
Chapter 13
Semantic RGB-D Perception
for Cognitive Service Robots

Max Schwarz and Sven Behnke

Abstract Cognitive robots need to understand their surroundings not only in terms
of geometry, but they also need to categorize surfaces, detect objects, estimate their
pose, etc. Due to their nature, RGB-D sensors are ideally suited to many of these
problems, which is why we developed efficient RGB-D methods to address these
tasks. In this chapter, we outline the continuous development and usage of RGB-D
methods, spanning three applications: Our cognitive service robot Cosero, which
participated with great success in the international RoboCup@Home competitions,
an industrial kitting application, and cluttered bin picking for warehouse automa-
tion. We learn semantic segmentation using convolutional neural networks and ran-
dom forests and aggregate the surface category in 3D by RGB-D SLAM. We use
deep learning methods to categorize surfaces, to recognize objects and to estimate
their pose. Efficient RGB-D registration methods are the basis for the manipulation
of known objects. They have been extended to non-rigid registration, which allows
for transferring manipulation skills to novel objects.

13.1 Introduction

The need for truly cognitive robots, i.e. robots that can react to and reason about their
environment, has been made very clear in recent years. Applications like personal
service robots, elderly care, guiding robots, all require higher levels of cognition
than what is available today. But also classical domains of robotics, like industrial
automation, will benefit greatly from smarter robots which truly relieve the load of
their human coworkers.
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A key stepping stone towards higher cognitive function is environment percep-
tion. The ready availability of affordable RGB-D sensors, starting with the Mi-
crosoft Kinect, now encompassing a multitude of sensors with different properties,
has sparked the development of many new perception approaches. Especially in
the robotics community, which is not only interested with perceiving the environ-
ment, but also especially interacting with it, the direct combination of color infor-
mation with geometry offers large advantages over classical sensors which capture
the modalities separately.

The interest in our group in RGB-D sensors started with our work in the field of
cognitive service robots. An increasing number of research groups worldwide are
working on complex robots for domestic service applications. Autonomous service
robots require versatile mobile manipulation and human-robot interaction skills in
order to really become useful. For example, they should fetch objects, serve drinks
and meals, and help with cleaning. The everyday tasks that we perform in our house-
holds are highly challenging to achieve with a robotic system, though, because the
environment is complex, dynamic, and structured for human rather than robotic
needs.

We have developed cognitive service robots since 2008, according to the re-
quirements of the annual international RoboCup@Home competitions [72]. These
competitions benchmark integrated robot systems in predefined test procedures and
in open demonstrations within which teams can show the best of their research.
Benchmarked skills comprise mobility in dynamic indoor environments, object re-
trieval and placement, person perception, complex speech understanding, and ges-
ture recognition.

Starting from the methods developed for our Cognitive service robot Cosero, de-
scribed in Section 13.3, we will show how proven RGB-D methods and key ideas
were carried over to subsequent robotic systems in other applications, such as in-
dustrial kitting (Section 13.4) and cluttered bin picking for warehouse automation
(Section 13.5).

13.2 Related Work

Service Robots Prominent examples of service robots include Armar [1], de-
veloped at KIT, that has demonstrated mobile manipulation in a kitchen environ-
ment [68]. The Personal Robot 2 (PR2 [40]), developed by Willow Garage, popular-
ized the Robot Operating System (ROS [47]) that is used by many research groups.
It is equipped with two 7-DOF compliant arms on a liftable torso. For mobility, the
robot drives on four individually steerable wheels, similar to our Cosero robot. PR2
perceives its environment using 2D and 3D laser scanners, and a structured light
RGB-D sensor in the head. Bohren et al. [9] demonstrated fetching drinks from a
refrigerator and delivering them to users with the PR2 platform. Beetz et al. [6] used
a PR2 and a custom-built robot to cooperatively prepare pancakes.
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Another example is Rollin’ Justin [10], developed at DLR. Similarly, it is
equipped with two compliant arms and a four-wheeled mobile base. The robot
demonstrated several dexterous manipulation skills such as making coffee by op-
erating a pad machine [5] and cleaning windows [36]. Further examples are HoL-
Lie [23], developed at FZI Karlsruhe, and Care-O-Bot 4 [31], recently introduced
by Fraunhofer IPA.

