDi↓

TF 0.903 0.045 5.39 - - -
Frozen T5 0.902 0.044 5.09 0.931 0.078 2.23

FT T5 0.901 0.043 5.14 0.928 0.082 2.67

(c) Effect of residual connection in predictor.

CLIPort1→9

Residual SSIM↑ LPIPS↓ JEDi↓

✗ 0.946 0.066 1.58
✓ 0.950 0.062 1.36

(d) Effect of the number of object slots (NS).

CLIPort1→9

# Slots SSIM↑ LPIPS↓ JEDi↓

8 0.946 0.079 5.62
10 0.950 0.062 1.36

In our qualitative evaluations, we observe that TextOCVP generates the most accurate sequence predictions
given the reference frame and language instruction. Fig. 4b compares TextOCVP with MAGEDINO over a
long prediction horizon of 50 frames, corresponding to the full completion of the given task. MAGEDINO fails
to complete the task outlined in the textual description, as it misses the target block after several prediction
time steps. In contrast, TextOCVP successfully completes the instructed task, maintaining coherent object
trajectories and consistent scene dynamics throughout the sequence.

Nevertheless, we observe that TextOCVP often generates visual artifacts and lacks fine-grained textures.
While these imperfections can affect its quantitative scores, TextOCVP’s object-centric structure enables
robust long-term prediction and precise instruction-following behavior.

4.3 Model Analysis

4.3.1 Ablation Studies

We perform several ablation studies to support and validate the architectural choices of our model compo-
nents and their impact on TextOCVP’s video prediction performance. The results are presented in Table 2,
and analysed below across four main design axes. Further results and analysis are provided in Appendix F.

Number of Layers (Table 2a) We study the effect of increasing the number of transformer layers
(NP) in the predictor module. We observe that prediction quality improves with model depth, with NP = 8
yielding the best performance across all metrics on the CATER dataset. This suggests that deeper predictor
models enable more accurate modeling of object dynamics. However, we did not explore beyond eight layers
due to the substantial increase in computational cost, training time and parameter count.

Residual Connection (Table 2c) We evaluate the effect of introducing a residual connection in the
predictor module, where the updated slot representation is defined as Ŝt+1 = St + fpred(St). Adding this
residual path improves performance across all metrics on the CLIPort dataset, particularly in improving the
temporal consistency of predicted slots. This result is consistent with prior findings (Villar-Corrales et al.,
2023), which show that residual updates are beneficial for iterative refinement in structured latent spaces.

Text Encoder (Table 2b) We evaluate the performance of three different text encoders, including a
lightweight transformer trained from scratch (TF), a frozen T5 encoder, and a fine-tuned (FT) T5. While
all three perform similarly on CATER, the frozen T5 text encoder achieves the best results on CLIPort,
especially on perceptual metrics such as JEDi and LPIPS. Interestingly, fine-tuning the T5 encoder led to
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Table 3: Quantitative evaluation on two CLIPort test sets with unseen colors and larger number of objects.
We report the absolute video prediction performance and the relative drop (in parentheses) compared to the
original evaluation setting. Best result is marked in bold.

(a) Evaluation on CLIPort test set with objects of colors unseen during training.

CLIPort1→9 CLIPort1→19

Method SSIM↑ LPIPS↓ SSIM↑ LPIPS↓

MAGEDINO (Hu et al., 2022) 0.935 (-0.5%) 0.076 (-19%) 0.924 (-0.7%) 0.087 (-16%)
TextOCVP (Ours) 0.946 (-0.4%) 0.066 (-6.4%) 0.927 (-0.4%) 0.083 (-6.4%)

(b) Evaluation on CLIPort test set with a larger object count than training scenes.

CLIPort1→9 CLIPort1→19

Method SSIM↑ LPIPS↓ SSIM↑ LPIPS↓

MAGEDINO (Hu et al., 2022) 0.929 (-1.2%) 0.088 (-37.5%) 0.920 (-1.2%) 0.094 (-25.3%)
TextOCVP (Ours) 0.936 (-1.5%) 0.076 (-22.6%) 0.921 (-1.1%) 0.090 (-15.4%)

slightly degraded performance, likely due to overfitting or interference with the pretrained representations.
We therefore use the frozen T5 encoder in all main experiments to balance performance and model efficiency.

Number of Slots (Table 2d) Finally, we explore the impact of varying the number of slots (NS) used to
represent the scene. Although each CLIPort scene can be described with eight slots—representing six objects,
the robot arm, and the background—we find that using ten slots results in notably better performance. This
observation suggests that the additional slots can function as internal registers, supporting attention routing
or acting as a form of cache that aids with internal model computations (Darcet et al., 2024).

4.3.2 Model Robustness and Generalization

We evaluate the robustness and generalization of TextOCVP and MAGEDINO on two CLIPort evaluation
sets: one involving color variations in the text instructions that were not encountered during training (unseen-
color), and another featuring scenes with more objects than observed during training, eight instead of six
(more-objects). These experiments assess model robustness under distribution shifts and test the ability to
generalize to unseen visual-linguistic combinations and novel scene configurations. Results are summarized in
Table 3, reporting both the absolute performance and the relative drop compared to the standard (seen-color
or six-object) settings.

On the unseen-color benchmark (Table 3a), TextOCVP consistently outperforms MAGEDINO across all
metrics and prediction horizons, showing significantly smaller degradation in perceptual similarity (LPIPS).
This indicates stronger robustness to novel color-object combinations. In the more-objects setting (Table 3b),
TextOCVP again maintains superior performance with a notably smaller decline in LPIPS, demonstrating
resilience to higher scene complexity and unseen object counts. Qualitative examples in Appendix F.6 further
support these findings.

Overall, these results highlight the advantages of structured object-centric representations, which provide
greater generalization and robustness in video prediction tasks, particularly in contrast to holistic scene
representations that struggle with novel scene compositions.

4.3.3 Interpretability

Fig. 5a visualizes the text-to-slot attention weights—averaged across heads—for different slots in a CATER
sequence, highlighting how textual instructions guide the model’s predictions. Slots corresponding to de-
scribed objects attend strongly to the relevant tokens in the language, such as actions or target coordinates.
To further dissect this behavior, Fig. 5b shows the attention distribution of individual text-to-slot attention
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(a) Text-to-slot attention weights, averaged across heads, for different objects in a CATER sequence.
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(b) Text-to-slot attention weights between an object slot and the textual tokens for four different heads.

Figure 5: Visualization of text-to-slot attention in TextOCVP. (a) Slots attend to relevant text tokens,
grounding objects to their described motions. (b) Distinct attention heads focus on complementary textual
cues, such as object attributes and actions.
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‘the large purple rubber cone is sliding to
(-1, 1). the small gold metal snitch is
rotating. the medium purple metal cone
is picked up and placed to (-1, -3).’

(a) Qualitative evaluation of TextOCVP’s controllability on CATER. Top row shows the ground truth sequence. We
underline the changed actions with respect to the original caption. TextOCVP demonstrates fine-grained control by
predicting different sequence continuations from the same reference frame, each conditioned on a different instruction.

