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Abstract. In this paper, we present SURE features – a novel combi-
nation of interest point detector and descriptor for 3D point clouds and
depth images. We propose an entropy-based interest operator that se-
lects distinctive points on surfaces. It measures the variation in surface
orientation from surface normals in the local vicinity of a point. We com-
plement our approach by the design of a view-pose-invariant descriptor
that captures local surface curvature properties, and we propose optional
means to incorporate colorful texture information seamlessly. In exper-
iments, we compare our approach to a state-of-the-art feature detector
in depth images (NARF) and demonstrate similar repeatability of our
detector. Our novel pair of detector and descriptor achieves superior re-
sults for matching interest points between images and also requires lower
computation time.
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1 Introduction

Interest points paired with a descriptor of local image context provide a com-
pact representation of image content. They can be used in various applications
such as image registration [15, 13, 21], robot simultaneous localization and map-
ping (SLAM) [27], panorama stitching [3], photo tourism [7], as well as place [29]
and object recognition [5, 18, 31].

Many applications require that a detector repeatedly finds interest points
across images taken from various view poses and under differing lighting condi-
tions. Since the scale of surface regions in the image depends on the distance of
the sensor from the observed surface, the detector must also retrieve a repeat-
able scale if distance is not directly measured. This scale can then be used to
normalize the size of the image region in which local image context is described.

Descriptors, on the other hand, are designed to distinguish well between dif-
ferent shapes and textures. They are often judged in terms of precision-recall
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relations [17]. However, one must admit that descriptor distinctiveness depends
clearly on the variety of shapes and textures that appear at the selected inter-
est points. Thus, a detector is preferable that finds interest points in various
structures and highly expressive regions.

In this paper, we propose a new approach for extracting shape features at
surface points through a measure of surface entropy (SURE). Our features com-
bine a novel pair of interest point detector and local context description. Our
approach can be applied to depth images as well as unorganized 3D point clouds.
An entropy-based interest measure selects points on surfaces that exhibit strong
local variation in surface orientation. We complement our approach by the de-
sign of a descriptor that captures local surface curvature properties. We also
propose means to incorporate color and texture cues into the descriptor when
RGB information is available for the points. We implement both detector and
descriptor to process point clouds efficiently on a CPU. Our approach extracts
features at a frame rate of about 5 Hz from RGB-D images at VGA resolution.

In experiments, we measure the repeatability of our interest points under
view pose changes for several scenes and objects. We compare our approach
with state-of-the-art detectors and demonstrate the advantages of our approach.
We also assess the distinctiveness of our descriptor and point out differences to
state-of-the-art methods.

2 Related Work

2.1 Interest Point Detection

Feature detection and description has been a very active area of research for
decades. The computer vision community extensively studies detectors in in-
tensity images. Nowadays, interest point detection algorithms are designed to
be invariant against moderate scale and viewpoint changes [35]. There is not
a single method that is always best in every application, but some noteworthy
stick out from the bulk: The Harris-Affine [16] detector that recognizes corner
structures based on the second moment matrix, the MSER [15] detector that
identifies groups of pixels that are best separable from their surrounding, and
the well known SIFT [14] or optimized SURF [1] detectors that are based on in-
tensity blobs found by a difference of Gaussians filter. One recent example is the
SFOP [6] detector for combination of corners, junctions, and blob-like features
from a spiral model.

Most related to our method, also the entropy measure based on image in-
tensities has been investigated for interest point detection [10, 11]. It has been
successfully applied to object recognition [5] due to the high informativeness
of maximum entropy regions. Lee and Chen [12] picked up this idea of features
based on histogram distributions and extended it to intensity gradients and color.
They used the Bhattacharyya coefficient to identify local distributions that dis-
tinguish themselves most from the surrounding. Both approaches are not capable
of real-time processing. In our approach, we adopted the entropy measure for 3D



normal orientations in order to get stable-placed features determined by multiple
surfaces.

