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Dexterous Pre-grasp Manipulation for Human-like
Functional Categorical Grasping: Deep

Reinforcement Learning and Grasp Representations
Dmytro Pavlichenko and Sven Behnke

Abstract—Many objects, such as tools and household items,
can be used only if grasped in a very specific way—grasped
functionally. Often, a direct functional grasp is not possible,
though. We propose a method for learning a dexterous pre-grasp
manipulation policy to achieve human-like functional grasps
using deep reinforcement learning. We introduce a dense multi-
component reward function that enables learning a single policy,
capable of dexterous pre-grasp manipulation of novel instances of
several known object categories with an anthropomorphic hand.
The policy is learned purely by means of reinforcement learning
from scratch, without any expert demonstrations. It implicitly
learns to reposition and reorient objects of complex shapes to
achieve given functional grasps. In addition, we explore two
different ways to represent a desired grasp: explicit and more
abstract, constraint-based. We show that our method consistently
learns to successfully manipulate and achieve desired grasps on
previously unseen object instances of known categories using both
grasp representations. Training is completed on a single GPU in
under three hours.

Note to Practitioners—This work was motivated by the increas-
ing popularity of robots equipped with dexterous human-like
hands. Operating in environments designed for humans necessi-
tates the ability to use human tools. That requires grasping these
tools in specific ways for effective use. We propose a learning-
based method to train such behaviors in highly parallelized
simulation. We explore two possible ways to represent a target
functional grasp: an explicit and a more abstract, constraint-
based, each with its own advantages and disadvantages. Our
method learns to achieve human-like behaviors in under three
hours on a single computer. It successfully manipulates previously
unseen object instances with both target grasp representations.
Such policies could be useful for robots with human-like hands
in a broad range of scenarios: household, factory or search-and-
rescue, whenever there is a necessity to grasp objects in a very
specific way. The main limitation of this work is that the learned
behaviors were not tested in the real world. Thus, closing the
sim-to-real gap is a viable direction for future work.

Index Terms—Deep reinforcement learning, Grasping, Human-
like grasping, Pre-grasp manipulation.

I. INTRODUCTION

Grasping is a fundamental skill that manipulation robots
need to interact with their environment. Many objects are made
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Fig. 1. Top: Dexterous pre-grasp manipulation that includes reorienting and
repositioning a drill. Bottom: Provided only with a target index fingertip
position and desired object orientation, our policy learned to utilize a human-
like hand to achieve intuitive grasps for three object categories.

for human hands and require a specific grasp to be utilized.
For example, a drill requires a power grasp with the index
finger on the trigger. We refer to such grasps as functional
grasps. Often, a functional grasp cannot be achieved directly
because the object is in the wrong pose. This can be addressed
with pre-grasp manipulation: repositioning and reorienting the
object until the desired functional grasp is achieved. Robustly
performing interactive functional grasping with a dexterous
multi-finger hand is challenging, though. Solving this tasks is
an important step towards enabling robots to use the tools and
functional objects designed for humans.

Inspired by our previous work on functional re-grasping [1],
we propose a Deep Reinforcement Learning (DRL)-based
methodology that replaces several complex classical compo-
nents with a single data-driven approach.

DRL has been applied to several challenging robotic do-
mains [2]–[5]. In this work, we use a highly efficient GPU-
based simulation [6] together with DRL to learn a policy for
dexterous pre-grasp manipulation. Many approaches focus on
learning the policies directly from low-level sensory inputs,
such as camera images and point clouds [7], [8]. We observe,
however, that most of the data points in these inputs, such as
background pixels in an image, are irrelevant to the manipula-
tion policy. Therefore, we assume that perception is performed
by an external method, and our approach is provided with
high-level semantic information.

The perception task can be addressed by reconstructing the
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object shape from partial observations [9]–[12], transferring
the functional grasp [13]–[16], and estimating the 6D pose
of the object [17]–[21]. External perception speeds up the
learning process since the policy can be represented by a
model with fewer parameters. Additionally, expensive image
rendering is avoided.

By considering multiple object instances within the same
category, we further reduce the inputs to the policy, as
category-specific features of object geometry and dynamics
are learned implicitly.

Finally, we eliminate the need for expert demonstrations
by introducing a dense multi-component reward function that
naturally encourages dexterous manipulation.

An achieved desired functional grasp is the final product
of the learned policy. The target grasp representation greatly
influences the speed of learning and the final result. In this
work, we explore two different target grasp representations,
having different strengths and weaknesses.

First, the explicit target grasp representation strictly defines
the desired hand and finger poses relative to an object. It
introduces a clear desired result and prevents the policy from
being stuck in sub-optimal behaviors. On the other hand, this
representation needs an external oracle defining these explicit
targets, which may be challenging for novel object categories.

Second, the constraint-based target grasp representation is
more abstract and is defined with a constraint. In this work, we
use index fingertip position and hand orientation relative to an
object. The constraint-based representation is more compact
and enables the policy to learn a variety of different grasps,
satisfying the constraint. Defining this constraint for novel
instances is an easier task compared to an explicit grasp
representation. However, this comes at the cost of ensuring that
the learned grasps are sufficient to securely lift and utilize the
objects. We show that the proposed dense multi-component
reward function can be effectively applied to both grasp
representations with minimal modifications and consistently
yields meaningful policies.

To evaluate the proposed method, we learn a single pol-
icy in simulation on three conceptually distinct rigid object
categories: drills, spray bottles, and mugs. Two proposed
target grasp representations are utilized, and the corresponding
policies are evaluated. Using dense multi-component reward,
the policy learns to perform dexterous pre-grasp manipulation
on previously unseen object instances of known categories
with a high success rate. Fig. 1 shows examples of the learned
behaviors. Learning is performed in simulation in less than
three hours on a single GPU. This work is an extension of our
previous research [22]. The main contributions of this article
are:
• a constraint-based target functional grasp representation

– this representation enables exploring different grasp
configurations – and

• a multi-component dense reward formulation that quickly
yields policies capable of dexterous manipulation.

II. RELATED WORK

Dexterous pre-grasp manipulation has been an active area
of research for decades. Multiple classical model-based ap-

proaches have been proposed [23]–[27]. They work for known
objects with exact models but require carefully hand-crafted,
task-dependent algorithms and suffer from uncertainty inherent
in dexterous and highly dynamic manipulation.

In our previous research [1], we address functional grasping
by means of re-grasping with a dual-arm robot. The manipula-
tion pipeline is implemented with several classical approaches.
While humans commonly employ both hands simultaneously,
the dexterity of a single human hand significantly exceeds
the requirements for functional pre-grasp manipulation. A
natural progression toward achieving comparable performance
with robotic manipulators involves executing the same task
using a single hand. However, achieving such highly dynamic
manipulation with classical approaches is very challenging.