‘put the cyan block in the brown bowl’

Original
Caption

‘put the blue block in the brown bowl’

Changed
Block

t = 1 10 20 30 40

(b) Qualitative evaluation of TextOCVP’s controllability on CLIPort. Top row shows ground truth frames. Tex-
tOCVP correctly generates sequences where the robot picks up the correct block and places it into the specified bowl.

Figure 6: Qualitative evaluation of TextOCVP’s controllability on CATER and CLIPort datasets.

heads for a slot representing a rotating red cube. Different heads specialize in distinct attributes of the text,
including the object’s shape (Head 2), size (Head 1), and the described motion (Head 4).

Together, these results show that the text-to-slot attention mechanism effectively aligns textual information
with object-centric representations. This enables accurate video prediction conditioned on natural language,
and provides a degree of interpretability by revealing which parts of text influence each object representation.

4.3.4 Controllability

A key objective of text-guided video prediction is to provide fine-grained control over the prediction process
via language instructions that specify the relevant objects and their actions.
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Fig. 6a illustrates TextOCVP’s controllability on CATER. Starting from the same reference frame, we
generate multiple sequence continuations by varying the natural language instruction. These variations
include changing the target objects and their actions, as well as instructions that specify a greater number
of actions than seen during training. As shown in Fig. 6a, TextOCVP successfully identifies the relevant
objects and executes the described actions. Notably, it distinguishes between two nearly identical purple
cones, despite their identical shapes and color, and generates sequences consistent with the specified motions.

A similar experiment on CLIPort is shown in Fig. 6b. Given a single frame with multiple colored blocks and
bowls, modifying the instruction determines which block the robot arm picks and the destination bowl. In
both cases, TextOCVP correctly selects the specified block, places it in the instructed bowl, and adapts the
arm trajectory to the described action.

These results show that key object attributes, such as size or color, are effectively captured through the
text-to-slot attention mechanism. This enables accurate, per-object motion forecasting and highlights the
benefit of combining object-centric representations with language guidance for controllable video predic-
tion. Further quantitative and qualitative evaluations of TextOCVP’s controllability are provided in Appen-
dices F.5 and F.10, respectively.

5 Conclusion

In this work, we presented TextOCVP, an object-centric model for text-conditioned video prediction. Given
a single input image and a natural language description, TextOCVP generates future frames by parsing the
scene into slot-based object representations and modeling their dynamics conditioned on the text instruction.
This is accomplished through a text-conditioned object-centric transformer that predicts future object states
by modeling spatio-temporal relationships between objects while incorporating textual guidance. Through
extensive evaluations, we demonstrated that TextOCVP outperforms other existing approaches for text-
driven video prediction from a single frame, highlighting our model’s ability to predict over long prediction
horizons and adapt its predictions based on the provided description. Moreover, we validated our architec-
tural choices through ablation studies, highlighting the importance of combining textual and object-centric
information, and demonstrating strong robustness and interpretability. With its structured latent space and
superior controllability, TextOCVP offers a promising step toward controllable object-centric manipulation
in simulated robotic environments, supporting more efficient planning, reasoning and decision-making.

Acknowledgment

This work was funded by grant BE 2556/16-2 (Research Unit FOR 2535 Anticipating Human Behavior) of
the German Research Foundation (DFG). Computational resources were provided by the German AI Service
Center WestAI.

References
Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new perspec-

tives. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2013.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and
Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion models. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand
Joulin. Emerging properties in self-supervised vision transformers. In IEEE/CVF International Conference
on Computer Vision (ICCV), 2021.

Haoxin Chen, Menghan Xia, Yingqing He, Yong Zhang, Xiaodong Cun, Shaoshu Yang, Jinbo Xing, Yaofang
Liu, Qifeng Chen, Xintao Wang, et al. VideoCrafter1: Open diffusion models for high-quality video
generation. arXiv preprint arXiv:2310.19512, 2023.

13



Published in Transactions on Machine Learning Research (02/2026)

Xi Chen, Zhiheng Liu, Mengting Chen, Yutong Feng, Yu Liu, Yujun Shen, and Hengshuang Zhao. LivePhoto:
Real image animation with text-guided motion control. In European Conference on Computer Vision
(ECCV), 2024.

Hsu-kuang Chiu, Ehsan Adeli, and Juan Carlos Niebles. Segmenting the future. IEEE Robotics and Au-
tomation Letters (RA-L), 5(3):4202–4209, 2020.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–decoder for statistical
machine translation. In Conference on Empirical Methods in Natural Language Processing (EMNLP),
2014.

Aidan Clark, Jeff Donahue, and Karen Simonyan. Adversarial video generation on complex datasets. In
International Conference on Learning Representations (ICLR), 2020.

Antonia Creswell, Rishabh Kabra, Chris Burgess, and Murray Shanahan. Unsupervised object-based tran-
sition models for 3D partially observable environments. In Advances in Neural Information Processing
Systems (NeurIPS), 2021.

Tal Daniel and Aviv Tamar. DDLP: Unsupervised object-centric video prediction with deep dynamic latent
particles. Transactions on Machine Learning Research (TMLR), 2024.

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need registers.
In International Conference on Learning Representations (ICLR), 2024.

Emily Denton and Rob Fergus. Stochastic video generation with a learned prior. In International Conference
on Machine Learning (ICML), 2018.

Andrea Dittadi, Samuele Papa, Michele De Vita, Bernhard Schölkopf, Ole Winther, and Francesco Locatello.
Generalization and robustness implications in object-centric learning. In International Conference on
Machine Learning (ICML), 2022.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image synthesis.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

Tsu-Jui Fu, Licheng Yu, Ning Zhang, Cheng-Yang Fu, Jong-Chyi Su, William Yang Wang, and Sean Bell.
Tell me what happened: Unifying text-guided video completion via multimodal masked video generation.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

Zhangyang Gao, Cheng Tan, Lirong Wu, and Stan Z Li. SimVP: Simpler yet better video prediction. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

Rohit Girdhar and Deva Ramanan. CATER: A diagnostic dataset for compositional actions and temporal
reasoning. In International Conference on Learning Representations (ICLR), 2020.

Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne Westphal, Heuna
Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag, et al. The "something some-
thing" video database for learning and evaluating visual common sense. In IEEE International Conference
on Computer Vision (ICCV), 2017.

Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters, Chris Burgess, Daniel Zoran, Loic
Matthey, Matthew M. Botvinick, and Alexander Lerchner. Multi-object representation learning with
iterative variational inference. In International Conference on Machine Learning (ICML), 2019.

Klaus Greff, Sjoerd Van Steenkiste, and Jürgen Schmidhuber. On the binding problem in artificial neural
networks. arXiv preprint arXiv:2012.05208, 2020.

Xianfan Gu, Chuan Wen, Weirui Ye, Jiaming Song, and Yang Gao. Seer: Language instructed video
prediction with latent diffusion models. In International Conference on Learning Representations (ICLR),
2024.

14



Published in Transactions on Machine Learning Research (02/2026)

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J Fleet.
Video diffusion models. Advances in Neural Information Processing Systems (NeurIPS), 2022.