However, those methods purely based on intensity image data suffer prob-
lems emerging from projective reduction to 2D space. Moreels and Perona [18]
evaluated affine detectors for recognition of conspicuously shaped 3D objects
and found out that none ”performs well with viewpoint changes of more than
25-30◦”.

With the steadily increasing availability of depth measuring sensors, recently
various methods have been developed to extract interest points from dense, full-
view point clouds. The notion of scale has a different interpretation in 3D data. It
now depicts the 3D extent of a structure which has been only intrinsic to the scale
in 2D images. In depth images, the 2D projection of a structure at a specific 3D
scale still varies with distance to the sensor. Few approaches have been proposed
that detect interest points at multiple 3D scales and that automatically select
a scale for which an interest point is maximally stable w.r.t. repeatability and
localization.

Pauly et al. [22], for example, measure surface variation at a point by consid-
ering the eigenvalues of the local sample covariance. Novatnack et al. [20] extract
multi-scale geometric interest points from dense point clouds with an associated
triangular connectivity mesh. They build a scale-space of surface normals and
derive edge and corner detection methods with automatic scale selection. For
depth images [20], they approximate geodesic distances by computing shortest
distances between points through the image lattice. Surface normals are com-
puted by triangulating the range image. Our approach does not require connec-
tivity information given by a mesh. Unnikrishnan et al. [37] derive an interest
operator and a scale selection scheme for unorganized point clouds. They ex-
tract geodesic distances between points using disjoint minimum spanning trees
in a time-consuming pre-processing stage. They present experimental results on
full-view point clouds of objects without holes. In [32], this approach has been
applied to depth images and an interest detector for corners with scale selection
has been proposed. Steder et al. [29] extract interest points from depth images
without scale selection, based on a measure of principal curvature which they
extent to depth discontinuities. However, our approach is not restricted to depth
images and can be readily employed for full-view point clouds.

2.2 Local Descriptors

The SIFT-descriptor [14] has been successfully used in computer vision appli-
cations. It describes the local gradient pattern in spatial histograms of gradient
magnitudes and orientations. It is made rotation-invariant by aligning the his-
tograms to the dominant gradient orientation at the interest point.

Several improvements to the SIFT descriptor have been proposed. SURF [1]
sums Haar wavelet responses as a representation of the local gradient pattern.
Recently, Calonder et al. [4] and Rublee et al. [24] demonstrated that binarized
pixel comparisons at randomly distributed sample points yield a robust and
highly efficient descriptor that outperforms SIFT or SURF.



Other approaches do not solely focus on gradient descriptions of texture.
Shape Contexts [2], for instance, build a histogram of contour points in the local
neighborhood of a point. Tuzel et al. [36] propose to use covariance of feature
values in local image regions as a descriptor.

Johnson and Hebert [9] introduce spin-images to describe local shape context
in 3D point clouds. In this approach, cylindrical coordinates of the local point
distribution are described in a 2D image-like histogram. The surface normal at
an interest point is chosen as the cylindrical axis, and the polar angle is neglected
to project the points into 2D.

Shape Context [8, 19] has been extended to 3D in order to describe the dis-
tribution of points in log-polar histograms. Tombari et al. [34] extract a local
reference frame at a point and extract histograms of normals. In [33] they extend
their approach to also capture the distribution of color. However, this method
strongly depends on the stability of the reference frame.

Rusu et al. [26] quantify local surface curvature in rotation-invariant Fast
Point Feature Histograms (FPFH). They demonstrate that the histograms can
well distinguish between shapes such as corners, spheres, and edges.

Steder et al. [29] proposed the NARF descriptor for depth images. They
determine a dominant orientation from depth gradients in a local image patch
and extract radial depth gradient histograms. In conjunction with the NARF
detector, Steder et al. [30] applied this descriptor for place recognition.