The RoboCup Federation holds annual competitions in its @Home league [28],
which serve as a general benchmark for service robots. Since research labs usually
focus on narrow tasks, this competition is especially important for guiding and eval-
uating the research on service robotics in a more holistic perspective. Systems com-
peting in the 2017 edition, which was held in Nagoya, Japan, are described in the
corresponding team description papers [11, 41, 69]. Most of these custom-designed
robots consist of a wheeled mobile base with LiDAR and RGB-D sensors and a sin-
gle manipulator arm, although humanoid shapes with two arms are becoming more
common. Notably, RGB-D sensors play a large role in the competition, since they
offer highly semantic environment understanding (see [11, 28]) at very low cost.

Mapping In order to act in complex indoor environments, service robots must
perceive the room structure, obstacles, persons, objects, etc. Frequently, they are
equipped with 2D or 3D laser scanners to measure distances to surfaces. Register-
ing the laser measurements in a globally consistent way yields environment maps.
Graph optimization methods [67] are often used to solve the simultaneous local-
ization and mapping (SLAM) problem. Efficient software libraries are available to
minimize the registration error [29, 34]. 2D maps represent walls and obstacles only
at the height of a horizontal scan plane [38]. If 3D laser scanners are used [55, 74],
the full 3D environment structure can be modeled.

In recent years, RGB-D cameras (see Chapter 1) became available to measure
geometry and colored texture of surfaces in smaller indoor environments. Regis-
tering these measurements yields colored 3D environment models (see Chapter 5,
[15, 30, 70, 71]).

Semantic Perception In addition to modelling the environment geometry and ap-
pearance, semantic perception is needed for many tasks. This involves the catego-
rization of surfaces, the detection and recognition of objects and the estimation of
their pose. Surface categorization is also known as object-class segmentation. The
task is to assign a class label to every pixel or surface element. For example, Her-
mans et al. [24] train random decision forests to categorize pixels in RGB-D frames.
They estimate camera motion and accumulate pixel decisions in a 3D semantic map.
Spatial consistency is enforced by a pairwise Conditional Random Field (CRF).

In contrast, Eigen et al. [14] process single frames at multiple resolutions. They
train convolutional neural networks (CNN) to predict depth, surface normals, and
semantic labels. The network is initialized with pre-trained features [32]. Long et
al. [37] combined upsampled predictions from intermediate layers with a final full-
resolution layer which leads to more refined results. A whole-image classification
network was adapted to a fully convolutional network and finetuned for semantic
segmentation. Another example of a convolutional architecture for semantic seg-
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mentation is the work of Badrinarayanan et al. [3]. They use a multi-stage encoder-
decoder architecture that first reduces spatial resolution through maximum pooling
and later uses the indices of the local pooling maxima for non-linear upsampling to
produce class labels at the original resolution.

For the detection of objects, e.g., implicit shape models [35] and Hough forests [18]
have been proposed. In recent years, CNNs have also been successfully used for
the detection of objects in complex scenes. Girshick et al. [21], for example, use a
bottom-up method for generating category-independent region proposals and train
a CNN to categorize size-normalized regions. To accelerate detection, all regions
are processed with a single forward pass of the CNN [20]. Another line of research
is to directly train CNNs to regress object bounding boxes [16, 54]. Ren et al. [48]
developed a region proposal network (RPN) that regresses from anchors to regions
of interest. More methods are discussed in Chapter 8.

For estimating the pose of objects in 3D data, often voting schemes are used.
Drost et al. [13] and Papazov et al. [45] proposed point pair features, defined by
two points on surfaces and their normals, which vote for possible object poses. This
approach has been recently extended by Choi et al. [12] to incorporate color in-
formation from RGB-D sensors. In recent years, CNNs also have been trained to
estimate object pose [4, 66]. 3D convolutional neural networks have been used for
modeling, detection, and completion of 3D shapes [73]. For an in-depth review of
6D pose estimation methods, we refer to Chapter 11.