A promising solution to such problems is to leverage data-
driven methods. In particular, DRL and Imitation Learning (IL)
using Artificial Neural Networks (ANN) to represent policies
for dexterous manipulation have gained much popularity in
recent years [28]–[30]. By learning purely from observed
experiences and/or provided demonstrations, these methods
yield interactive policies capable of dexterous multi-finger
manipulation.

Zhou et al. [31] address pre-grasp manipulation of objects
in ungraspable configurations through extrinsic dexterity. Their
method uses model-free RL to learn to push objects against
a wall to achieve a graspable pose. The method uses a
minimalistic object representation, similar to our approach.
However, it has difficulties generalizing to objects with com-
plex non-convex shapes. In our approach, this issue is resolved
by learned implicit category-specific geometry knowledge.
Similarly, Sun et al. [32] use model-free RL to obtain a policy
for a dual-arm robot that pushes an object next to a wall and
turns it to grasp it with the other hand. Both works use parallel
grippers, which make the manipulation less dexterous.

Yuzhe et al. [8] train a dexterous manipulation policy for an
Allegro hand to grasp novel objects of a known category. Their
approach uses point clouds as input to provide information
about object geometry. The difference to our work is that we
specifically address functional grasping, while in their work
the grasps are arbitrary. Mandikal et al. [7] propose to learn
a policy with object-centric affordances to dexterously grasp
objects. Notably, the policy is learned with a prior derived
from observing manipulation videos, which requires tedious
annotation of human grasp regions in the observed images.

A wide range of works is based on real-world expert
demonstrations [33]–[35]. These approaches have to deal with
the challenges of mapping human motion to the kinematics
of the robot arm and hand. Hence, the direct applicability
to different robotic setups is not straightforward. Chen et
al. [36] address this issue by bootstrapping a small dataset
of human demonstrations with a larger dataset including novel
objects and grasps. The objects are deformed and dynamically
consistent grasps are generated. The policy is then trained
in a supervised manner in simulation, followed by a direct
transfer to the real world. This method struggles with objects
of complex shapes. Palleschi et al. [37] utilize human demon-
strations to teach the policy to grasp a wide range of objects.
The approach is evaluated on two grippers: soft and rigid. In
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contrast, in our work, we avoid using explicit demonstrations
and instead rely on a general and dense reward function to
guide the policy towards dexterous manipulation.

A completely different approach was proposed by Dasari
et al. [38]: a combination of exemplar object trajectories with
predefined pre-grasp configurations as training data. The pre-
grasp-based approaches were also introduced in [39]–[41]. Our
method shares the high-level idea with these works. The policy
learns to perform a wide variety of tasks in simulation without
any task-specific engineering. The key difference to our work
is that learned behaviors directly depend on supplied exemplar
trajectories. In addition, the manipulation is performed by
a freely floating hand, which relaxes multiple constraints
introduced by the kinematics of the robotic arm in combination
with object poses on the edge of the workspace.

Wu et al. [42] utilize a teacher-student approach with policy
distilling to obtain a policy that is capable of repositioning and
reorienting objects of a vast range of categories to achieve
required functional grasp object poses without grasping the
object. In contrast, our approach focuses on achieving required
functional grasps while simultaneously learning to perform the
pre-grasp manipulation.

Agarwal et al. [43] propose an object-hand manipulation
representation for dexterous robotic hands, followed by a func-
tional grasp synthesis framework, and evaluate the approach
in the real world. The main disadvantage of this method is
the necessity to compose a complex and large dataset. Zhu
et al. [44] propose to use Eigengrasps to reduce the search
space of RL using a small dataset collected from human expert
demonstrations. The target functional grasps are predicted with
an affordance model. The approach is successfully transferred
and evaluated in the real world. In contrast to these approaches,
we avoid any expert demonstrations and focus on obtaining
dexterous manipulation policies solely through a dense multi-
component reward function that is formulated without using
specific hand, arm, or object details.

III. BACKGROUND

The objective of this work is to learn a policy π that achieves
the desired behavior: pre-grasp manipulation of novel object
instances with the aim of reaching a functional grasp. The
policy πθ is represented by a deep neural network and is
parameterized by weights θ, learned with DRL. The problem
is modeled as a Markov Decision Process (MDP): {S,A, P, r}
with state space S ∈ Rn, action space A ∈ Rm, state transition
function P : S×A 7→ S, and reward function r : S×A 7→ R.
Since the problem has continuous state and action space, the
policy πθ(a|s) represents an action probability distribution
when observing a state s(t) at timestep t.

The objective of DRL is to maximize the expected return:

J(πθ) =

T∑
t=0

E[γtr(s(t),a(t))], (1)

where γ ∈ [0, 1] is a discounting factor.
The policy is provided with a target functional pre-grasp

to reach, defined as a 6D hand pose in an object frame
plus hand joint positions in case of the explicit target grasp

representation. In case of the constraint-based target grasp
representation, the policy is provided with a target position
for the index fingertip and end-effector orientation.

We assume that there is a single object in front of the robot
hand on the table.

IV. EXPLICIT TARGET GRASP REPRESENTATION

A target functional grasp is explicitly represented by a 6D
pose of the end-effector relative to an object and the joint
positions of the fingers. This representation has the advantage
of providing the policy with a concrete goal, which typically
enhances learning speed and convergence stability. Disadvan-
tages of such representations are twofold. First, very specific
grasps that lead to a desired outcome have to be produced,
which is not straightforward. Second, an explicit target grasp
disallows the policy to explore other grasp configurations,
satisfying the constraint that defines a grasp as functional.

In this section, we present the methodology for learning
pre-grasp manipulation with explicit grasp representation.

A. State Space

The state vector s(t) consists of three distinctive parts:
information about the hand h, about the object o, and about
the target functional grasp g:

s = [h,o, g]. (2)

The left part of Fig. 2 illustrates the state representation.
Information about the current state of the hand is a column

vector:
h = [hp,hr,hj,h

O
p ,h

O
r ], (3)

where hp = [hpx , hpy , hpz ] is a 3D hand position vector, hr is
a 4-element hand rotation vector represented by a quaternion,
and hj is a 5-element hand joint position vector; hOp and
hOr are hand position and rotation in the object frame of
reference O. Thus, information about the hand h is a 19-
element vector. Throughout this article, we frequently use the
following subscripts: xp denoting 3D position, xr denoting
rotation expressed as a quaternion, and xj denoting joint
positions.

There is a degree of redundancy in the hand pose, since
it is included in two reference frames: in global and object
frames. Having a global hand pose is useful for the method to
better understand how close it is to the workspace boundaries.
At the same time, hand pose relative to the object is more
representative for the spatial understanding of manipulation.
While one can be inferred from the other, that would prolong
the learning process for the sake of learning something that is
already known, which we deem to be infeasible.

As opposed to action space (Section IV-B), in the state space
we define rotations with quaternions. Thanks to their property
of being unique, they avoid making the policy learn to navigate
the Euler angles space at a cost of one extra dimension.