3 Entropy-based Interest Points in 3D Point Clouds

3.1 Interest Points of Local Surface Entropy

Our detector is based on statistics about the distribution of local surface nor-
mals. We are interested in regions of maximal diversely oriented normals, since
they show promise to be stably located at transitions of multiple surfaces or
capture entire (sub-)structures that stick out of the surroundings. To identify
such regions, we measure the entropy

H(XE) = −
∑
x∈XE

p(x) log p(x), (1)

where XE is a random variable characterizing the distribution of surface normal
orientations occurring within a region of interest E ⊆ R3. We extract interest
points where this entropy measure achieves local maxima, i.e. where XE is most
balanced.

Entropy Computation from Point Clouds Depth sensors usually measure
surfaces by a set of discrete sample points Q = {q1, . . . , qn}, qk ∈ R3. We ap-
proximate the surface normal at a sample point n(qk) looking at the subset of
neighboring points Nk = {ql ∈ Q| ‖qk − ql‖1 < r} within a given support range
r. Then, n̂r(qk) equals the eigenvector corresponding to the smallest eigenvalue
of the sample covariance matrix cov(Nk).



Fig. 1: Construction of an approx. uniform sphere partition. Green: equidistant incli-
nation angles; red: sphere to cone section C(θi) and aθi equidistant azimuth angles;
blue: resulting orientation vectors on inclination level θi.

We discretize the surface normal distribution XE by use of an orientation
histogram in which we count the occurrences of surface normal orientations for
a spherical surface partition. We follow the approach by Shah [28], subdivid-
ing the spherical surface into approximately equally sized patches. Those are
specified by their centrical azimuth and inclination angles. To achieve an uni-
form decomposition of the sphere, we first choose t equidistant inclination angles
θi = πi

t , i ∈ {0, . . . , t−1}. Then, for each of these inclination angles, we calculate
a number of

aθi := b2 t sin(θi) + 1c ∝ C(θi) (2)

equidistant azimuth angles. This way, the sample density in azimuth is propor-
tional to the circumference C(θi) of the section of the sphere with a cone of
inclination θi. Transforming from spherical into Cartesian coordinates, we ob-
tain a set of normalized vectors vi,j pointing to the centers of histogram bins.
Figure 1 depicts the construction of these vectors.

Each estimated surface normal at a point qm ∈ Q ∩ E contributes to the
histogram bin xi,j with a weight

wi,j =

{
0 , if n̂r(qm) · vi,j < cosα
n̂r(qm) ·vi,j−cosα

1−cosα , else
, (3)

where α denotes the maximal angular range of influence. Finally, we normal-
ize the histogram before calculating the surface normal entropy according to
Equation 1.

3.2 Efficient Implementation using an Octree

For efficient data access and well-ordered computation, we set up an octree
structure containing the 3D point cloud inferred from the RGB-D image given by



the sensor. In order to measure local surface entropy, our octree enables uniform
sampling in 3D space. Furthermore, we exploit the multi-resolution architecture
of the octree for fast volume queries of point statistics.

An octree organizes points from a 3D space into cubic subvolumes that are
connected in a tree. The root node of the tree spans a volume chosen to fit the
extent of the data. Edges between parent and child nodes represent a subset-
relation. Each parent node branches into eight children constituting a partition of
the parent’s volume into eight equally sized octants. This branching is repeated
iteratively until a predefined resolution, that equals a maximum depth of the
tree, is reached.

The multi-scale structure of the octree allows for efficient bottom-up integra-
tion of data, facilitating the calculation of histograms, as well as search queries
for local maxima in arbitrary volumes. In each node, we store histogram, inte-
gral and maximum statistics for different attributes of all points that are located
within the volume of the node. These values can be computed efficiently by pass-
ing the attributes of points on a path from leave nodes to the root of the tree.
This direction, every parent node accumulates and merges data received from
its child nodes.