13.3 Cognitive Service Robot Cosero

Since 2008, the Autonomous Intelligent Systems group at University of Bonn has
been developing cognitive service robots for domestic service tasks [62]. Accord-
ing to the requirements of the RoboCup@Home competitions, we developed the
cognitive service robot Cosero, shown in Fig. 13.1, that balances the aspects of ro-
bust mobility, human-like manipulation, and intuitive human-robot-interaction. The
robot is equipped with an anthropomorphic torso and two 7 DoF arms that provide
adult-like reach and support a payload of 1.5 kg each. The grippers consist of two
pairs of Festo FinGripper fingers on rotary joints, which conform to grasped objects.
Cosero’s torso can be twisted around and lifted along the vertical axis to extend its
workspace, allowing the robot to grasp objects from a wide range of heights—even
from the floor. Its narrow base moves on four pairs of steerable wheels that provide
omnidirectional driving. For perceiving its environment, Cosero is equipped with
multimodal sensors. Four laser range scanners on the ground, on top of the mobile
base, and in the torso (rollable and pitchable) measure distances to objects, persons,
or obstacles for navigation purposes. The head is mounted on a pan-tilt joint and
features a Microsoft Kinect RGB-D camera for object and person perception in 3D
and a directed microphone for speech recognition. A camera in the torso provides
a lateral view onto objects in typical manipulation height. Cosero is controlled by a
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Fig. 13.1: Cognitive service robot Cosero with sensors marked and perceptional
modules.

high-performance Intel Core-i7 quad-core notebook, located on the rear part of the
base.

13.3.1 Environment Perception

RGB-D SLAM For modelling 3D geometry and appearance of objects, we devel-
oped an efficient RGB-D-SLAM method, based on Multi-Resolution Surfel Maps
(MRSMaps [60]). The key idea is to represent the distribution of points in voxels and
their color using a Gaussian. For registering RGB-D views, local multiresolution is
used, i.e., the vicinity of the sensor is modeled in more detail than further-away parts
of the environment. Graph optimization [34] is used to globally minimize registra-
tion error between key views. Fig. 13.2a shows a resulting map of an indoor scene.
To reduce the need for sensor motion and to avoid looking only into free space, we
constructed a sensor head with four RGB-D cameras that view four orthogonal di-
rections [56]. Fig. 13.2b shows a map of a room that has been created by moving
this multi-sensor in a loop.

Motion Segmentation RGB-D SLAM assumes static scenes. By modeling mul-
tiple rigid bodies as MRSMap and estimating their relative motion by expectation-
maximization (EM), a dense 3D segmentation of the dynamic scene is obtained [61].
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a) b)

Fig. 13.2: RGB-D SLAM: a) Multi-resolution surfel map obtained by registering
RGB-D views [60]; b) RGB-D map of a room obtained from four moving RGB-D
cameras [56].

Fig. 13.3a shows an example. From common and separate motion, a hierarchy of
moving segments can be inferred [57], as shown in Fig. 13.3b.

Semantic Segmentation We developed several approaches for object-class seg-
mentation. One method is using random forests (RF) to label RGB-D pixels [51]
based on rectangular image regions that are normalized in size and position by depth
and computed efficiently from integral images. Both training and recall have been
accelerated by GPU. To obtain a 3D semantic map, we estimate camera motion by
RGB-D SLAM and accumulate categorizations in voxels [65].

We developed a method to smooth the noisy RF pixel labels that is illustrated in
Fig. 13.4a. It over-segments the scene in RGB-D superpixels and learns relations
between them that are modeled as a Conditional Random Field (CRF), based on
pair-wise features such as color contrast and normal differences. We also proposed
CNN-based methods for semantic segmentation [25, 27, 49], with innovations, such
as additional input features derived from depth, like height above ground [50] or
distance from wall [27] (Fig. 13.4b)), and size-normalization of covering windows
from depth [50].

a) b)

Fig. 13.3: Motion segmentation: a) Three rigid bodies and their motion modeled as
MRSMap [61]; b) Motion hierarchy inferred from common/separate motions [57].
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a) b)

Fig. 13.4: Semantic segmentation: a) Random forest labeling is refined by a
superpixel-CRF [42]; b) CNN segmentation based on semantic and geometric fea-
tures [27].

For temporal integration, we directly trained the Neural Abstraction Pyramid [7]—
a hierarchical, recurrent, convolutional architecture for learning image interpreta-
tion (Fig. 13.5a)—for object class segmentation of RGB-D video sequences [46].
It learns to recursively integrate semantic decisions over time. Fig. 13.5b shows an
example result.