Information about the object is a column vector:

o = [op,or,obb,os,oc], (4)
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Fig. 2. Composition of the state representation and the reward function. The state consists of information about the hand, the object, and the target functional
grasp. The reward function consists of a term encouraging reaching the target grasp, a term encouraging pre-grasp manipulation, and a low manipulability
score penalty. ”O” denotes object frame of reference.

where op is 3D object position, or is a 4-element object
rotation vector represented by a quaternion, obb is a 6-
element vector representing the object bounding box by two
3D positions of diagonally opposing bounding box corners, os
is a 10-element vector of signed distances between fingertips
and middles of the fingers to the object surface, and oc is a
C-element one-hot vector representing the object category.

Distances from fingers to object surface are efficiently
calculated from a pre-computed object Signed Distance Field
(SDF) [45]. Thus, information about the object is a (23+C)-
element vector. Such representation is compact, leveraging the
known category to implicitly learn typical features of object
instances.

The desired functional grasp is provided as a column vector:

g = [gOp , g
O
r , gj], (5)

where gO
p is 3D hand position in the object frame of reference,

gOr is a 4-element hand rotation vector represented by a
quaternion, and gj is a 5-element hand joint position vector.

The target functional grasp is represented by a 12-element
vector. In practice, functional grasps can be provided by [13],
[46]. Grasp g is kept fixed during a trial.

In this work, we consider C = 3 categories. Thus, the state
is a 57-element vector. It resembles a high-level semantic rep-
resentation of the scene. This compact state can be computed
fast on a GPU and thus facilitates quick learning. Moreover,
compared to DRL models that learn directly from raw visual
inputs, smaller models with fewer parameters can be used.

B. Action Space

The policy produces actions a(t) with a frequency of
30 Hz. An action represents a relative displacement in 3D
hand position, hand rotation, and hand joint positions. With
this action definition, hand joint targets are straightforward
to obtain. The arm joint targets are calculated via Inverse
Kinematics (IK). Finally, the joints are controlled with PD
controllers.

In this work, we apply the proposed method to a 6 DoF
UR5e robotic arm with a 11 DoF Schunk SIH hand. The joints
of the hand are coupled, leaving five controllable DoF. Thus,
in this work an action is an 11-element vector: three elements
define a displacement of hand position, three elements define
a displacement of hand rotation as Euler angles, and five
elements define a displacement of hand joint positions. We
further assume a five-fingered hand with five controllable DoF.

However, it is straightforward to apply our approach to a
hand with an arbitrary number of DoF. We use Euler angles
representation for the rotation-related part of the action since it
is straightforward to obtain the next target with small iterative
increments while using a minimal number of variables.

C. Reward Function

The right part of Fig. 2 illustrates the composition of the
reward function r(t) that is defined as:

r(t) = rgrasp(t) + rman(t) + rMP(t) + rT(t), (6)

where rgrasp encourages movement towards the target grasp
g, rman encourages pre-grasp manipulation of an object, rMP
penalizes being in configurations with low manipulability, and
rT rewards reaching the target functional grasp g. Each reward
component is defined to be in [−1, 1] and described in detail
below. For brevity, we omit specifying a dependency on time
t, unless necessary.

First, we define the distance function φ between two quater-
nions q and q′ as the rotation between them:

φ(q, q′) = 2 arccos((q · q′−1)4). (7)

The grasp reward rgrasp is defined as:

rgrasp = rhp + rhr + λrhj , (8)

where rhp encourages moving the hand position towards the
target 3D grasp position, rhr encourages moving the hand
rotation towards the target grasp rotation, and rhj encourages
moving hand joint positions towards target grasp joint posi-
tions. λ ∈ [0, 1] is the grasp joint reward importance factor.

Overall, the rgrasp reward encourages aligning hand pose and
joint positions with the target grasp pose and joint positions.

The hand position reward rhp is defined as:

rhp(t) =
∆hp(t− 1)−∆hp(t)

∆hmax
p

, ∆hp = ||hOp − gOp ||, (9)

where ∆hp is the Euclidean distance from the hand position
hOp to the target grasp hand position gOp . ∆hmax

p is a maximal
hand position change during the step duration ∆t: ∆hmax

p =
vmax
hp

∆t with vmax
hp

being the maximal linear velocity of the
hand. In the case of the UR5e manipulator used in this work,
vmax
hp

= 1 m/s and ∆t = 0.0333 s.
The hand rotation reward is defined as:

rhr(t) =
∆hr(t− 1)−∆hr(t)

∆hmax
r

, ∆hr = φ(hOr , g
O
r ), (10)



5

Reach Hold

Orient
+

+
+

+

+
+
+

+ +

+

+ +

+

+++

+
+
+

+
++

+
+
+

+++ : rewards : equidistant points

Fig. 3. Manipulation reward rman composed of three components: reach, hold, and orient, representing a sequence of interconnected tasks. Equidistant points
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the hand brings the equidistant points closer together, often pushing them inside the object. This design implicitly rewards grasping behaviors without using
expensive contact information or explicitly rewarding specific movement primitives.

where ∆hr is a distance from the hand rotation hOr to the
target grasp hand rotation gOr , calculated according to Eq. 7.
∆hmax

r is a maximal hand rotation change during time ∆t. It
is defined analogously to ∆hmax

p . We use vmax
hr

= π rad/s.
Finally, the hand joint reward is defined as:

rhj(t)=
∆hj(t−1)−∆hj(t)

∆hmax
j

,∆hj =
1

N

N∑
i=0

|hji−gji |, (11)

where N is the number of controllable hand joints, ∆hj is an
average per-joint distance to the target grasp joint positions,
and ∆hmax

j is a maximal joint position displacement during
time ∆t. It is defined similarly to the maximal position and
rotation displacements through maximal joint velocity. We use
vmax
hj

= π rad/s.
The hand joint importance factor λ is defined as:

λ=
(

1−
min(hprox

p ,∆hp)

hprox
p

)(
1− min(hprox

r ,∆hr)

hprox
r

)
, (12)

where hprox
p is a predefined constant, representing a proximity

distance between the hand position and the target grasp
position, from which the hand joint position reward becomes
active. We set it to the length of the hand. Similarly, hprox

r is
a rotation proximity distance; we use hprox

r = 1 rad.
Overall, λ leads to ignoring the hand joint reward when

the hand is far from the target grasp pose. Instead, the use of
fingers for manipulation is promoted.

The manipulation reward rman is defined as:

rman = rreach + rhold + rorient, (13)

where rreach encourages moving the hand towards the object,
rhold encourages holding the object in the hand, and rorient
encourages orienting the object towards a nominal rotation,
where the target grasp is more likely to be reachable. Thus,
the manipulation reward encourages a canonical reach→ hold
→ orient behavior for pre-grasp object manipulation. The
manipulation reward is illustrated in Fig. 3. All its terms are
strictly positive.