When querying for statistics inside an arbitrary 3D volume, we recursively
descend the tree: if a node is fully inside the queried volume, its statistics are in-
tegrated into the response; if it is completely outside, this branch is discontinued;
otherwise its child nodes are examined the same way. This is valid since each
node already integrates the data of all leaves below in its own statistics. An easily
understood example for data statistics is the average position of points within
a certain volume V. By integrating over the homogeneous coordinates of points
s = (x, y, z, w)T =

∑
qi∈V(xi, yi, zi, 1)T , one retains the mean via normalization

q̄ = 1
ws.

3.3 Interest Point Detection

The surface normal entropy function depends on two scale parameters: one is
the radius r of vicinity N for the estimation of a surface normal orientation; the
other is the extend of a region of interest E , where the distribution of normals
and thus the local surface entropy is gathered. These volumes are chosen to be
cubic and appropriate to fit the intrinsic octree resolutions. The maximal depth
(=̂resolution) of the octree is usually determined by the normal sampling interval
at the finest scale that is specified to be a common multiple of the other dimen-
sions. This way, range queries are processed most efficiently. Usually, sampling
interval sizes of surface normals as well as normal orientation histograms are set
to be at least half of the diameter of their respective local support volume.

All these parameters have to be chosen carefully. The histogram scale E
corresponds directly to the size of the interest points, at which local structures
become salient. Its sampling interval is a trade-off between preciseness and speed.
According to the Nyquist-Shannon sampling theorem, a minimal sampling fre-
quency of twice the region size is needed to reconstruct the surface entropy
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Fig. 2: Scheme of the different parameters for calculating normals and entropy

function, i.e. not to miss the occurrence of a local maximum. We choose the
normal scale r to a constant fraction of the histogram scale. Accordingly, the
sampling interval for normals must also obey the sampling theorem. Reproduc-
ing the effect of a lowpass filter for removal of artifacts, we consider an entropy
sample to be an interest point candidate, if it exceeds all its spatial neighbors
within a dominance region. In addition, the candidate is only kept if it exceeds a
global entropy threshold Hmin. The latter is checked, because noisy sensor data,
image borders, and depth jumps occasionally induce interest point candidates
on planar surfaces.

While surface entropy along an ideal ridge would be constant in theory, sen-
sor noise and discretization artifacts will induce spurious measurements at these
structures and thus cause local maxima of surface entropy. Such interest point
candidates should be filtered out by inspection of the local prominence, since
their position is loose in one dimension. Inspired by cornerness measures from im-
age based interest point operators, we test for a considerable variance of surface
entropy in all directions. First, we compute the local center of surface entropy
mass within the region Eq around a sample point q

µH(Eq) :=
1∑

qi∈Eq H(XEqi
)

∑
qi∈Eq

H(XEqi
) qi. (4)

Then, the sample covariance matrix of local surface entropy mass equals to

covH(Eq) :=
1∑

qi∈Eq H(XEqi
)

∑
qi∈Eq

H(XEqi
)
(
(qi − µH(Eq))(qi − µH(Eq))T

)
.

(5)
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Fig. 3: Occlusion handling. In depth images, structure may be occluded (dashed gray).
At depth discontinuities, we therefore add artificial measurements (red dots) from fore-
ground towards the background. Any “virtual background” detections are discarded,
since they are not stable w.r.t. view point changes.

By decomposition of covH(Eq) we derive the eigenvalues λ1, λ2, and λ3 sorted
by value in ascending order. Finally, our local prominence check is defined

P (Eq) =
λ1
λ3
≥ Pmin, (6)

where we used Pmin = 0.15 in our experiments.

Improved Localization After identification of interest point candidates, the
true maximum location has to be recovered from the discretized surface entropy
function. Starting from a candidate’s location, we apply the mean-shift mode
searching approach: We integrate surrounding surface entropy samples via a
Gaussian window in order to estimate the gradient of the surface entropy density.
Then, the position of the candidate is shifted along this gradient direction. This
procedure is repeated up to three times.