13.3.2 Object Perception

When attempting manipulation, our robot captures the scene geometry and appear-
ance with its RGB-D camera. In many situations, objects are located well separated
on horizontal support surfaces, such as tables, shelves, or the floor. To ensure good
visibility, the camera is placed at an appropriate height above and distance from the
surface, pointing downwards with an angle of approximately 45◦. To this end, the

a) b)

Fig. 13.5: Recurrent temporal integration for semantic segmentation: a) Neural
Abstraction Pyramid (NAP) architecture [7]; b) NAP-based semantic segmenta-
tion [46].



8 Max Schwarz and Sven Behnke

a) b)

Fig. 13.6: Object perception: a) RGB-D view of a tabletop scene. Detected objects
are represented by a fitted red ellipse; b) Recognized objects.

robot aligns itself with tables or shelves using the rollable laser scanner in its hip in
its vertical scan plane position. Fig. 13.6a shows a scene.

Object Segmentation An initial step for the perception of objects in these sim-
ple scenes is to segment the captured RGB-D images into support planes and objects
on these surfaces. Our plane segmentation algorithm rapidly estimates normals from
the depth images of the RGB-D camera and fits a horizontal plane through the points
with roughly vertical normals by RANSAC [64]. The points above the detected sup-
port plane are grouped to object candidates based on Euclidean distance. All points
within a range threshold form a segment that is analyzed separately. In Fig. 13.6a,
the detected segments are shown.

Object Detection and Pose Estimation For the detection and pose estimation
of objects in complex RGB-D scenes, we developed a Hough Forest [18] based
approach [2] that is illustrated in Fig. 13.7a. Decision trees do not only learn to cat-
egorize pixels, but also vote for object centers in 3D. Each detected object votes
for object orientations, which yields detection of objects with the full 3D pose.
Fig. 13.7b illustrates an extension of a saliency-based object discovery method [19],

a) b)

Fig. 13.7: 3D Object detection: a) 6D object detection using Hough forest [2]; b)
Generating object proposals separately in semantic channels [19].
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Fig. 13.8: Object categorization, instance recognition, and pose estimation based on
features extracted by a pretrained CNN [53]. Depth is converted to a color image by
rendering a canonical view and encoding distance from the object vertical axis.

which groups RGB-D superpixels based on semantic segmentation [27] and detects
objects per class. This improves the generated object proposals.

For categorizing objects, recognizing known instances, and estimating object
pose, we developed an approach that analyzes an object which has been isolated us-
ing table-top segmentation. The RGB-D region of interest is preprocessed by fading
out the background of the RGB image (see Fig. 13.8 top left). The depth measure-
ments are converted to an RGB image as well by rendering a view from a canonical
elevation and encoding distance from the estimated object vertical axis by color, as
shown in Fig. 13.8 bottom left. Both RGB images are presented to a convolutional
neural network, which has been pretrained on the ImageNet data set for categoriza-
tion of natural images. This produces semantic higher-layer features, which are con-
catenated and used to recognize object category, object instance, and to estimate the
azimuth viewing angle onto the object using support vector machines and support
vector regression, respectively. This transfer learning approach has been evaluated
on the Washington RGB-D Object data set and improved the state-of-the-art [53].

Primitive-based Object Detection Objects are not always located on horizontal
support surfaces. For a bin picking demonstration, we developed an approach to de-
tect known objects which are on top of a pile, in an arbitrary pose in transport boxes.
The objects are described by a graph of shape primitives. Fig. 13.9 illustrates the

a) b) c)

Fig. 13.9: Object detection based on geometric primitives [44]: a) Point cloud cap-
tured by Cosero’s Kinect camera; b) Detected cylinders; c) Detected objects.
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a) b) c)

Fig. 13.10: Object tracking: a) Cosero approaching a watering can; b) A multi-view
3D model of the watering can (MRSMap, upper right) is registered with the current
RGB-D frame to estimate its relative pose T, which is used to approach and grasp
it; c) Joint object detection and tracking using a particle filter, despite occlusion.

object detection process. First, individual primitives, like cylinders of appropriate
diameter are detected using RANSAC. The relations between these are checked. If
they match the graph describing the object model, an object instance is instantiated,
verified and registered to the supporting 3D points. This yields object pose estimates
in 6D. Based on this, mobile bin picking has been demonstrated with Cosero [44].
The method has been extended to the detection of object models that combine 2D
and 3D shape primitives [8].