The hand reach reward is defined as:

rreach(t) =

∑K
k=1

(
d(Hpk(t− 1))− d(Hpk(t))

)
∆hmax

p
, (14)

where d is a function, taking a set of 3D points and returning
signed distances from the points to the object surface, utilizing
the precomputed object SDF. ∆hmax

p is a maximal position
displacement, defined in Eq. 9. Hp is a set of K 3D points
between the thumb and the other fingers, described in detail
below. In the context of this reward, these points guide the
hand towards a position where the object is between the thumb
and the other fingers, which is advantageous for manipulation.

The object hold reward is defined as:

rhold =
1

K

K∑
k=1

d(Hpk)− ρ
dmax
k

, (15)

where ρ is a predefined constant radius of spheres with points
Hp as centers and dmax

k is a per-point maximum possible
distance from the point to the closest finger surface. The set
of hold-detect points Hp is positioned between the tip of the
thumb and the tip or middle of the other fingers. Thus, points
between fingertips represent positions where objects can be
pinch-grasped and points between the thumb-tip and finger-
middles represent positions where objects are grasped more
securely.

Each direction thumb-tip→fingertip and thumb-tip→
finger-middle has three equidistant points. This ensures a
positive response when an object is positioned between the
thumb and other fingers imperfectly. When the hand closes,
the equidistant points come closer to each other. This promotes
closing the hand around an object. Note that the maximum
rhold is achieved when fingers evenly embrace the object,
which naturally resembles a good grasp.

For simplicity, we use only the points between the thumb
and the middle-finger in this work, yielding six points, as
shown in Fig. 3. The intuition behind this design choice is
that if an object is contained between the middle finger and the
thumb, it is also contained between the index and ring fingers,
as defined by the hand topology. While it is straightforward
to utilize several finger pairs at the same time, we observed in
practice that using only the middle-thumb line was sufficient
to learn grasping behaviors. Having all other fingertips close
to the object is encouraged by the reach reward term rreach.

The object orient reward is defined as:

rorient(t)=
∆or(t−1)−∆or(t)

π
,∆or =φ(or,o

nominal
r ), (16)
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where ∆or is the distance from the object rotation to the
nominal object rotation onominal

r . A nominal rotation resembles
a natural object orientation as intended for functional use:
the object z-axis points upwards, and the object x-axis (the
direction of the tool tip) points away from the hand. Although
many other object orientations would be feasible to perform
a functional grasp, we find that such a definition is generic
and unbiased. In practice, rorient provides good guidance on
how to reorient an object when it is in a state where a direct
functional grasp is not possible.

Together, the reach, hold, and orient rewards represent a
sequence of interconnected tasks that help to steer the policy
towards dexterous manipulation behaviors.

The manipulability penalty reward is defined as:

rMP = 1− 2
/(

1 +
(min(|J|,|J|max)

|J|max

)3)
, (17)

where |J | is a determinant of the end-effector Jacobian J and
|J |max is a maximum determinant value that is penalized. We
define |J |max to be 15% of maximal observed |J | for a specific
arm. This reward penalizes coming close to singularities and
leads to learning more intuitive motions.

Finally, the target grasp reward is defined as:

rT =

{
1 if ∆hp < Tp ∧∆hr < Tr ∧∆hj < Tj

0 otherwise,
(18)

where Tp, Tr, Tj are the distance thresholds for hand position,
rotation, and hand joint positions to the target grasp that define
the accuracy with which the target grasp is achieved. We use
Tp = 1 cm, Tr = 0.15 rad, and Tj = 0.1 rad. The episode ends
when reaching the target grasp.

Wide use of differential distances in our reward, instead
of directly using the velocities, naturally avoids learning
overshooting behaviors. Note that all reward terms are defined
in a generic way and can be easily configured for an arbitrary
robotic arm and hand. All reward components are defined to
be in the interval [−1, 1] or [0, 1]. This allows applying relative
scaling easily. For best performance, we scale the rewards
according to their position in the sequence of interconnected
sub-tasks, as shown in Fig. 3: rT � rorient � rhold � rreach. We
leave the other rewards unscaled. This reduces the probability
that the policy gets stuck in the local minima, created by
accumulating rewards for actions that are easier to achieve
compared to the following more complex sub-tasks.

To summarize, the multi-component reward function can be
split into three terms:

1) the manipulability penalty reward rMP penalizes being
close to singularities and thus helps to avoid unintuitive
behavior,

2) the grasp reward rgrasp encourages reaching the given
functional grasp, and

3) the manipulation reward rman encourages reaching, hold-
ing, and reorienting the object.

Each component is a continuous dense reward. The compo-
nents combine to effectively guide the policy towards learning
a robust, dexterous pre-grasp manipulation. Finally, a sparse
component rT rewards reaching the target grasp.

D. Curriculum

In this work, we avoid having any explicit expert demon-
strations and focus on learning robust and natural policies for
object pre-grasp manipulation through pure DRL with dense
reward shaping. To facilitate faster and more stable learning,
we propose a simple two-stage curriculum.

In the first stage, we place the objects in poses where
target functional grasps can be reached directly. Objects are
positioned on the table in their nominal poses 5 cm away
from the inner side of the hand. The arm is set to a neutral
configuration with a high manipulability score. We disable the
rman reward term during the first stage so that the policy can
converge faster.

The second stage has full difficulty, taking advantage of
the warm-start provided by the first stage. The curriculum
is agnostic to object-specific details, keeping the approach
general while achieving faster policy convergence.

V. CONSTRAINT-BASED TARGET GRASP REPRESENTATION

A target functional grasp can be represented using a con-
straint that defines the grasp as functional. For instance, with a
drill, such a constraint might be positioning the index fingertip
on the trigger to make the activation of the drill possible.

In this section, we propose a methodology for learning a
pre-grasp manipulation policy using a constraint-based target
grasp representation. Specifically, we represent the target grasp
as a 3D target position of the index fingertip and the end-
effector rotation relative to the object. Both target grasp
representations are illustrated in Fig. 4.

The constraint-based target grasp representation offers two
advantages. First, it allows the agent to explore various
grasp configurations that satisfy the given target functional
grasp constraint. This facilitates learning of a combination of
manipulation strategies and grasp configurations. Second, it
simplifies the requirements for an external oracle that has to
provide the target grasp. This is because identifying key points
like the trigger and the desired end-effector orientation is easier
than specifying a full explicit grasp configuration.

We argue that while both grasp representations require the
orientation of the object and a 3D position (object position for
explicit and point of interest for constraint-based), the explicit
grasp representation necessitates defining joint angles for all
fingers. That creates more possibilities for errors and, hence,
failed grasps. This is especially important when dealing with
previously unseen object instances. Defining joint angles for
each finger is more challenging than defining a 3D position
of the point of interest on the object, such as a trigger of the
drill, spray bottle, or handle of a mug. The downside of this
constraint-based approach is a more complex learning pipeline.