Occlusion Handling in Depth Images Surface entropy is supposed to be
high where multiple different layers join together. In depth images, however, one
cannot always measure all joining surfaces explicitly due to occlusions, resulting
in a reduced entropy. This peculiarity of the measuring system should be com-
pensated. Therefore, we detect jump edges in the depth image. Since we know
that there must exist another hidden surface behind each foreground edge, we
approximate it by adding artificial measurements in viewing direction up to a
distance that meets the biggest used local entropy scale (cf. Fig. 3). While we use
such points for the detection of interest points, we do not include this artificial
information into the descriptor. We also discard detected interest points in the
background at occlusions, since they are not stable w.r.t. view point changes.



Fig. 4: Surfel pair relations describe rotation-invariant relative orientations and dis-
tances between two surfels.

4 Local Shape-Texture Descriptor

Since our surface entropy measure detects interest points at location where the
surface exhibits strong local variation, we design a shape descriptor that captures
local surface curvature. When RGB information is available, we also describe the
local texture at an interest point. We aim at a rotation-invariant description of
the interest points in order to match features despite of view pose changes. For
each individual cue, we select a reasonable distance metric and combine them in
a distance measure for the complete feature.

4.1 Shape

Surfel pair relations (see Fig. 4) have been demonstrated to be a powerful fea-
ture for describing local surface curvature [38, 26]. Given two surfels (q1, n1)
and (q2, n2) at points q1 and q2 with surface normals n1 and n2, we first define
a reference frame (u, v, w) between the surfels through

u := n1,

v :=
d× u
‖d× u‖2

, and

w := u× v,

(7)

where d := q2 − q1. In this frame, we measure relative angles and distances
between the surfels by

α := arctan2 (w · n2, u · n2) ,

β := v · n2,

γ := u · d

‖d‖2
, and

δ := ‖d‖2 .

(8)

By construction, surfel pair relations are rotation-invariant and, hence, they can
be used for a view-pose invariant description of local shapes.

In order to describe curvature in the local vicinity of an interest points, we
build histograms of surfel pair relations from neighboring surfels (see Fig. 5).



Fig. 5: Shape descriptor in a simplified 2D example. We build histograms of surfel
pair relations from the surfels in a local neighborhood at an interest point. We relate
surfels to the central surfel at the interest point. Histograms of inner and outer volumes
capture distance-dependent curvature changes.

Fig. 6: Color descriptor. We extract hue and saturation histograms in an inner and
outer local volume at an interest point.

Each surfel is related to the surfel at the interest point being the reference
surfel (p1, n1). We discretize the angular features into 11 bins each, while we use
2 distance bins to describe curvature in inner and outer volumes. We choose the
support size of the descriptor in proportion to the histogram scale.

4.2 Color

A good color descriptor should allow interest points to be matched despite il-
lumination changes. We choose the HSL color space and build histograms over
hue and saturation in the local context of an interest point (see Fig. 6). Our
histograms contain 24 bins for hue and one bin for unsaturated, i.e., “gray”,
colors. Each entry to a hue bin is weighted with the saturation s of the color.
The gray bin receives a value of 1− s. In this way, our histograms also capture
information on colorless regions.

Similar to the shape descriptor, we divide the descriptor into 2 histograms
over inner and outer volumes at the interest point. In this way, we measure the
spatial distribution of color but still retain rotation-invariance.



Fig. 7: Luminance descriptor. We describe luminance differences towards the interest
point in histograms over local inner and outer volumes.

Fig. 8: Shape similarity w.r.t. the marked point (blue dot) measured using the Euclidean
distance on our shape descriptors.

4.3 Luminance

Since the color descriptor cannot distinguish between black and white, we pro-
pose to quantify the relative luminance change towards the color at the interest
point (see Fig. 7). By this, our luminance descriptor is still invariant to ambient
illumination. We use 10 bins for the relative luminance and, again, extract 2
histograms in inner and outer volumes.