Object Tracking Cosero tracks the pose of known objects using models rep-
resented as multi-resolution surfel maps (MRSMaps, [60]), which we learn from
moving an RGB-D sensor around the object and performing SLAM. Our method
estimates the camera poses by efficiently registering RGB-D key frames. After loop
closing and globally minimizing the registration error, the RGB-D measurements
are represented in a multiresolution surfel grid, stored as an octree. Each volume
element represents the local shape of its points as well as their color distribution
by a Gaussian. Our MRSMaps also come with an efficient RGB-D registration
method which we use for tracking the pose of objects in RGB-D images. The object
pose can be initialized using our planar segmentation approach. Fig. 13.10a,b) illus-
trates the tracking with an example. To handle difficult situations, like occlusions,
we extended this approach to joint detection and tracking of objects modeled as
MRSMaps using a particle filter [39] (see Fig. 13.10c).

Non-rigid Object Registration To be able to manipulate not only known ob-
jects, but also objects of the same category that differ in shape and appearance,
we extended the coherent point drift method (CPD) [43] to efficiently perform de-
formable registration between dense RGB-D point clouds (see Fig. 13.11a). Instead
of processing the dense point clouds of the RGB-D images directly with CPD, we
utilize MRSMaps to perform deformable registration on a compressed measurement
representation [59]. The method recovers a smooth displacement field which maps
the surface points between both point clouds. It can be used to establish shape corre-
spondences between a partial view on an object in a current image and a MRSMap
object model. From the displacement field, the local frame transformation (i.e., 6D
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a) b)

Fig. 13.11: Object manipulation skill transfer: a) An object manipulation skill is de-
scribed by grasp poses and motions of the tool tip relative to the affected object; b)
Once these poses are known for a new instance of the tool, the skill can be trans-
ferred.

rotation and translation) at a point on the deformed surface can be estimated. By
this, we can determine how poses such as grasps or tool end-effectors change by the
deformation between objects (Fig. 13.11b).

13.3.3 Robot Demonstrations at RoboCup Competitions

The developed perceptual components for the robot environment and workspace ob-
jects were the basis for many demonstrations of in RoboCup@Home league com-
petitions [72], the top venue for benchmarking domestic service robots.

Mobile Manipulation Several predefined tests in RoboCup@Home include object
retrieval and placement. We often used open challenges to demonstrate further ob-
ject manipulation capabilities. For example, in the RoboCup 2011 Demo Challenge,
Cosero was instructed where to stow different kinds of laundry, picked white laun-
dry from the floor (Fig. 13.12a), and put it into a basket. In the final round, our robot
demonstrated a cooking task. It moved to a cooking plate to switch it on. For this,
we applied our real-time object tracking method (Sec. 13.3.2) in order to approach

a) b) c) d) e)

Fig. 13.12: Mobile manipulation demonstrations: a) Picking laundry from the floor;
b) Cooking an omelette; c) Pushing a chair; d) Watering a plant; e) Bin picking.
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a) b) c)

Fig. 13.13: Tool use demonstrations: a) Grasping sausages with a pair of tongs. b)
Bottle opening; c) Plant watering skill transfer to unknown watering can.

the cooking plate and to estimate the switch grasping pose. Then, Cosero drove to
the location of the dough and grasped it. Back at the cooking plate, it opened the
bottle by unscrewing its lid and poured its contents into the pan (Fig. 13.12b).

In the RoboCup 2012 final, Cosero demonstrated the approaching, bi-manual
grasping, and moving of a chair to a target pose (Fig. 13.12c). It also approached
and grasped a watering can with both hands and watered a plant (Fig. 13.12d). Both
were realized through registration of learned 3D models of the objects (Sec. 13.3.2).
The robot also demonstrated our bin picking approach, which is based on primitive-
based object detection and pose estimation (Fig. 13.12e).

Tool Use In the RoboCup 2013 Open Challenge, Cosero demonstrated tool-use
skill transfer based on our deformable registration method (Sec. 13.3.2). The jury
chose one of two unknown cans. The watering skill was trained for a third instance
of cans before. Cosero successfully transferred the tool-use skill and executed it
(Fig. 13.13c). In the final, Cosero demonstrated grasping of sausages with a pair
of tongs (Fig. 13.13a). The robot received the tongs through object hand-over from
a team member. It coarsely drove behind the barbecue that was placed on a table
by navigating in the environment map and tracked the 6-DoF pose of the barbecue
using MRSMaps (Sec. 13.3.2) to accurately position itself relative to the barbecue.
It picked one of two raw sausages from a plate next to the barbecue with the tongs
and placed it on the barbecue. While the sausage was grilled, Cosero handed the
tongs back to a human and went to fetch and open a beer. It picked the bottle opener
from a shelf and the beer bottle with its other hand from a table. Then it executed a
bottle opening skill [58] (Fig. 13.13b).