A. State Space

The state representation is almost identical to the one
described in Section IV-A. The grasp representation part is
changed to reflect the constraint target grasp representation,
addressed in this section. The desired functional grasp is thus
provided as a column vector:

g = [gOifp, g
O
r ], (19)
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where gOifp is a 3D index fingertip position in the object
frame of reference and gOr is a 4-element hand rotation vector
represented by a quaternion. Thus, the target functional grasp
is represented implicitly through a functional grasp constraint
with a 7-element vector. The full state is a 52-element vector.

B. Action Space

We keep the action representation unchanged, as in Sec-
tion IV-B. The pose of the end-effector is controlled in 6D
through IK. The finger positions are controlled directly in
joint space through a coupled-joints embedding. Such action
representation is generic and fits learning with the constraint-
based target grasp representation well.

C. Reward Function

To reflect the semantic changes introduced by the constraint-
based target grasp representation, as opposed to the explicit
target grasp representation, we change the definition of a suc-
cessfully achieved functional grasp from Eq. 18 accordingly:

rT =

{
1 if ∆ip < Tp ∧∆hr < Tr ∧ opz > Tz

0 otherwise,
(20)

where ∆ip is the distance from the current index fingertip
position ip to the desired one, ∆hr is the distance from the
current end-effector rotation to the desired one, and opz is
the Z coordinate of the object position. We use Tp = 1 cm,
Tr = 0.15 rad, and Tz = ztable +zoffset, where ztable is the height
of the support plane and zoffset = 15 cm is an offset chosen
such that any object from the dataset positioned at such height
above the table cannot touch the support plane.

The last condition requires an object to be lifted off the
table. This is necessary, because without it the policy could
learn to satisfy the functional grasp constraint without achiev-
ing a stable grasp. For example, it is very easy to bring the
index finger close to the trigger and orient the end-effector as
required but have all other fingers wide open, thus not having
an actual grasp. So, by accepting only grasps that enable an
object to be lifted off the table, we introduce an implicit grasp
stability constraint. Note that this condition is not necessary for
the explicit target grasp representation. In that case, we assume
that the provided explicit grasps are secure to consequently
lift and use an object. This is one of the drawbacks of the
explicit target grasp representation, putting more responsibility
on an external oracle. In contrast, in the constraint-based grasp
representation, the responsibility to ensure that the object is
grasped in a stable manner is relocated to the policy.

Given the modifications from above, the reward function
from Eq. 6 becomes:

r(t) = rgrasp(t) + rlift(t) + rman(t) + rMP(t) + rT(t), (21)

where rgrasp encourages movement towards target grasp g, rman
encourages pre-grasp manipulation of an object, rMP penalizes
being in configurations with low manipulability, rT rewards
reaching the target functional grasp g, and the new term rlift
encourages lifting an object off the table:

rlift(t) = min(max((opz − ztable)/zoffset, 0), 1). (22)

6D EEF

pose

Finger joint

positions 3D index

fingertip position

+

EEF orientation

Fig. 4. Two target grasp representations. Left: Explicit grasp representation,
consisting of a 6D end-effector pose and finger positions. Right: Constraint-
based representation. The grasp is represented through the index fingertip 3D
position and end-effector orientation. This representation allows the policy to
explore different grasp configurations, satisfying the constraint.

The lifting reward rlift is normalized ∈ [0, 1], as are all other
reward terms in this work. Not having negative rewards allows
the agent to explore freely, and not having an increment-based
reward (as in Eq. 9) prevents the agent from maximizing the
reward by repeatedly moving an object up and down.

Finally, the grasp reward term rgrasp is modified such that:

rgrasp = rip + rhr , (23)

where rip encourages moving the index fingertip position
towards the target index fingertip position and rhr encourages
moving the hand rotation towards the target grasp rotation,
both being in the object frame of reference.

The index finger reward rip is defined similar to Eq. 9:

rip(t) =
∆ip(t− 1)−∆ip(t)

∆imax
p

, (24)

where ∆ip is the Euclidean distance from the index fingertip
position iOp to the target grasp index fingertip position gOp .
∆imax

p is a maximal index fingertip position change during the
step duration ∆t. It is computed as a sum of maximal possible
end-effector velocity and maximal possible index fingertip
velocity relative to a hand.

Overall, the reward function has the same structure as de-
scribed in Section IV-C, with necessary modifications to reflect
a more compact and abstract target grasp representation with
index fingertip position. All terms are dense and continuous,
defined to be in the range [−1, 1] or [0, 1], so that the relative
reward components scaling is straightforward.

D. Curriculum

Lifting an object above the table introduces additional
complexity. To compensate for that and keep the learning time
short, we extend the curriculum described in Section IV-D by
introducing an additional step:

1) Learning how to reach the target grasp without lifting
an object. The objects are spawned upright in nominal
configuration, very close to the hand. Lifting an object
is excluded from the success criterion formulation.

2) Learning how to reach the target grasp and lift an
object. The hand is further away, and lifting an object
is required; otherwise, it is the same as Step 1.
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3) Learning the complete objective of the pre-grasp manip-
ulation. The objects are initialized in any combination
of roll and yaw on the table.

The three-step curriculum decomposes the learning problem
in stages of gradually increasing difficulty. At the same time,
it maintains a generic formulation that is straightforward to
apply to arbitrary objects, arms, and hands.

VI. EVALUATION

To evaluate the proposed approach, we apply it to the 6 DoF
UR5e robotic arm with 11 DoF Schunk SIH hand. The joints of
this wire-driven hand are coupled, leaving 5 controllable DoF.
With this evaluation we try to answer the following questions:
• Does our approach reliably produce robust manipulation

policies, capable of dexterous pre-grasp manipulation of
unseen object instances of a known category?

• Does the multi-component manipulation reward rman lead
to policies with higher success rates?

• Does the curriculum improve convergence stability?
• Does our approach enable learning of feasible manipula-

tion policies for both target grasp representations?

A. Setup

We use Proximal Policy Optimization (PPO) [47] to train
the policies. We employ the RL Games [48] high-performance
implementation for GPU parallelization. We use the findings of
Mosbach et al. [45] as a base, keeping the learning algorithm
hyperparameters the same. The policy is represented by a
three-layer, fully-connected neural network. In our case, the
input is a 57-element vector. The network is a multilayer
perceptron and has the following structure:

57× 512→ 512× 256→ 256× 128→ 128× 11.
In our experiments, we pursue the objective of learning

a single functional grasping policy for three rigid object
categories: drills, spray bottles, and mugs. To this end, we
prepared a 3D mesh dataset of 39 objects: 13 of each category,
where ten objects are for training and the remaining three
objects are used for testing. The dataset is shown in Fig. 5.
It is composed of meshes from [49] and of meshes available
online1. We make the dataset available online2.