Tobias Höppe, Arash Mehrjou, Stefan Bauer, Didrik Nielsen, and Andrea Dittadi. Diffusion models for video
prediction and infilling. Transactions on Machine Learning Research (TMLR), 2022.

Yaosi Hu, Chong Luo, and Zhenzhong Chen. Make it move: Controllable image-to-video generation with
text descriptions. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

Youngjoon Jeong, Junha Chun, Soonwoo Cha, and Taesup Kim. Object-centric world model for language-
guided manipulation. arXiv preprint arXiv:2503.06170, 2025.

Jindong Jiang, Fei Deng, Gautam Singh, and Sungjin Ahn. Object-centric slot diffusion. In Advances in
Neural Information Processing Systems (NeurIPS), 2023.

Daniel Kahneman, Anne Treisman, and Brian J Gibbs. The reviewing of object files: Object-specific inte-
gration of information. Cognitive Psychology, 24(2):175–219, 1992.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International Confer-
ence on Learning Representations (ICLR), 2015.

Thomas Kipf, Gamaleldin F. Elsayed, Aravindh Mahendran, Austin Stone, Sara Sabour, Georg Heigold,
Rico Jonschkowski, Alexey Dosovitskiy, and Klaus Greff. Conditional object-centric learning from video.
In International Conference on Learning Representations (ICLR), 2022.

Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Weihao Sun, Gautam Singh, Fei Deng, Jindong Jiang,
and Sungjin Ahn. SPACE: unsupervised object-oriented scene representation via spatial attention and
decomposition. In International Conference on Learning Representations (ICLR), 2020.

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold, Jakob
Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot attention. In Advances
in Neural Information Processing Systems (NeurIPS), 2020.

Ge Ya Luo, Gian Mario Favero, Zhi Hao Luo, Alexia Jolicoeur-Martineau, and Christopher Pal. Beyond
FVD: Enhanced evaluation metrics for video generation quality. In International Conference on Learning
Representations (ICLR), 2025.

Tom Monnier, Thibault Groueix, and Mathieu Aubry. Deep transformation-invariant clustering. Advances
in Neural Information Processing Systems (NeurIPS), 2020.

Malte Mosbach, Jan Niklas Ewertz, Angel Villar-Corrales, and Sven Behnke. SOLD: Reinforcement learning
with slot object-centric latent dynamics. In International Conference on Machine Learning (ICML), 2025.

Trang Nguyen, Amin Mansouri, Kanika Madan, Khuong Duy Nguyen, Kartik Ahuja, Dianbo Liu, and
Yoshua Bengio. Reusable slotwise mechanisms. In Advances in Neural Information Processing Systems
(NeurIPS), 2024.

Haomiao Ni, Changhao Shi, Kai Li, Sharon X Huang, and Martin Renqiang Min. Conditional image-to-video
generation with latent flow diffusion models. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2023.

Sergiu Oprea, Pablo Martinez-Gonzalez, Alberto Garcia-Garcia, John Alejandro Castro-Vargas, Sergio Orts-
Escolano, Jose Garcia-Rodriguez, and Antonis Argyros. A review on deep learning techniques for video
prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre
Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. DINOv2: Learning robust visual
features without supervision. Transactions on Machine Learning Research (TMLR), 2024.

15



Published in Transactions on Machine Learning Research (02/2026)

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International Conference on Machine Learning (ICML), 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
Journal of Machine Learning Research (JMLR), 21(140):1–67, 2020.

Ruslan Rakhimov, Denis Volkhonskiy, Alexey Artemov, Denis Zorin, and Evgeny Burnaev. Latent video
transformer. In International Joint Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications (VISIGRAPP), 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022.

Maximilian Seitzer, Max Horn, Andrii Zadaianchuk, Dominik Zietlow, Tianjun Xiao, Carl-Johann Simon-
Gabriel, Tong He, Zheng Zhang, Bernhard Schölkopf, Thomas Brox, et al. Bridging the gap to real-world
object-centric learning. In International Conference on Learning Representations (ICLR), 2023.

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. CLIPort: What and where pathways for robotic manipu-
lation. In Conference on Robot Learning (CoRL), 2022.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
In International Conference on Learning Representations (ICLR), 2015.

Gautam Singh, Yi-Fu Wu, and Sungjin Ahn. Simple unsupervised object-centric learning for complex and
naturalistic videos. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

Xue Song, Jingjing Chen, Bin Zhu, and Yu-Gang Jiang. Text-driven video prediction. ACM Transactions
on Multimedia Computing, Communications and Applications (TOMM), 2024.

Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. MocoGAN: Decomposing motion and
content for video generation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

Thomas Unterthiner, Sjoerd Van Steenkiste, Karol Kurach, Raphaël Marinier, Marcin Michalski, and Sylvain
Gelly. FVD: A new metric for video generation. In International Conference on Learning Representations
Workshops (ICLR-W), 2019.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. In Advances in Neural
Information Processing Systems (NeurIPS), 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems
(NeurIPS), 2017.

Angel Villar-Corrales and Sven Behnke. Unsupervised image decomposition with phase-correlation networks.
In International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and
Applications (VISIGRAPP), 2022.

Angel Villar-Corrales and Sven Behnke. PlaySlot: Learning inverse latent dynamics for controllable object-
centric video prediction and planning. In International Conference on Machine Learning (ICML), 2025.

Angel Villar-Corrales, Ani Karapetyan, Andreas Boltres, and Sven Behnke. MSPred: Video prediction at
multiple spatio-temporal scales with hierarchical recurrent networks. British Machine Vision Conference
(BMVC), 2022.

Angel Villar-Corrales, Ismail Wahdan, and Sven Behnke. Object-centric video prediction via decoupling of
object dynamics and interactions. In IEEE International Conference on Image Processing (ICIP), 2023.

16



Published in Transactions on Machine Learning Research (02/2026)

Xingrui Wang, Xin Li, Yaosi Hu, Hanxin Zhu, Chen Hou, Cuiling Lan, and Zhibo Chen. TIV-Diffusion:
Towards object-centric movement for text-driven image to video generation. In AAAI Conference on
Artificial Intelligence, 2025.

Yunbo Wang, Haixu Wu, Jianjin Zhang, Zhifeng Gao, Jianmin Wang, S Yu Philip, and Mingsheng Long.
PredRNN: A recurrent neural network for spatiotemporal predictive learning. IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 45(2):2208–2225, 2022.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: From error
visibility to structural similarity. IEEE Transactions on Image Processing (TPAMI), 13(4):600–612, 2004.

Nicholas Watters, Loic Matthey, Christopher P Burgess, and Alexander Lerchner. Spatial Broadcast Decoder:
A simple architecture for learning disentangled representations in VAEs. arXiv preprint arXiv:1901.07017,
2019.

Yi-Fu Wu, Jaesik Yoon, and Sungjin Ahn. Generative video transformer: Can objects be the words? In
International Conference on Machine Learning (ICML), 2021.

Ziyi Wu, Nikita Dvornik, Klaus Greff, Thomas Kipf, and Animesh Garg. SlotFormer: Unsupervised visual
dynamics simulation with object-centric models. In International Conference on Learning Representations
(ICLR), 2023.