In the RoboCup 2014 final, Cosero grasped a dustpan and a swab in order to clean
some dirt from the floor (Fig. 13.14c). After pouring out the contents of the dustpan
into the dustbin, it placed the tools back on a table and started to make caipirinha.
For this, it used a muddler to muddle lime pieces (Fig. 13.14d).

Cosero also demonstrated awareness and interaction with humans (Fig. 13.14).
Since the methods for these capabilities mainly use LIDAR tracking and RGB com-
puter vision techniques and are thus out of scope for this chapter, we refer to [63]
for details.

Competition Results We participated in four international RoboCup@Home and
four RoboCup German Open @Home competitions 2011-2014. Our robot systems
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a) b) c) d)

Fig. 13.14: Human-robot interaction and tool use: a) Following a guide through a
crowd; b) Recognizing pointing gestures; c) Using a dustpan and a swab; d) Using
a muddler.

performed consistently well in the predefined tests and our open demonstrations
convinced the juries which consisted of team leaders, members of the executive
committee, and representatives of the media, science, and industry. Our team Nimb-
Ro won three international competitions 2011-2013 and four German Open compe-
titions 2011-2014 in a row and came in third at RoboCup 2014 in Brazil.

13.4 Kitting-Type Picking in the STAMINA Project

Techniques that were developed for the Cosero system are applicable to a much
wider range of problems. As a first application, we investigated industrial bin pick-
ing in the STAMINA project [26]. The project targeted shop floor automation, in
particular the automation of kitting tasks, where a robotic system needs to collect
objects from different sources according to a kitting order. The completed kit is then
delivered to the manufacturing line.

Fig. 13.15: The STAMINA cognitive robot performing an industrial kitting task in
the experimental kitting zone at PSA Peugeot Citroën.
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Fig. 13.16: Flow diagram of the two-staged perception pipeline.

13.4.1 System Description

Figure 13.15 shows the STAMINA robot during a typical kitting task. The system
consists of a movable base equipped with an industrial arm, carrying a 4-DoF endef-
fector for grasping a wide variety of items. The system carries three ASUS Xtion Pro
RGB-D cameras for perceiving the workspace, and a PrimeSense Carmine RGB-D
camera at the wrist for close-range object perception.

The main difficulty lies in detection and pose estimation of the parts to be col-
lected. We employ a two-stage work flow for this purpose (see Fig. 13.16). Here,
methods developed for the Cosero system are re-used. In the first stage, a segmenta-
tion of the scene into individual parts is performed, following the RGB-D tabletop
segmentation method described in Section 13.3.2.

After identifying a possible target part, the wrist camera is positioned above it
and the part is recognized and its pose is estimated. Here, we employ the RGB-D
registration method described in Section 13.3.2. A key advantage is that we can
use the quality of the registration (measured using observation likelihoods for each
matched surfel pair) for judging whether we actually a) have identified a part of the
correct type and b) the registration was successful. Figure 13.17 shows a typical
object perception process.

a) b)

Fig. 13.17: RGB-D registration in a bin picking context: a) Detected objects with
selected grasp target and fine registration using wrist-mounted RGB-D camera; b)
Pick-and-place process with outside, top, and 3D visualization views.
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Table 13.1: Bin picking results. The replanning column gives the number of times
replanning of the arm trajectory was necessary. This condition was detected auto-
matically. Taken from [33].

Task Trials Replanning Success rate Time [s]

5 parts 4 1 4/4 856±105
4 parts 6 3 6/6 723±96
3 parts 3 1 3/3 593±106
2 parts 3 1 3/3 325±16
1 part 14 4 14/14 234±105

13.4.2 Evaluation

The STAMINA system was evaluated in realistic trials performed at PSA Peugeot
Citroën, conducted in a 1,200 m2 logistics kitting zone. The tests ranged from iso-
lated “baseline” tests showcasing the robustness of the perception and motion plan-
ning methods (see Tab. 13.1 for brief results) to larger system-level and integrated
tests, which proved overall robustness to a wide variety of possible situations and
failures. We refer to [33] for full details on the evaluation.