We select these three specific object categories as they
represent objects that are functionally grasped in three dif-
ferent ways relative to their Center of Mass (CoM). Drills
are functionally grasped roughly at CoM. Spray bottles are
functionally grasped far from CoM along the Z axis of the
object. Mugs are grasped far from CoM along the X-axis of
the object. At the same time, these categories also have diverse
shape properties. Drills have complex shapes with multiple
graspable regions. Spray bottles are elongated, making them
difficult to position upright without falling. At the same time,
some of them feature smooth cylindrical shapes that can be
easily rolled, while the others resemble parallelepiped-like
shapes and cannot be easily rolled. Finally, mugs consist of

1https://free3d.com, https://3dsky.org
2https://github.com/AIS-Bonn/fun cat grasp dataset

Fig. 5. Dataset of 39 objects of three categories: drills, spray bottles, and
mugs. Each category has 13 objects: ten for training (gray background) and
three for testing (green background).

one large cavity for holding liquid and a smaller, through-
going space formed by the inner area of the handle. These
fundamental differences in functional grasp regions relative to
CoM and in overall shape make these three categories suitable
candidates to form a compact but diverse dataset, requiring a
certain level of generalization due to the high variability in
optimal strategies.

To estimate the variance within the dataset, we compared
each instance of the binary projections onto 2D (with the
viewpoint as shown in Fig. 5) to the corresponding median 2D
shape within each category. The average variance is 0.41 for
drills, 0.32 for spray bottles, and 0.45 for mugs. The variance
values were normalized within each category so that 0 is the
least varying instance and 1 is the most varying instance.

We use the high-performance GPU physics simulator Isaac
Gym [6]. The experiments are performed on a single NVIDIA
RTX A6000 GPU with 48 GB of VRAM.

In this work, we assume that the objects are located on a
table in front of the robot. Thus, there are three possible natural
poses in which drills, spray bottles, or mugs can be: standing
upright and lying on their left or right side. All other possible
poses on a flat surface are unstable and transition quickly to
one of the described poses. Mugs can also be positioned upside
down. However, we do not use this pose in our experiments to
ensure that the results are consistent and comparable between
all object categories.

Actions are generated with a frequency of 30 Hz. The
objects are spawned on a table in front of the robot, such
that at least 75% of their bounding box is in the manipulation
workspace. Poses in which objects are lying on their sides
are the most challenging for functional grasping because of
the occlusion. For this reason, we focus on such poses and
use the following object rotation distribution: 20% of the
objects are upright, 40% are on their left side, and 40% are
on their right side. The yaw angle and the object position
are sampled uniformly. The hand starts at a random 6D pose
above the table. Notably, objects lying on the right side are
more challenging to functionally grasp with the right hand.
Learning is performed on the training set of 30 objects. A
target functional pre-grasp is defined for each object manually.

To make the simulation setup more realistic, Gaussian noise
is applied to all observations supplied to the policy. For
positions and distances, the zero-mean noise has σ = 3 mm.
For rotations, the zero-mean noise has σ = 5◦. Before each
action is generated, the noise values are drawn from the
distribution specified above and added to the ground truth
values from the simulation. The only two observations that

https://free3d.com
https://3dsky.org
https://github.com/AIS-Bonn/fun_cat_grasp_dataset
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Fig. 6. Explicit target grasp representation: Curriculum ablation experiment
training curves. The two-stage curriculum significantly improves convergence
stability compared to the runs without the curriculum. Lines: means. Colored
areas: 95% confidence intervals.

do not have noise are the object category and the target grasp.
In each environment, an object is assigned a realistic random
mass. The mass distribution in kg per category is represented
by a Gaussian: N (1.4, 0.2) for drills, N (0.5, 0.15) for spray
bottles, and N (0.3, 0.07) for mugs. Both the noise and the
mass are limited to deviate from the mean for not more than
3σ. The new mass values are set before each episode.

We keep the reward value for reaching the target grasp
rT = 5, 000, as it is the default value in the RL Games
framework. We scale the reward components: orienting reward
rorient by 500 and holding reward rhold by 25. The other reward
components are not scaled. Both scaling factors are chosen to
be one order of magnitude less than the final reward and the
corresponding reward component with higher scaling.

The order of the scaling is defined by the desired action
sequence: first the hand approaches the object (scale 1), then
it gains control over the object by holding it (scale 25), then it
orients the object (scale 500), and finally, after repositioning
the object, the target grasp is achievable (scale 5,000). Switch-
ing the order of scaling often hinders the progress towards
learning of achieving the target grasp. That happens because
the policy is greedily maximizing reward through, for example,
holding an object, rather than exploring more difficult and
failure-prone orienting the object if it were yielding less
reward. The exact values of these scaling factors do not affect
learning significantly, as long as the overall proportions reflect
the logical sequence: approach, hold, orient, grasp.

B. Explicit Target Grasp Representation

In this section, we evaluate the approach using an explicit
target grasp representation that is described in Section IV.
We train the policy on a single GPU with 16,384 parallel
environments. Each policy in this evaluation is trained three
times with three different seeds to assess convergence stability.

An episode terminates when (i) a target functional pre-
grasp is reached, (ii) an object falls from the table, or (iii)
a maximum number of steps is reached. We set the maximum
number of steps to 200, which corresponds to ≈6.7 seconds.
We assume that provided explicit target pre-grasps are valid
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No rreach
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Fig. 7. Explicit target grasp representation: Manipulation reward ablation
experiment training curves. Disabling single reward components slightly
deteriorates convergence rate and stability. Disabling the whole manipulation
reward component makes the learning process significantly slower and less
stable. Lines: means. Colored areas: 95% confidence intervals.

and enable lifting and manipulating an object; thus we do not
require the policy to lift objects off the table once the grasps
are achieved during the training stage.

First, we perform an ablation study of the two-stage cur-
riculum proposed in Section IV-D. During the first stage, the
objects are spawned with a nominal rotation and close to
the hand. Since at this stage the grasp is easily reachable,
we disable the manipulation reward rman to ensure quicker
convergence. The first stage continues until at least a 50%
success rate is achieved for each object instance. During
the second stage, the objects are spawned with the rotations
described above, and the full reward is used.

Fig. 6 shows learning curves during learning with and
without curriculum. In addition, the wall-clock time is shown
for the curriculum runs. The wall time of other runs is similar
(±10 min). The first stage of the curriculum is completed
quickly. The second stage takes longer, but all three runs
reliably converge to a success rate of 97% in under three
hours with little variance. Without the curriculum, the policy
achieves only ≈ 50% success rate and has a large variance
within runs. Hence, the two-stage curriculum significantly
improves convergence stability and success rate.

We use a default discounting factor γ = 0.95 in all
experiments. Lower values, such as γ = 0.9, decrease learning
speed significantly, since only short time spans are represented
in the rewards, leaving longer-term consequences of complex
manipulation unrepresented. Higher values, such as γ = 0.975,
do not provide any significant improvement.

