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Remote Autonomy for Multiple Small Lowcost UAVs
in GNSS-denied Search and Rescue Operations
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Abstract—In recent years, consumer-grade UAVs have been
widely adopted by first responders. In general, they are op-
erated manually, which requires trained pilots, especially in
unknown GNSS-denied environments and in the vicinity of
structures. Autonomous flight can facilitate the application
of UAVs and reduce operator strain. However, autonomous
systems usually require special programming interfaces, custom
sensor setups, and strong onboard computers, which limits a
broader deployment.

We present a system for autonomous flight using lightweight
consumer-grade DJI drones. They are controlled by an Android
app for state estimation and obstacle avoidance directly running
on the UAV’s remote control. Our ground control station
enables a single operator to configure and supervise multiple
heterogeneous UAVs at once. Furthermore, it combines the
observations of all UAVs into a joint 3D environment model
for improved situational awareness.

I. INTRODUCTION

In disaster response scenarios, the ability to quickly obtain
an overview of the situation is essential for first respon-
ders. Moreover, the situational picture must be continuously
updated throughout the rescue operation. Unmanned aerial
vehicles (UAVs) are increasingly deployed for this task as
UAVs cover large inaccessible areas quickly, independent
of the terrain. In most disaster-response operations, trained
human pilots directly control the UAVs. Autonomous flights
are commonly restricted to high flight altitudes where the
UAV follows preplanned GNSS-waypoint missions without
risking collisions [1]. Autonomous UAVs that don’t need
GNSS-based localization [2]-[4] rely on custom sensor se-
tups and onboard compute to fly in the vicinity of obstacles.
Thus, larger UAVs with special communication interfaces
and sufficient payload are required. This restricts large-scale
deployment and increases risks due to high impact weight
and dangerous propellers.

In this work, we propose remote autonomy for GNSS-
denied flight of affordable lightweight consumer-grade
UAVs, like the DJI Mini 3 Pro. Our solution does not require
custom sensors or any hardware modifications, which makes
it cost-efficient and allows for broad deployment in real-
world operations and for using multiple UAV simultaneously
to quickly obtain situation-awareness.

In particular, our remote autonomy system includes:

« an Android app based on the DJI Mobile SDK (MSDK)
to control a UAV in GNSS-denied environments, includ-
ing obstacle avoidance,

@ Autonomous Intelligent Systems, University of Bonn, Germany; ®Center
for Robotics and Lamarr Institute for Machine Learning and Artificial
Intelligence, University of Bonn, Germany

Multiple consumer-grade UAVs supervised by a single operator

Fig. 1.
facilitate Search & Rescue in an industrial hall. Left: External view of the
UAVs; Right: Created 3D RGB map with UAV trajectories (colored arrows).

e an environment mapping module that combines the
observations of all UAVs into a global model, and

« an intuitive user interface and fleet management system
for configuration and supervision of multiple UAVs.

II. RELATED WORK

UAVs are increasingly employed by public safety au-
thorities [5], e.g., for disaster response [6], [7]. This often
includes custom hardware designs for the challenges of
specific rescue operation, e.g., lifebuoy delivery under harsh
offshore conditions [8] or avalanche victim search [9]. For
the task of 3D environment mapping, Lauterbach et al. [10]
equip a large professional-grade UAV with a custom-build
sensor unit including LiDAR. These systems are capable
of autonomous flight but rely on GNSS for navigation.
Furthermore, due to the necessary payload, they are usually
based on large UAV platforms.

For indoor missions, small UAVs are necessary, which
cannot rely on GNSS localization. One example is the low-
cost platform of Tavasoli et al. [11] for damage assessment
of structural columns. The UAV is manually controlled
but the movements for data collection can be automated.
Similarly, the solution of Pliakos et al. [12] is capable of
semi-autonomous GNSS-denied indoor missions, including
waypoint navigation, obstacle avoidance and 3D reconstruc-
tion of the UAV surroundings.