Jinbo Xing, Menghan Xia, Yong Zhang, Haoxin Chen, Wangbo Yu, Hanyuan Liu, Gongye Liu, Xintao Wang,
Ying Shan, and Tien-Tsin Wong. DynamiCrafter: Animating open-domain images with video diffusion
priors. In European Conference on Computer Vision (ECCV), 2024.

Xi Ye and Guillaume-Alexandre Bilodeau. VPTR: Efficient transformers for video prediction. In International
Conference on Pattern Recognition (ICPR), 2022.

Andrii Zadaianchuk, Maximilian Seitzer, and Georg Martius. Object-centric learning for real-world videos by
predicting temporal feature similarities. Advances in Neural Information Processing Systems (NeurIPS),
36, 2024.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness
of deep features as a perceptual metric. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

17



Published in Transactions on Machine Learning Research (02/2026)

A Limitations and Future Work

A.1 Limitations

While TextOCVP demonstrates promising results for text-guided object-centric video prediction, it presents
some limitations, which we plan to address in future work:

Prediction Artifacts TextOCVP occasionally generates artifacts in the predicted frames, such as blur-
riness, inconsistent object appearances, lack of textured details, or visual artifacts in the background. We
believe that these limitations stem from the video rendering module, which might lack the representational
power to reconstruct precise image details from the object-centric latent space representation.

Limited Temporal Consistency While TextOCVP produces plausible predictions, we observe that its
temporal consistency can degrade when forecasting for long prediction horizons (T > 30), occasionally
resulting in object jittering or instability. We attribute this limitation to the fact that TextOCVP is trained
to predict only up to nine future frames (T = 9) and only optimizing reconstruction losses, which do not
penalize such temporal inconsistencies.

Inherent Limitations of Slot-based Models Slot-based object-centric models, while effective for disen-
tangling scene structure and producing interpretable object-level representations, come with several inherent
limitations. They often struggle to represent fine textures, objects with intricate geometry, small visual
details, or tightly interlocking and highly deformable objects, as these phenomena exceed the granularity
and capacity of a single slot embedding. In such cases, relevant information is often spread across multiple
slots, leading to oversegmentation issues, or compressed into an overly coarse latent, leading to imperfect
and blurred reconstructions, lack of representation detail, or unstable object binding. More fundamentally,
current slot-based architectures typically operate at a single spatial scale, which prevents them from natu-
rally encoding part-whole hierarchies, capturing object structure at different levels of detail, or representing
complex compositional structures. Addressing these challenges through hierarchical object-centric parsing,
adaptive slot resolution, or richer generative decoders remains an important future direction for object-centric
learning and video prediction.

A.2 Future Work

In future work we aim to address these limitations. Our TextOCVP model is designed with a modular
architecture, enabling for both improvements and flexible swapping of components—such as the parsing,
predictor, or video rendering modules—to seamlessly improve the entire pipeline.

To address the prediction artifacts, we plan to extend our TextOCVP framework with more powerful decoder
modules, such as autoregressive transformers (Singh et al., 2022) or diffusion models (Jiang et al., 2023),
as well as scale our predictor module. Furthermore, we plan to incorporate temporal discriminators (Clark
et al., 2020) to improve the temporal consistency of the predicted video frames.

We believe that exploring these architectural modifications can overcome the aforementioned limitations and
will enable the scaling of TextOCVP to real-world robotic environments.

B Implementation Details

We employ TextOCVPSAVi for the experiments on CATER and TextOCVPDINO for experiments on CLIPort.
Below we discuss the implementation details for each of these variants.

B.1 TextOCVPDINO

The TextOCVPDINO variant consists of our proposed text-conditioned predictor module and an object-
centric decomposition module that extends the DINOSAUR (Seitzer et al., 2023) framework (Extended
DINOSAUR) for recursive object-centric video decomposition and video rendering.
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Text-Conditioned Predictor The predictor is composed of NP = 8 identical layers, each containing 8-
head attention mechanisms and an MLP with a single hidden layer of dimension 1024 and a ReLU activation
function. Furthermore, the predictor uses an embedding dimensionality of 512, context window size of ten
frames, and applies a residual connection from the predictor input to its output.

Text Encoder TextOCVPDINO leverages a pretrained and frozen small version of T5 encoder (Raffel
et al., 2020), which consists of six T5 blocks. This text encoder uses a vocabulary with size 32,128.

Scene Parsing The scene parsing module generates NS = 10 slots of dimension 128. As feature extractor,
we use DINOv2 ViT-Base (Oquab et al., 2024), featuring 12 layers, using a patch size of 14, and producing
patch features with dimension Dh = 768. The Slot Attention corrector module processes the first video frame
with three iterations in order to obtain a good initial object-centric decomposition, and a single iteration
for subsequent frames, which suffices to recursively update the slot representation. The initial object slots
S0 are randomly sampled from a Gaussian distribution with learned mean and covariance. We use a single
Transformer encoder block as the transition function, which consists of four attention heads and an MLP
with a hidden dimension of 512.

Video Rendering The video rendering module consists of two distinct decoders. First, a four-layer MLP-
based Spatial Broadcast Decoder (Watters et al., 2019) with hidden dimension 1024 reconstructs the patch
features from the slots. Then, a CNN-based decoder reconstructs full-resolution images from these features.
It consists of four convolutional layers, each using 3 × 3 kernels, a ReLU activation function and bilinear
upsampling. A final convolutional layer and bilinear interpolation are applied to map the outputs to the
RGB channels and spatial dimensions of the image.

Training We train our model for object-centric decomposition using video sequences of length five frames
for 1000 epochs. We use batch size of 16, the Adam optimizer (Kingma & Ba, 2015), and a base learning
rate of 4 × 10−4, which is linearly warmed-up for the first 10000 steps, followed by cosine annealing for
the remaining of the training process. Moreover, we clip the gradients to a maximum norm of 0.05. The
predictor module is trained given the frozen and pretrained object-centric decomposition model for 700
epochs to predict the subsequent nine frames using a single seed frame. The predictor is trained using the
same hyper-parameters as for object-centric decomposition. In the predictor loss function LTextOCVP, we set
λImg = 1 and λSlot = 1.

B.2 TextOCVPSAVi

TextOCVPSAVi uses the same text-conditioned predictor and text-encoder architectures as TextOCVPDINO,
but employs SAVi (Kipf et al., 2022) as the object-centric decomposition module.

Scene Parsing The scene parsing module generates NS = 8 slots of dimension 128. Following Kipf et al.
(2022), we use as feature extractor a four-layer CNN with ReLU activation function, where each convolutional
layer features 32 5 × 5 kernels, stride = 1, and padding = 2. The Slot Attention corrector follows the same
structure as in TextOCVPDINO.

Video Rendering Following Kipf et al. (2022), we utilize a CNN-based Spatial Broadcast Decoder (Wat-
ters et al., 2019) with four convolutional layers with 32 kernels of size 5 × 5 , stride = 1, and padding = 2.
A final convolutional layer maps from the hidden 32-channel representation to four output channels (RGB
+ alpha mask).