Next, we conduct an ablation study of the proposed multi-
component reward function. We train five policy variants:
(i) full reward; (ii) with the reward component rreach en-
couraging moving the hand towards the object disabled; (iii)
with reward component rhold encouraging holding the object
disabled; (iv) with the reward component rorient encouraging
rotating the object towards the nominal rotation disabled; and
finally (v) with the whole manipulation reward component
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Fig. 8. Explicit target grasp representation: Rollouts of learned policy manipulating unseen objects of known categories, positioned in a way that a direct
functional grasp is impossible. Top to bottom: drill, spray bottle, and mug. Note the functional grasps achieved in the end.

rman = rreach + rhold + rorient disabled.
Fig. 7 shows the learning curves for this ablation study. One

can observe that when a single component of the manipulation
reward is disabled, the policy learns to achieve the goal slower
but still reliably makes progress towards a high success rate.
The most important component is rhold. Without rhold, the
policy has the highest variance within runs and achieves the
lowest success rate among single-component ablations. This
shows that encouraging holding behavior is essential.

The deteriorated but still reliable convergence without single
reward terms suggests that although each component is impor-
tant, the formulation is generic enough to not depend on every
detail. In contrast, disabling the whole manipulation reward
rman has a drastic negative effect on the performance of the
policy. Although it achieves a success rate of 50%, it struggles
to learn a robust behavior for objects in difficult configurations.
Overall, this ablation study demonstrates that the proposed
manipulation reward component significantly speeds up the
learning of dexterous pre-grasp manipulation.

To assess the generalization capabilities of the learned
policy, we measure its success rate, both on the training set
and the test set. We use the policy trained with curriculum and
the full reward. The training set consists of 30 objects, ten for
each of the three categories. The test set consists of nine novel
objects of the known categories. We perform 100 grasping
attempts for each object. This results in 3,000 attempts for the
training set and 900 attempts for the test set.

Object initial rotations are sampled as during learning: 20%

TABLE I
SUCCESS RATES WITH EXPLICIT GRASP REPRESENTATION

Category Training set Test set
Drills 96.0 ± 1.2 94.3 ± 2.6
Spray bottles 97.7 ± 0.9 92.3 ± 3.0
Mugs 99.3 ± 0.5 95.6 ± 2.3
All three 97.7 ± 0.5 94.1 ± 1.5

Success rates in %. Mean ± 95% confidence interval.

upright, 40% on the left side, and 40% on the right side. Once
the target pre-grasp is reached, the success is tested by closing
the hand. If the object stays in the hand and the key condition
of a functional grasp, such as an index finger on the trigger,
is satisfied, an attempt is considered successful. We allocate
300 steps or 10 s per episode.

The measured success rates for all object categories are
reported in Table I. On the training set, the learned policy
shows a high success rate of 97.7%. As expected, on the
test set the success rate is lower, but still high at 94.1%. The
highest success rates are achieved on mugs. This is because
they are relatively easy to flip over from the side position and
have a simple geometry. The hardest object category is the
spray bottles. This is because spray bottles are narrow, have a
high CoM, and can be easily dropped.

Fig. 8 shows example rollouts for three test set objects. One
can observe that dexterous interactive pre-grasp manipulation
has been learned that leads to functional grasps for all three
object categories. Videos of the learned interactive functional
grasping behavior are available online3. One can observe
the complex pre-grasping strategies such as repositioning the
object, reorienting and uprighting the object, and regrasping
are executed. The policy learned to reattempt the sub-tasks in
case of failures.

C. Constraint-based Target Grasp Representation

In this section, we evaluate the approach using the more
abstract constraint-based target grasp representation presented
in Section V. The policy is represented with the same model
as in the experiments with explicit target grasp representation.
Training procedure, simulation setup, and hyperparameters are
identical as well. An episode is terminated when (i) a provided
target constraint—defining the functional grasp—is satisfied
and the object is lifted off the table, (ii) an object falls from
the table, or (iii) a maximum number of 200 steps is reached.

3https://www.ais.uni-bonn.de/videos/TASE 2024 Pavlichenko

https://www.ais.uni-bonn.de/videos/TASE_2024_Pavlichenko
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Fig. 9. Constraint-based target grasp representation: Curriculum ablation
experiment training curves. The three-stage curriculum significantly improves
learning speed. Lines: means. Colored areas: 95% confidence intervals.

Learning curves, averaged over three training runs, are
shown in Fig. 9. The training is done according to the
three-stage curriculum described in Section V-D. The first
stage is dedicated to learning to satisfy given functional
grasp constraints while the objects are in easily accessible
configurations. The second stage requires the policy to lift the
objects off the table. With this stage, we implicitly enforce
the policy to learn reliable grasp configurations. At the third
stage, the objects are positioned in configurations where a
direct functional grasp cannot be reached. We also perform
runs without the curriculum to explore its importance.

One can see that with the curriculum, the policy reliably
converges to the success rate of around ≈93% in under three
hours. The first two stages of the curriculum are completed
quickly. In contrast, without the curriculum, the policy reaches
only a subpar success rate of ≈ 50%. It is worth noting
that between runs without the curriculum there is not much
variance, compared to the explicit target grasp representation
runs shown in Fig. 6. We attribute this effect to the higher
difficulty of the learning problem for the constraint-based
target grasp representation since the policy has to find a way to
grasp the objects to enable successful lifting on its own. Given
that, the probability of having a lucky run where the policy
learns how to manipulate and grasp all objects without the
curriculum is much lower compared to runs with an explicit
target grasp representation.

In addition, we also perform an ablation study of the
proposed multi-component reward function in the context of
the constrained target grasp representation. We train five policy
variants: (i) with full reward; (ii) with reward component rreach
encouraging moving the hand towards the object disabled;
(iii) with reward component rhold encouraging holding the
object disabled; (iv) with reward component rorient encouraging
rotating the object towards the nominal rotation disabled; and
(v) with whole manipulation component rman = rreach +rhold +
rorient disabled.

Fig. 10 shows the learning curves for this ablation study.
One can see that similar to Fig. 7, all ablation runs yield
worse success rates compared to the policies with full reward.
However, the difference is less significant compared to the
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Fig. 10. Constraint-based target grasp representation: Manipulation reward
ablation experiment training curves. Disabling single reward components
slightly deteriorates the convergence rate and stability. Disabling the whole
manipulation reward component makes the learning process slower and less
stable. Lines: means. Colored areas: 95% confidence intervals.

explicit grasp representation ablation. While disabling the
whole manipulation reward component significantly decreased
learning speed, disabling individual components affects the
learning performance insignificantly. We attribute this to the
fact that in the case of the constrained target grasp rep-
resentation, the policy has to figure out the way to grasp
objects by itself, forced by the requirement to lift the ob-
jects. While doing that, the policy implicitly acquires holding
behaviors. Nevertheless, the ablation study demonstrated that
the proposed manipulation reward facilitates quicker and more
stable convergence for policies learned with the explicit grasp
representation.