13.5 Cluttered Bin Picking in the Amazon Robotics Challenge

The Amazon Picking Challenge (APC) 2016 and the subsequent Amazon Robotics
Challenge 2017 were further opportunities to continue development of the so-far
established object perception methods and to test them in realistic situations. The

Fig. 13.18: Our system at the Amazon Picking Challenge 2016. Left: Full system
including robotic arm, endeffector, shelf, and red tote. Right: Custom-built endef-
fector with linear and rotatory joints, two Intel RealSense SR300 RGB-D cameras,
and lighting.
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(a) RGB frame (b) Upper depth (c) Lower depth (d) Stereo depth (e) Fused result

Fig. 13.19: RGB-D fusion from two sensors. Note the corruption in the left wall in
the lower depth frame, which is corrected in the fused result.

challenge required participants to pick requested items out of highly cluttered, un-
sorted arrangements in narrow shelf bins or crowded shipment totes.

In contrast to the STAMINA application discussed in Section 13.4, the highly
cluttered arrangements of different object require semantic segmentation of the
scene into single objects, as geometry alone is insufficient for separation. Since a
vacuum gripper is used to grasp the objects, requirements on pose estimation can
be relaxed, though, since suitable vacuuming spots can be found on the live RGB-D
input.

13.5.1 System Description

Figure 13.18 shows an overview of the system at APC 2016. It consists of a Uni-
versal Robots UR10 6-DoF robotic arm equipped with a custom 2-DoF endeffector.
The endeffector consists of a linear joint for reaching into the narrow shelf bins, and
a vacuum suction cup on a rotary joint, which allows to apply suction from above or
from the front. The endeffector carries two Intel RealSense SR300 RGB-D cameras
and illuminates the scene using own LED lighting to stay independent of outside
lighting effects.

The RGB-D streams are interpreted by a separate vision computer. It carries four
NVIDIA Titan X GPUs for on-site retraining of the deep learning models.

13.5.1.1 RGB-D Preprocessing

The decision to include two RGB-D cameras was made because of the difficult mea-
surement situation inside the shelf bin. We observed that the nature of the sensors
resulted in asymmetric effects, such as corruption of depth measurements on one of
the bin walls (see Fig. 13.19). Depth completion alone (e.g. as presented in Chap-
ter 2) did not yield sufficient results, as complete areas were missing. The second
camera, mounted with 180◦ angle with respect to the first camera, had the measure-
ment problems on the other side and thus can be used to correct for these effects.
For breaking the tie between the two depth sources, an additional depth stream can
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Fig. 13.20: Two-stream architecture for RGB-D object detection [52]. Input images
in both modalities are processed individually using CNNs φ and ψ . The concate-
nated feature maps are then used in the classical Fast R-CNN pipeline using RoI
pooling and a classification network.

be computed using stereo information from the two RGB cameras. For details on
the RGB-D fusion strategy, we refer to [52].

13.5.1.2 Object Perception

For separating the objects in these cluttered situations, we designed an RGB-D ob-
ject detection method. We followed up on research begun with the depth colorization
method described in Section 13.3.2 and further investigated means of leveraging the
depth modalities in deep-learning settings. For a modern object detection approach
based on Faster R-CNN [48], we benchmarked different methods of incorporating
depth in [52], such as a depth-based region proposal generator, a geometry-based
encoding called HHA (horizontal disparity, height above ground, angle to gravity)
either downsampled and provided to the classifier component, or processed in paral-
lel to the RGB stream in a two-stream architecture. The best-performing method was
to learn a separate depth feature extractor using a self-supervised approach called
Cross Modal Distillation [22]. Here, the depth CNN is trained to imitate the output
of a pre-trained RGB CNN on RGB-D frames. In this way, expensive annotation of
RGB-D frames can be avoided. The trained depth CNN is then used in parallel with
the pre-trained RGB CNN in a two-stream architecture (see Fig. 13.20). We also
obtained small but consistent gains by combining the object detection results with
the semantic segmentation approach described in Section 13.3.1.