Training We train our model for object-centric decomposition using video sequences of length ten frames
for 1000 epochs, using batch size of 64, and an initial learning rate of 10−4, which is warmed up for 2500
steps, followed by cosine annealing for the remaining of the training process. Moreover, we clip the gradients
to a maximum norm of 0.05. The predictor module is trained given the frozen and pretrained object-centric
decomposition model for 1400 epochs to predict the subsequent nine frames using a single seed frame. The
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Table 4: Number of learnable parameters in TextOCVP and baselines for experiments on CLIPort.

Model # Parameters
TextOCVP 33.76M

Non-OC 34.16M
MAGEDINO 32.11M

SEER 405.89M

predictor is trained using the same hyper-parameters as for object-centric decomposition. In the predictor
loss function LTextOCVP, we set λImg = 1 and λSlot = 1.

C Baselines

We employ five different baselines to compare against our TextOCVP model for the task of text-conditioned
video prediction on the CATER and CLIPort datasets. To emphasize the importance of incorporating textual
information, we include a comparison with OCVP-Seq (Villar-Corrales et al., 2023), a recent object-centric
video prediction model that does not utilize text conditioning. Additionally, we evaluate a non-object-
centric TextOCVP variant (Non-OC ) that processes the input image into a single high-dimensional slot
representation, instead of multiple object-centric slots, thus allowing us to evaluate the effect of object-centric
representations. Moreover, we compare TextOCVP with three popular text-conditioned video prediction
baselines that do not incorporate object-centricity: the transformer-based MAGE (Hu et al., 2022) model
and its MAGEDINO variant, and the diffusion-based SEER (Gu et al., 2024) model. We train these baselines
on CATER and CLIPort closely following the original implementation details12.

Table 4 lists the number of learnable parameters in our proposed TextOCVP as well as for the baseline
models on CLIPort. TextOCVP, Non-OC and MAGEDINO employ a comparable number of parameters,
thus ensuring a fair comparison. SEER employs a pretrained latent diffusion model, which already requires a
significantly larger number of parameters, and adapts it for the task of text-guided image-to-video generation.

C.1 MAGE and MAGEDINO

MAGE is an autoregressive text-guided video prediction framework that utilizes a VQ-VAE (Van Den Oord
et al., 2017) encoder-decoder architecture to learn efficient visual token representations. A cross-attention
module aligns textual and visual embeddings to produce a spatially-aligned motion representation termed
Motion Anchor (MA), which is fused with visual tokens via an axial transformer for video generation. For
experiments on CATER, we use a codebook size of 512 × 256 with a downsampling ratio of four, whereas on
CLIPort we use a codebook size of 512 × 1024.

To ensure a fair comparison with TextOCVP on CLIPort, we replace MAGE’s standard CNN encoder and
decoder with the DINOv2 ViT encoder and CNN decoder used in our TextOCVP model. We refer to this
modified version as MAGEDINO. Table 5 presents a comparison between the original MAGE model and
MAGEDINO on CLIPort. The results demonstrate that MAGEDINO significantly outperforms the original
variant, enabling a fair comparison with TextOCVP and other baselines on this benchmark.

MAGE and MAGEDINO share several architectural similarities with our proposed approach—using similar
encoder and decoder modules, text-conditioning, and an autoregressive transformer for prediction. However,
these models differ from TextOCVP in two fundamental ways:

Scene representation: TextOCVP operates on object-centric slot representations, whereas MAGE and
MAGEDINO rely on holistic, dense scene tokens (vector-quantized image latents). Whereas slots provide
a factorized latent structure with one representation per object, the holistic VQ-token grid entangles ob-

1https://github.com/Youncy-Hu/MAGE
2https://github.com/seervideodiffusion/SeerVideoLDM/tree/main
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Table 5: Comparison of MAGE variants on CLIPort. MAGEDINO clearly outperforms the original MAGE
variant across all metrics.

Method PSNR ↑ SSIM ↑ LPIPS ↓
MAGE 7.116 0.453 0.713

MAGEDINO 23.723 0.940 0.064

ject information across many spatial tokens without explicit boundaries. This distinction enables a clean
comparison between object-centric and holistic autoregressive models.

Mechanism for text conditioning: Both methods use cross-attention to incorporate language guidance,
but differ in how textual information interacts with the predictor. MAGE and MAGEDINO compute a single
global Motion Anchor via one cross-attention step between text and image latents, and inject this global
signal uniformly into all decoding steps. In contrast, TextOCVP applies text-to-slot cross-attention within
every transformer block, allowing the model to repeatedly integrate and select the textual information most
relevant at each processing stage.

C.2 SEER

SEER is a diffusion-based model for language-guided video prediction. It employs an Inflated 3D U-Net
derived from a pretrained text-to-image 2D latent diffusion model (Rombach et al., 2022), extending it
along the temporal axis and integrating temporal attention layers to simultaneously model spatial and
temporal dynamics. For the language conditioning module, SEER introduces a novel Frame Sequential Text
(FSText) Decomposer, which decomposes global instructions generated by the CLIP text encoder (Radford
et al., 2021) into frame-specific sub-instructions. These are aligned with frames using a transformer-based
temporal network and injected into the diffusion process via cross-attention layers. We initialize SEER from
a checkpoint pretrained on the Something-Something V2 dataset (Goyal et al., 2017), and further fine-tune
it for a few epochs. We observed that incorporating a text loss enhanced SEER’s performance, while other
hyper-parameters were kept consistent with its original implementation.

C.3 Non-OC

Non-OC is a variant of our proposed TextOCVP model in which the slot-based object-centric latent repre-
sentations are replaced with a single, high-dimensional slot embedding. This design allows us to isolate the
contribution of object-centric structure in the latent space.

Non-OC mirrors the TextOCVP architecture, using the same visual backbone, text-guided autoregressive
predictor and decoder, and it is trained with identical hyper-parameters and training schedule. The only
difference lies in the scene parsing module: instead of slot attention, Non-OC applies an additional convo-
lutional block followed by average pooling to produce a single latent vector per frame. This results in one
512-dimensional embedding, in contrast to the set of 128-dimensional object slots used in the object-centric
model.

D Datasets

D.1 CATER

CATER (Girdhar & Ramanan, 2020) is a dataset that consists of long video sequences, each described by a
textual caption. The video scenes consist of multiple 3D geometric objects in a 2D table plane, which is split
into a 6 × 6 grid with fixed axis, allowing the exact description of object’s positions using coordinates. The
text instruction describes the movement of specific objects through four atomic actions: ‘rotate’, ‘pick-place’,
‘slide’, and ‘contain’. The caption follows a template consisting of the subject, action, and an optional object
or end-point coordinate, depending on the action. The movement of the objects starts at the same time
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step. Furthermore, the initial positions are randomly selected from the plane grid, and the camera position
is fixed for every sequence.

In our work, we employ CATER-hard, which is a complete version of the CATER dataset, containing 30000
video-caption pairs, with video frames resized to 64 × 64. It includes 5 possible objects: cone, cube, sphere,
cylinder, or snitch, which is a special small object in metallic gold color, shaped like three intertwined tori.
Furthermore, every object is described by its size (small, medium, or large), material (metal or rubber),
and color (red, blue, green, yellow, gray, brown, purple, cyan, or gold if the object is the snitch), and this
description is included in the textual caption. Every atomic action is available. The ‘rotate’ action is afforded
by cubes, cylinders and the snitch, the ‘contain’ action is only afforded by the cones, while the other two
actions are afforded by every object. Every video has between 3 and 8 objects, and two actions happen to
different objects at the same time. The vocabulary size is 50.