To quantitatively evaluate the learned policy, we perform
100 attempts for each object from the training set and for novel
instances of known categories in the test set, the same as in
Section VI-B. This results in 3,000 attempts for the training
set and 900 attempts for the test set.

The resulting success rates are reported in Table II. As
expected, the policy has a higher success rate on the training
set. On the novel instances from the test set, the policy
achieves a 90% success rate, which is slightly lower than 94%
observed for the explicit target grasp representation (Table I).
We attribute the lower performance both to a more difficult
task, which includes lifting the object, and to a more abstract
grasp representation. On the other hand, the constraint-based
target grasp representation has fewer requirements for an
external oracle, compared to the policy with explicit target
grasp representation. Specifically, in our experiments we had to

TABLE II
SUCCESS RATES WITH CONSTRAINT-BASED GRASP REPRESENTATION

Category Training set Test set
Drills 92.7 ± 1.7 90.3 ± 3.3
Spray bottles 93.8 ± 1.7 88.6 ± 3.5
Mugs 92.0 ± 1.8 91.1 ± 3.1
All three 92.8 ± 1.0 90.1 ± 1.9

Success rates in %. Mean ± 95% confidence interval.
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Fig. 11. Constraint-based target grasp representation: Rollouts of policy manipulating unseen objects of known categories. Top to bottom: drill, spray bottle,
and mug. Note complex repositioning and reorienting behaviors for the drill and spray bottle. The mug task usually can be solved with a straightforward
manipulation strategy.

put much effort into specifying the explicit target grasps, while
defining the target constraints is quick and straightforward.

Fig. 11 shows example policy rollouts. The policy learns
complex repositioning and reorienting behaviors to eventually
satisfy the given target grasp constraints and successfully
lift the objects. Fig. 12 shows close-up snapshots of the
achieved grasps using policies trained with the different grasp
representations. Note that for the explicit grasp representation,
the targets are carefully designed by hand. In addition, after the
target pre-grasp is reached, the hand is closed and the object is
lifted to confirm success. Such an approach is chosen since it
is extremely challenging to supply an explicit grasp pose that
has all fingers positioned perfectly and maintains consistent,
tight contact with the object.

In the case of the constraint-based grasp representation, the
policy has to learn grasps that enable object lifting on its
own. One observation is that in the case of the constraint-
based grasp representation, the spray bottles and mugs have the
middle finger fully extended. For spray bottles, our intuition
is that it is challenging to place the middle finger under
the trigger. While trying to do so, the target index fingertip
position may be disturbed, decreasing the reward. For mugs,
our observation is that the policy often uses the middle finger
to support the mug from the side, tilting the mug to the right,
facilitating such a supporting approach.

It is worth noting that the policy learns natural human-
like ways to grasp the objects without having any explicit
instructions on how to do so. We attribute this success to a
generic multi-component dense reward function and a require-
ment to be able to lift the objects while satisfying the target
grasp constraints. Thus, our methodology implicitly guides the
policy towards discovering natural ways to grasp the objects,
exactly in the way they are designed to be grasped by humans.

D. Discussion

The policies achieved success rates of 94% for the ex-
plicit target grasp representation and 90% for the constraint-

Fig. 12. Close-up snapshots of functional grasps achieved by policies learned
using two different grasp representations. Top: Explicit grasp representation,
carefully designed by hand. Bottom: Constraint-based grasp representation.
Given only an abstract constraint, the policy learns to produce natural-looking
grasps.

based target grasp representation. In both cases, failures oc-
curred when the object was repositioned and reoriented to
a workspace location with low manipulability, leading the
policy to be stuck in repetitive behavior. To address this issue,
an additional later stage in the training curriculum could be
introduced, where most of the reward components have a
negative range. Having all reward components with a negative
range from the start resulted in very slow learning.

While the proposed method consistently learned policies
with high success rates in simulation, transferring the approach
to the real world is not straightforward. The main limitation of
the proposed approach is its reliance on frequent and accurate
estimation of the target object pose. In the real world, in the
presence of the robotic hand, 6D object pose estimation is
challenging [20]. Although we introduce some degree of noise
to all measurements, that does not fully model measurements
of significantly lower accuracy in the presence of occlusions.
In addition, we utilize certain privileged information, such as
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distance from fingers to the object surface. Although object
shape can be reconstructed [9], it still would be subject to
major inaccuracies.

Considering these limitations, we formulate a three-step
strategy that could be implemented to transfer the presented
approach to the real-world scenarios:

1) Transfer the learned behaviors to a model that does
not require distances from fingers to the object surface.
Policy distillation [50] or newer methods [51] can be
applied to achieve that.

2) Introduce a reward term that penalizes object occlusion.
It was shown to be effective when applied to arbitrary
grasping [51]. Additionally, distort the object-related
observations proportionally to the occlusion.

3) Apply the approach to the real system. Before manipula-
tion begins, object shape can be reconstructed [9]–[12],
enabling defining the target functional grasp [13]–[16].
Finally, the 6D pose of the object can be continuously
estimated [17]–[21]. Data-efficient real robot DRL [52]
can be applied to update the weights of the last layer
of the model to compensate for differences between
simulation and the real world.

The presented three-step approach gradually addresses the
challenges of transferring the method to the real world. That
includes eliminating the need for privileged observations and
minimizing object occlusions, before finally applying the
learned policy to the real robot. We believe that it is a
promising work direction that can be realized with recent de-
velopments in areas of perception and manipulation learning.

VII. CONCLUSION

In this article, we presented a DRL approach for dexterous
categorical pre-grasp manipulation for functional grasping
with an anthropomorphic hand. We introduced a dense multi-
component reward function and a curriculum to quickly learn a
single policy for dexterous manipulation of complex objects of
three categories. We proposed two target grasp representations:
explicit and a more abstract, constraint-based one.

Our experiments demonstrated that learning with our ap-
proach reliably converges and produces policies that achieve
high success rates, even for previously unseen object instances
of known categories. Complex pre-grasping strategies such
as repositioning, reorienting, regrasping, and up-righting the
object have been learned.

Ablation studies confirmed the importance of the proposed
multi-component reward function and the curriculum. Our
method utilizes a high-performance GPU-based simulation,
and the policies for both target grasp representations were
learned on a single GPU in less than three hours. The
policy using an explicit target grasp representation achieved
a 94% success rate for functional grasping of novel object
instances. The policy utilizing a constraint-based target grasp
representation achieved a 90% test success rate while simulta-
neously learning human-like grasp configurations solely from
the provided functional grasp constraints. Stable convergence
of both policies and resulting high success rates demonstrate
the generality of the proposed learning pipeline.
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