13.5.2 Evaluation

The system was evaluated during the Amazon Picking Challenge 2016, where it
performed highly successfully and reached a second place in the Stow competition
(tote → shelf) and third place in the Pick competition (shelf → tote). Our system
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Fig. 13.21: Object detection in scenes with cluttered background. The frames are
part of a publicly released RGB-D dataset of 129 frames, captured in a clut-
tered workshop environment. See http://centauro-project.eu/data_
multimedia/tools_data for details.

actually performed the highest number of correct grasps during the pick competition
(see Table 13.2), highlighting the robustness, speed, and precision of the presented
RGB-D perception methods, but dropped three items while moving them, with the
subsequent penalties leading to the third place.

In addition to the system-level evaluation during the APC 2016, we also evalu-
ated our methods on in-house datasets. These consists of a 333-frame bin picking
dataset, and a 129-frame RGB-D dataset with tools in front of highly cluttered back-
ground, captured for the CENTAURO disaster response project1 (see Fig. 13.21).
Here it demonstrated highly robust detection with 97% mAP score (see Tab. 13.3).
The combination of the RGB-D object detector with semantic segmentation was
also investigated and yielded small but consistent improvements (see Tab. 13.3). We
refer to [52] for details.

1 https://www.centauro-project.eu

Table 13.2: Picking Run at APC 2016

Bin Item Pick Drop Report Bin Item Pick Drop Report

A duct tape × × × G scissors × × ×
B bunny book X X ×2 H plush bear X × X
C squeaky eggs X × X I curtain X × X
D crayons1 X × X J tissue box X × X
E coffee X X ×2 K sippy cup X × X
F hooks X × X L pencil cup X X ×2

Sum 10 3 7

The table shows the individual picks (A-L) executed during the official picking run.
1 Misrecognized, corrected on second attempt.
2 Incorrect report, resulting in penalty.

http://centauro-project.eu/data_multimedia/tools_data
http://centauro-project.eu/data_multimedia/tools_data
https://www.centauro-project.eu
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Table 13.3: Object detection results on the APC and CENTAURO tools datasets.
Det+Seg F1 is the semantic segmentation network boosted with object detection
results.

Object Detection Semantic Segmentation

Dataset Mean AP F1 Seg F1 Det+Seg F1

APC Shelf 0.912 0.798 0.813 0.827
APC Tote 0.887 0.779 0.839 0.853
CENTAURO tools 0.973 0.866 0.805 -

13.6 Conclusion

In this chapter, we described semantic RGB-D perception approaches developed for
our cognitive service robot Cosero, industrial kitting in the STAMINA project, and
cluttered bin picking for the Amazon Picking Challenge 2016.

We developed several object perception methods to implement the variety of ma-
nipulation skills of our robot. We segment scenes at high frame-rate into support
surfaces and objects. In order to align to objects for grasping, we register RGB-D
measurements on the object with a 3D model using multi-resolution surfel maps
(MRSMaps). Through deformable registration of MRSMaps, we transfer object ma-
nipulation skills to differently shaped instances of the same object category. Tool-
use is one of the most complex manipulation skills for humans and robots in daily
life. We implemented several tool-use strategies using our perception and control
methods.

The outstanding results achieved at multiple national and international Robo-
Cup@Home competitions clearly demonstrate the versatility and robustness of the
introduced methods. The development and benchmarking of the system gave us
many insights into the requirements for complex personal service robots in scenarios
such as cleaning the home or assisting the elderly. Challenges like RoboCup@Home
show that a successful system not only consists of valid solutions to isolated
problems—the proper integration of the overall system is equally important.

We also successfully demonstrated applicability of the developed methods for
object detection, semantic segmentation, and RGB-D registration on other systems
and in other domains, such as bin picking and disaster response.

Despite a large number of successful demonstrations, our systems are limited to
short tasks in partially controlled environments. In order to scale towards real appli-
cation in domestic service scenarios, we need to address open issues—and many of
these are related to RGB-D perception. Object recognition and handling that scales
to the large variety of objects in our daily homes is still an open research problem.
Significant progress has been made, e.g. through deep learning methods, but occlu-
sions and material properties like transparency or highly reflective surfaces make it
still challenging to analyze typical household scenes. Similarly, perceiving people
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and understanding their actions in the many situations possible in everyday environ-
ments is a challenge.

One promising approach to address these challenges is transfer learning which
leverages the feature hierarchies from the large RGB data sets to the small robotic
data sets at hand, requiring only few annotated training examples. Another line of
research is to instrument the environment with a multitude of sensors in order to
track all objects continuously with high accuracy [17].
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