D.2 CLIPort

CLIPort (Shridhar et al., 2022) is a robot manipulation dataset, consisting of video-caption pairs, i.e. long
videos whose motion is described by a textual video caption. There are many variants of the CLIPort dataset,
but we focus on the Put-Block-In-Bowl variant. We generate 21000 video-caption pairs with resolution
336 × 336. Every video contains 6 objects on a 2D table plane, and a robot arm. Objects can be either a
block or a bowl, and there is at least one of them in every sequence. The starting position of each object is
random, with the only constraint being that it must be placed on the table. Each video describes the action
of the robot arm picking a block, and putting it in a specific bowl. The video caption follows the template
‘put the [color] block in the [color] bowl’. Each individual object in the scene has a different color. In the
train and validation set, the block and the bowl that are part of the caption can have one of the following
colors: blue, green, red, brown, cyan, gray, or yellow, while in the evaluation set with unseen colors they can
have blue, green, red, pink, purple, white, or orange color. The other 4 objects, called distractors, can have
any color. During a video sequence, it can be possible that the robot arm goes out of frame, and comes back
in later frames, thus requiring the model to leverage long range dependencies. The vocabulary size is 15.

E Evaluation Metrics

To measure TextOCVP’s video prediction performance and compare it with existing approaches, we evaluate
the visual quality of predicted video frames using popular image- and video-based metrics.

PSNR and SSIM (Wang et al., 2004) measure pixel-wise and statistical differences between the predicted
and ground-truth video frames, respectively.

LPIPS (Zhang et al., 2018) is a perceptual metric that measures the visual similarity between two images
based on deep features from pretrained neural networks, usually VGG (Simonyan & Zisserman, 2015). Unlike
pixel-wise metrics, LPIPS compares activations from multiple layers and captures differences in texture,
structure, and semantics, thus aligning closely with human perception.

While these metrics focus on frame-level visual quality, video prediction evaluation requires quantifying
temporal consistency and motion realism. JEDi (Luo et al., 2025) measures the quality and realism of
generated videos by comparing feature distributions of generated and real videos, capturing both visual
fidelity and motion dynamics. We prefer JEDi over FVD (Unterthiner et al., 2019), as JEDi is less sensitive
to small evaluation datasets, and more stable in low-motion synthetic scenarios.

In our evaluations and comparisons with baselines, we favor the LPIPS and JEDi scores, which correlate
well with human perception, while reporting other metrics for completeness.
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Figure 7: Comparison between SAVi and our Extended DINOSAUR (Ext. DINO) decomposition modules
for reconstructing a CLIPort sequence. We visualize the reconstructed frames, as well as the slot masks
obtained by Extended DINOSAUR. SAVi fails to reconstruct most objects, whereas Extended DINOSAUR
accurately reconstructs the scene, while representing each object.

F Additional Results

F.1 SAVi vs. DINOSAUR

Current object-centric approaches for video prediction are limited to relatively simple synthetic datasets, and
struggle to scale beyond scenes featuring simple 3D shapes with simple deterministic motion. We attribute
this limitation primarily to the object-centric modules used for learning object representations. Motivated
by this observation, we extend the recent DINOSAUR (Seitzer et al., 2023) framework to recursively process
video data and reconstruct video frames from their corresponding object-centric representations.

To demonstrate the significance of the object-centric module in scaling to more complex datasets, we compare
both SAVi and our Extended DINOSAUR trained on CLIPort. As illustrated in Fig. 7, SAVi struggles to
accurately represent the objects on the table, missing multiple objects and changing their shape and color.
In contrast, the Extended DINOSAUR model successfully reconstructs the scene, closely resembling the
input, while accurately representing each object. The visual features extracted by the DINOv2 (Oquab
et al., 2024) encoder contain high-level semantic information, and during training, the slots are specifically
optimized to efficiently encode this information. This design enables the model to scale and handle more
complex object-centric video data effectively.
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Table 6: Average inference (Inf.) time for T = 1 and T = 9 frame predictions on CATER and CLIPort.

CATER Inf. [ms] CLIPort Inf. [ms]
Model T = 1 T = 9 T = 1 T = 9
MAGE 15.4 ± 1 111.1 ± 11 34.4 ± 3 198.8 ± 2

TextOCVP 13.6 ± 1 78.6 ± 7 21.1 ± 1 109.9 ± 2

Table 7: Evaluation at prediction horizons T = 9 and 19. TextOCVP is the best performing among all
compared methods both on CATER and CLIPort, followed by MAGE/MAGEDINO. Best two results are
shown in bold and underlined, respectively.

CATER1→9 CATER1→19 CLIPort1→9 CLIPort1→19

Method PSNR↑ SSIM↑ LPIPS↓JEDi↓ PSNR↑ SSIM↑ LPIPS↓JEDi↓ PSNR↑ SSIM↑ LPIPS↓JEDi↓ PSNR↑ SSIM↑ LPIPS↓JEDi↓

OCVP 29.08 0.874 0.078 4.16 28.11 0.854 0.101 8.08 – – – – – – – –
Non-OC 29.68 0.874 0.092 3.04 28.39 0.849 0.112 8.62 23.44 0.901 0.184 8.13 20.14 0.872 0.210 13.23
SEER 22.05 0.723 0.245 11.23 16.05 0.535 0.299 17.29 21.01 0.887 0.141 6.80 11.30 0.622 0.331 8.29
MAGE 34.91 0.877 0.108 3.46 34.76 0.871 0.111 5.88 23.72 0.940 0.064 2.11 22.27 0.931 0.075 2.59
TextOCVP 32.98 0.922 0.036 2.16 31.29 0.902 0.044 5.09 26.99 0.950 0.062 1.36 23.88 0.931 0.078 2.23

F.2 Computational Efficiency

In Table 6 we report the average inference time for T = 1 and T = 9 frame predictions on CATER and
CLIPort using a NVIDIA-A6000-48Gb GPU.

During inference, TextOCVP is significantly faster than MAGE/MAGEDINO, achieving ≈ 40% lower latency.
This efficiency stems from our model’s object-centric design, which operates on a small number of object
slots, in contrast to the larger number of spatial tokens employed by MAGE.

F.3 Quantitative Comparison

In the main paper, we present quantitative evaluations on the CATER and CLIPort datasets using three
evaluation metrics, shown in two separate tables. For completeness, we report in Table 7 a text-guided
video prediction evaluation of TextOCVP and multiple baseline models on CATER and CLIPort using four
distinct evaluation metrics for different prediction horizons.

Our proposed TextOCVP outperforms all baselines on both the CATER and CLIPort datasets, surpassing the
next-best method, MAGE/MAGEDINO, by a clear margin. Most notably, TextOCVP consistently achieves
the best LPIPS and JEDi scores, demonstrating superior frame-wise visual quality, as well as video-level
fidelity and motion realism.