4.4 Measuring Descriptor Distance

The character of the individual components of our descriptor suggests differ-
ent kinds of distance metrics. We combine the distances ds(q1, q2), dc(q1, q2),
and dl(q1, q2) between two points q1 and q2 using the arithmetic mean

d(q1, q2) :=
1

3

∑
i∈{s,c,l}

di(q1, q2). (9)

Shape Distance: For the shape descriptor, we use the Euclidean distance as
proposed for FPFH features in [26]. We measure the arithmetic mean of the



Fig. 9: Color similarity w.r.t. the marked point (blue dot) measured using the saturated

Earth Mover’s Distance (ÊMD) on our color descriptors.

Euclidean distance of the angular histograms in the inner and outer volumes.
Fig. 8 illustrates this distance measure in an example scene.

Color Distance: Since the HSL color space is only approximately illumination
invariant, the domains of our color histograms may shift and may slightly be
misaligned between frames. Hence, the Euclidean distance is not suitable. In-
stead, we apply an efficient variant of the Earth Mover’s Distance (EMD, [25])
which has been shown to be a robust distance measure on color histograms.

The EMD between two histograms P and Q measures the minimum amount
of mass in a histogram that needs to be “moved“ between the histograms to
equalize them. Formally, the EMD is defined as

EMD(P,Q) =
minfij

∑
i,j fijdij∑

ij fij
, (10)

where fij is the flow and dij is the ground distance between the bins Pi and Qj .

Pele and Werman [23] propose ÊMD, a modified EMD with saturated ground
distance that is applicable to unnormalized histograms. They demonstrate that

the ÊMD can be implemented several magnitudes faster than the standard EMD
but still retains its benefits. In our application, we saturate the ground distances
at a distance of two bins. Fig. 9 illustrates our color distance in an example.

Luminance Distance: We also use the saturated ÊMD to compare luminance
histograms. See Fig. 10 for an example of our distance measure.

5 Experiments

5.1 Experiment Setup

We evaluate our approach on RGB-D images from a Microsoft Kinect and com-
pare it with the NARF interest point detector and descriptor. We recorded



Fig. 10: Luminance similarity w.r.t. the marked point (blue dot) measured using the

saturated Earth Mover’s Distance (ÊMD) on our luminance descriptors.

dataset SURE 640x480 NARF 640x480 NARF 320x240 NARF 160x120

box 0.19 160.18 1.95 0.27
rocking horses 0.2 133.36 3.25 0.36

teddy 0.2 164.43 2.09 0.26
clutter 0.2 179.20 3.24 0.27

Table 1: Average run-time in seconds per frame for SURE and NARF detection and
feature extraction.

4 scenes, 3 containing objects of various size, shape, and color, and one clut-
tered scene with many objects in front of a wall. The objects are a box (ca.
50x25x25 cm), toy rocking horses (height ca. 1 m), and a teddy bear (height ca.
20 cm). Image sequences with 80 to 140 VGA images (640×480 resolution) have
been obtained by moving the camera around the objects. We estimate the ground
truth pose of the camera using checkerboard patterns laid out in the scenes. Fur-
thermore, we evaluate the NARF descriptor on three resolutions of the datasets,
at the original 640×480 and downsampled 320×240 and 160×120 resolutions.
In each image of a sequence, we extract interest points on 3 histogram scales
(SURE) or support sizes (NARF). We chose the scales 12, 24, and 48 cm.

5.2 Repeatability of the Detector

We assess the quality of our interest point detector by measuring its repeatability
across view-point changes. We distinguish here between “simple repeatability”
and “unique repeatability”. Table 2 shows the average number of interest points
found by the detectors. SURE finds a similar amount of features like NARF on
160×120 resolution.

We associate interest points between each image pair in the sequence using
the ground truth transform. Each interest point can only be associated once to



dataset SURE 640x480 NARF 640x480 NARF 320x240 NARF 160x120

box 11.8 32.5 18.2 14.9
rocking horses 35.2 121.6 72.4 44.6

teddy 6.8 43.0 26.9 15.3
clutter 47.5 93.4 48.4 26.5

Table 2: Average number of interest points for the SURE and NARF detectors.

an interest point in the other image. We establish the mutually best correspon-
dences according to the Euclidean distance between the interest points. Valid
associations must have a distance below the histogram scale (SURE) or support
size (NARF) of the interest point. “Unique repeatability” only accepts an asso-
ciation between interest points, if the match is unambiguous. This means, that
the matched interest points must be the only possible match within the support
size/histogram scale, otherwise the association is discarded.