F.4 Object-Centric Evaluation

A key advantage of object-centric approaches in video prediction is their ability to generate segmentation
masks alongside frame predictions. For TextOCVP, we derive predicted segmentation masks by applying
an argmax operation over all object slot masks produced by the decoder during prediction and subsequently
filtering the resulting masks by assigning values with a small magnitude to the background. These predicted
masks are evaluated against ground-truth segmentation masks using the Intersection over Union (IoU) metric.

We compare our model against two baselines on CLIPort. The Copy-Seed baseline simply replicates the pre-
dicted segmentation mask from the seed frame across all frames, while the OC-module-only variant generates
segmentation masks by feeding ground-truth frames directly into the object-centric module, i.e., Extended
DINOSAUR. As shown in Table 8, TextOCVP outperforms both baselines across prediction horizons of
T = 9 and T = 19 frames, demonstrating the model’s ability to model object dynamics, maintaining spatial
consistency and object coherence over time. The predicted masks of TextOCVP align more closely with the
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Table 8: Object-centric evaluation on CLIPort. Comparison of Intersection over Union (IoU) scores between
predicted and ground-truth segmentation masks for different prediction horizons (T = 9 and T = 19).

CLIPort1→9 CLIPort1→19

Method IoU↑ IoU↑
Copy-Seed 0.540 0.525

OC-module-only 0.554 0.553
TextOCVP 0.573 0.569

Table 9: Quantitative evaluation of TextOCVP’s controllability on CLIPort. We report the mean pick-
and-place success rates (averaged over 5 runs) for the original evaluation set and three instruction variants
differing in the target bowl. TextOCVP maintains consistent performance across variants, reflecting strong
robustness to instruction changes.

Pick-and-Place success rate
Method Original set Variant 1 Variant 2 Variant 3 Mean variants
TextOCVP 0.83 0.86 0.80 0.81 0.82

ground-truth segmentations, benefiting from better temporal stability throughout the prediction horizon. In
Figs. 11 and 12 , we illustrate TextOCVP’s object-centric behavior on CATER and CLIPort by showing the
predicted segmentation masks, as well as different per-object predictions.

F.5 Quantitative Evaluation of Controllability

In Sec. 4.3.4, we qualitatively show how TextOCVP is able to adapt its predictions based on the language
instruction it receives as input. We further make an initial attempt to quantitatively evaluate the controlla-
bility of TextOCVP.

Starting from a CLIPort evaluation set of 100 sequences, we create three language instruction variants for
each sequence, differing in the specified target bowl. Given the same initial frame, TextOCVP then generates
future predictions conditioned on the adapted instructions. To assess performance, we ground the slot masks
produced by the video rendering decoder to their corresponding objects in the scene and compute two key
distances: (1) between the masks of the robot arm and the specified block, and (2) between the picked block
and the target bowl. These measures are used to estimate the pick-and-place success rate. A generated
sequence is considered successful only if the robot arm remains sufficiently close to the correct block over
multiple frames and the block is significantly close to the target bowl toward the end of the sequence.

As shown in Table 9, TextOCVP demonstrates consistent success rates across different instruction varia-
tions, indicating strong robustness and fine-grained controllability. Given identical starting scene, the model
effectively adapts its predictions to the changing text instructions, successfully placing the block into the
specified bowls in most of the cases.

We note that an equivalent experiment could not be performed with MAGEDINO, as it does not generate
object masks during prediction.

F.6 Robustness to Number of Objects

In Sec. 4.3.2, we quantitatively assess the generalization and robustness of TextOCVP in video prediction
tasks involving novel scene compositions. Our results highlight the benefits of object-centric representations
over holistic scene-based approaches.

This finding is further illustrated in Fig. 9, which presents qualitative comparisons of video generations
for scenes containing eight objects, in contrast to the six-object configurations seen during training. As
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Table 10: Impact of visual artifacts on TextOCVP’s performance on CLIPort. Cropping the artifact-prone
bottom part of the predicted frames leads to a notable improvement in TextOCVP’s performance.

CLIPort1→9 CLIPort1→19

Image View SSIM↑ LPIPS↓ SSIM↑ LPIPS↓
Full Image 0.950 0.062 0.931 0.078

Excluded Bottom 0.953 0.050 0.932 0.069

observed, our model correctly predicts sequences following the motion described in the text instructions,
whereas MAGEDINO fails to generate accurate sequences according to the descriptions.

These results further demonstrate the effectiveness of object-centric representations for video prediction, as
TextOCVP is able to generalize to scenes with more objects by simply increasing the number of slots. This
flexibility is enabled by initializing object slots via sampling from a learned Gaussian distribution, allowing
the use of a variable number of slots at test time while breaking symmetry and preserving permutation
invariance. Although the object slots do not specialize during training, they reliably bind to meaningful
entities through iterative attention during inference. This results in robust and scalable scene decomposition,
enabling accurate modeling of complex scenes with varying object counts.

F.7 Impact of Visual Artifacts

As already discussed in the main paper, TextOCVP occasionally generates visual artifacts on the CLIPort
dataset, most noticeably in the bottom-center region of the frame, where blurry patches often appear.

To assess the impact of these visual artifacts on TextOCVP’s quantitative performance, we evaluate our
model after removing the last bottom rows from the predicted frames—an area that contains only background
pixels and the artifacts. As shown in Table 10, removing these rows leads to improved results, particularly
for the perceptual LPIPS metric. These findings verify that TextOCVP generates future frame predictions
that closely follow the text description, and that its overall performance is underestimated due to localized
visual artifacts.

F.8 Impact of Video Rendering Module

In the previous section (Appendix F.7), we described how visual artifacts affect TextOCVP’s performance on
the CLIPort dataset. We argue that these artifacts mostly originate from limitations in the video rendering
module, and that they can be mitigated by adopting a more expressive decoder architecture.

To support this claim, we conducted an additional experiment on CLIPort in which we replaced the simple
CNN decoder—described in Appendix B.1—with a more expressive alternative, while keeping the rest of
TextOCVP’s architecture unchanged. The new decoder, inspired by VQGAN (Esser et al., 2021), integrates
convolutional, residual, non-local attention, and upsampling blocks, and contains nearly twice as many
learnable parameters as the original module (∼ 25M vs. ∼ 13M).

TextOCVP models using both decoder variants are qualitative compared in Fig. 10, which shows that the
more expressive decoder substantially reduces the visual artifacts observed in the original model’s predictions.
In Table 11 we quantitatively compare both decoder variants. The more expressive decoder model achieves
noticeably better LPIPS and JEDi scores, demonstrating superior perceptual frame and video quality.

Overall, these findings indicate that employing a more capable decoder can mitigate some of TextOCVP’s
visual limitations. They also highlight the benefits of our modular architecture, which enables such im-
provements to be incorporated seamlessly without modifying the underlying predictor or representation.
Exploring more powerful rendering modules—such as diffusion-based decoders (Jiang et al., 2023) or refin-
ing the VQGAN-style architecture (Esser et al., 2021)—is a promising direction for future work.
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Table 11: Comparison of TextOCVP with a variant using a more expressive video rendering module on
CLIPort. The stronger, VQGAN-inspired (Esser et al., 2021), decoder leads to improved perceptual quality.

CLIPort1→9 CLIPort1→19

TextOCVP Decoder LPIPS↓ JEDi↓ LPIPS↓ JEDi↓
Simple CNN 0.062 1.36 0.078 2.23

VQGAN-based 0.043 0.86 0.065 2.22

0.06
0.08
0.10
0.12
0.14
0.16

1 5 10 15 20 25 30 35 40
Predicted time-step

LP
IP

S
↓

(a) LPIPS (↓) metric across prediction horizons

0.48

0.50

0.52

0.54

0.56

0.58

1 5 10 15 20 25 30 35 40
Predicted time-step

Io
U

↑
(b) IoU (↑) metric across prediction horizons

Figure 8: LPIPS and slot-mask IoU metrics across prediction horizon of 40 future frames. The plots show
both the average values (bold line) as well as the standard deviation (shaded areas).

F.9 Evaluation of Predictions over Time

In Fig. 8, we present plots of LPIPS and slot-mask IoU scores over prediction horizons of up to 40 future
frames. These curves show that our model’s predictions steadily deviate from the ground truth as the pre-
diction horizon increases, reflecting the natural accumulation of errors inherent to autoregressive prediction.

We also note that quantitative metrics such as LPIPS or IoU become less informative when predicting beyond
20-30 future frames. At these prediction horizons, even slight differences in object velocity or trajectory
can compound and lead to large discrepancies in frame-wise metrics, despite still producing qualitatively
consistent futures. This behavior is typical of autoregressive video models and reflects the sensitivity of
pixel-level scores to small temporal deviations, rather than a qualitative failure of the predicted dynamics.

F.10 Additional Qualitative Evaluations

Fig. 13 shows an example where we evaluate TextOCVP and MAGEDINO for text-guided video prediction
over a long prediction horizon of 50 frames. MAGEDINO fails to complete the task outlined in the textual de-
scription, as it stops generating consistent robot motion after 30 frames. In contrast, TextOCVP successfully
predicts future frames where the robot completes the pick-and-place task.

Figs. 14 and 15 show qualitative evaluations on CATER in which both MAGE and TextOCVP successfully
predict sequence continuations following the instructions from the textual description.

Fig. 16 illustrates an example where MAGE fails to generate a correct sequence, while TextOCVP successfully
completes the task described by the text.

Figs. 17 and 18 show examples of TextOCVP’s control over the predictions. In both sequences, TextOCVP
generates a correct sequence given the text instructions, and seamlessly adapts its generations to a modified
version of the textual instructions.
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‘put the gray block in the brown bowl’

MAGEDINO

TextOCVP

t = 1 5 10 20 30 40

a)

‘put the yellow block in the gray bowl’

MAGEDINO

TextOCVP

t = 1 10 20 30 40 50

b)

Figure 9: Qualitative evaluation of MAGEDINO and TextOCVP on CLIPort sequences with more objects
than those seen during training (eight instead of six). TextOCVP correctly generates sequences according
to the text instructions, whereas MAGEDINO misses the target bowl.
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‘put the red block in the brown bowl’

TextOCVP w/
VQGAN dec.

TextOCVP w/
original dec.

t = 1 5 10 20 30 40

a)

‘put the yellow block in the gray bowl’

TextOCVP w/
VQGAN dec.

TextOCVP w/
original dec.

t = 1 10 20 30 40 50

b)

Figure 10: Qualitative comparison between original TextOCVP implementation and a TextOCVP variant
with a more expressive, VQGAN-inspired, video rendering module. While both variants correctly predict
the described motion, the new decoder improves the predicted frames’ quality by mitigating most of visual
artifacts, especially on the bottom-center region and in the robot arm.
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‘the large purple rubber cone is picked up and placed to (2, 3).
the small gold metal snitch is picked up and placed to (-1, 1).’

Predictions

Slot
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Object 1

Object 2

Object 3

Object 4

t = 1 5 10 15 20 30

Figure 11: TextOCVP’s object-centric behavior on a CATER sequence. The first row shows the ground
truth sequence, followed by TextOCVP’s predicted frames and segmentation masks. The subsequent rows
display the reconstructed objects from four of the predicted slots across various time steps, highlighting the
ability of TextOCVP to model the dynamics of individual objects in the scene through slot representations.
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‘put the cyan block in the red bowl’
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Object 4
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Figure 12: TextOCVP’s object-centric behavior on a CLIPort sequence. The first row shows the ground truth
sequence, followed by TextOCVP’s predicted frames and segmentation masks. The subsequent rows illustrate
the represented objects from four of the predicted slots across various time steps. Although only eight slots
are required for this dataset (six objects, one robot arm, and one background), we use ten slots in CLIPort
experiments which proved to beneficial; the two extra slots represent background. We emphasize that the
object segmentations are computed at the patch level, thus the pixelated appearance in the visualizations.
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‘put the gray block in the brown bowl’

MAGEDINO

TextOCVP

t = 1 20 30 40 50

Figure 13: Qualitative result on CLIPort. Top row shows ground truth frames. TextOCVP completes the
pick-and-place task, whereas MAGEDINO fails to predict the robot motion.
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‘the large brown metal cone is picked up and containing the
medium red rubber cone. the small gold metal snitch is rotating.’

MAGE

TextOCVP

t = 1 5 10 15 20 30

Figure 14: Qualitative evaluation on CATER. Both MAGE and TextOCVP successfully generate a sequence
following the instructions from the textual description.

‘the medium green rubber cone is picked up and
containing the small gold metal snitch.

the large purple rubber cone is picked up and placed to (-1, 3).’

MAGE

TextOCVP

t = 1 5 10 15 20 30

Figure 15: Qualitative evaluation on CATER. Both MAGE and TextOCVP successfully generate a sequence
that illustrates the motion described in the text, but MAGE’s predictions are of a lower resolution.
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‘the large yellow rubber cone is sliding to (2, 3).
the small gold metal snitch is picked up and placed to (-3, 1).’

MAGE

TextOCVP

t = 1 5 10 15 20 30

Figure 16: Qualitative evaluation on CATER. MAGE fails to generate a sequence that accurately follows the
motion described in the text. Specifically, the yellow cone does not slide as expected, and artifacts such as
the merging of two small objects are introduced. On the other hand, the sequence generated by TextOCVP
is closely aligned with the ground truth, accurately capturing the motion of the objects.
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‘put the blue block in the brown bowl’

Original
Caption

‘put the blue block in the red bowl’

Changed
Bowl

t = 1 10 20 30 40 50

Figure 17: Qualitative evaluation of TextOCVP controllability on CLIPort. TextOCVP correctly generates
a sequence where the robot picks up and places the block specified in the textual instruction.

‘put the green block in the cyan bowl’

Original
Caption

‘put the green block in the red bowl’

Changed
Bowl

t = 1 10 20 30 40 50

Figure 18: Qualitative evaluation of TextOCVP controllability on CLIPort. TextOCVP correctly generates
a sequence where the robot picks up and places the block specified in the textual instruction.
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