From Fig. 11 we see that SURE and NARF yield similar repeatability on
the box and the teddy datasets. The NARF detector shows here a better perfor-
mance in the smaller resolutions, while performing worse in full resolution. On
the rocking horses and the cluttered scene, SURE performs worse than NARF.
However, about 50% resp. 25% of the interest points are still matchable across
90◦ view angle change. In Fig. 13 SURE performs better than NARF in terms of
“unique repeatability”. The NARF detector allows several interest points being
“close” to each other, i.e., in a distance smaller than their respective support
sizes. A SURE interest point will be discarded if it lies within the histogram
scale of another interest point and its entropy is lower compared to its neighbor.
In that way, we ensure that a SURE interest point sticks out of its environment
and can be uniquely matched by descriptor.

In Fig. 12 we also demonstrate the effect of our occlusion handling mecha-
nism. If no artificial points are added along depth discontinuities, repeatability
drops earlier with view angle change which is naturally expected.

5.3 Matching Score of the Descriptor

We also evaluate the capability of the detector-descriptor pair for establishing
correct matches between images. We define the matching score as the fraction of
interest points that can be correctly matched between images by the descriptor.

The results in Fig. 14 clearly demonstrate that SURE performs better than
NARF in matching individual interest points. Its descriptor does not seem to be
distinctive enough to reliably find correct matches. SURE, however, focuses on
prominent local structure that is well distinguishable with our descriptor.

We also evaluate the matching score of the individual descriptor components
of SURE in Fig. 15. In the teddy scene, very little color is present and the shape
descriptor dominates color and lumincance. The clutter scene shows that the
combination of these three descriptors performs considerably better than each
of the descriptors alone.



Fig. 11: Simple Repeatability in four different scenes comparing the SURE detector and
the NARF detector. The NARF detector was applied in three different resolutions.

Fig. 12: Effect of occlusion handling on the repeatability of SURE.



Fig. 13: Unique repeatability in four different scenes comparing the SURE detector and
the NARF detector. Unique repeatability only accepts an association between interest
points, if the match is unambiguous. This means, that the matched interest points
must be the only possible match within the support size/histogram scale, otherwise
the association is discarded.



Fig. 14: Matching Score comparing SURE Feature Descriptor with the NARF Descrip-
tor on four datasets.

Fig. 15: Matching Score comparing the different SURE Descriptors.



5.4 Run-Time

Table 1 shows the run-time of NARF and SURE (detection and feature extrac-
tion). SURE outperforms NARF clearly on any of the processing resolutions of
NARF, while SURE makes full use of the available data.

6 Conclusions

We proposed SURE, a novel pair of interest point detector and descriptor for
3D point clouds and depth images. Our interest point detector is based on a
measure of surface entropy on normals that selects points with strong local
surface variation. We designed a view-pose-invariant descriptor that quantifies
this local surface curvature using surfel pair relations. When RGB information
is available in the data, we also incorporate colorful texture information into
the SURE descriptor. We describe color and luminance in the HSL space and
measure distance using a fast variant of the Earth Mover’s Distance to gain an
illumination-invariant description at the interest point.

In experiments, we could demonstrate that the SURE detector achieves sim-
ilar repeatability like the NARF descriptor. When matching features by descrip-
tor, our SURE features outperform NARF regarding matching score. SURE also
performs faster than NARF on 640×480 images.

In future work, we will further improve the run-time of SURE on depth and
RGB-D images by exploiting the connectivity information in the image. We will
also investigate automatic scale selection to further improve the repeatability
and localization of the interest points.
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