In contrast, Beul et al. [13] developed a 3D LiDAR-
based UAV for SLAM and fully autonomous navigation
in warehouses. Quenzel et al. [14] navigate autonomously
inside industrial chimneys based on 3D LiDAR and a camera.
Reyes-Munoz et al. [15] demonstrate a system with RGB-D
and stereo cameras for fully autonomous flight in GNSS-
denied environments. All of these systems extend commer-
cial air frames with sensors and onboard computers, which
increases complexity, weight, and costs; and which decreases
their flight time.

For a broader applicability, cost-efficient consumer-grade
UAVs are favorable, which do not need hardware modifi-
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cations. Following this idea, Khosravi et al. [16] use the
DIJI Go app and SDK to execute exploration trajectories for
autonomous person search on a DJI drone. However, they
consider outdoor environments where the UAV can operate
at obstacle-free altitudes using GNSS.

Most similar to our approach is the work of Surmann et
al. [17], who use small consumer-grade UAVs to explore
indoor environments. Their system offers local 3D modeling
and autonomous corridor following, while otherwise still
relying on manual control. In contrast, our remote auton-
omy solution offers fully autonomous flight and globally
consistent environment mapping which can incorporate the
perception of multiple UAVs.

III. REMOTE AUTONOMY SYSTEM SETUP

Our remote autonomy system works with a variety of
unmodified DJI drones, e.g., Mini3Pro, Mini4Pro and
Mavic 3T, using the DJI MSDK' (v5.8+). Figure 2 gives an
overview of our approach.

Each UAV connects to its remote controller (RC) via a
proprietary wireless link. The RC connects to an integrated
Android device, e.g. in the DJI Pro RC, or an external one,
e.g. a smart phone, where the MSDK runs. To reduce latency
as far as possible, all safety-relevant software modules, like
visual-inertial odometry (VIO) and obstacle avoidance, run
within a single Android app on the RCU. The app receives
new tasks from our ground control station (GCS) and sends
images and odometry to the GCS to enable there the fusion
of environment measurements from multiple UAVs to a 3D
map. GCS and the RCUs communicate over WiFi using a
custom server with Protobuf? for efficient serialization of
transmitted messages.

The UAV’s h265-encoded video feed is decoded on the
RCU for processing within the VIO module. For efficiency,
DIJI submits the crucial I-frames exceptionally infrequent.
Missing one I-frame renders the stream useless for one
minute or more. To address this issue, we re-encode the im-
age stream using the RCU’s integrated hardware acceleration
to ensure correct transmission and conserve bandwidth when
forwarding the h265 packages through our Protobuf server.

Our fleet management also has an interface to connect
UAVs from other manufacturers over MAVROS?. For these,
we assume that the main functionality of our Android app
(e.g., odometry and obstacle avoidance) is provided by the
manufacturer’s flight controller.

A. Ground Control Station

The GCS consists of a powerful PC for executing all
resource-intensive and non-time-critical tasks. It computes
a joint environment model (Sec. III-A.1) from the local
perception of each UAV. Additionally, the GCS visualizes
all UAV states in real time and provides an intuitive con-
trol interface, allowing a single operator to configure and

"https://github.com/dji-sdk/Mobile-SDK-Android-V5
2https://github.com/protocolbuffers/protobuf
3https://github.com/mavlink/mavros
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Fig. 2. Remote autonomy system architecture. Software modules are
divided into two layers: For each UAYV, the safety-relevant modules are
executed on the UAV’s remote control unit (RCU). It consists of an Android
device and a remote controller (RC), connected via the DJI MSDK. A WiFi
Protobuf server connects each RCU to the ground control station (GCS),
where a single operator configures and supervises multiple UAVs and where
globally consistent 3D environment models are created and visualized. UAVs
from other manufactures can be connected over a MAVROS interface.

RCU & UAV 2

Planner

supervise multiple UAVs simultaneously (Sec. I1I-A.2). All
of these modules are implemented using ROS.

1) Globally Consistent 3D Environment Mapping: To
generate a global map, we select keyframes from multiple
UAVs based on a frustum overlap. The selection uses our
VIO pose estimate as a prior and chooses adjacent keyframe
candidates for matching. We extract XFeat [18] from all
keyframes and perform matching with LighterGlue between
candidates. Afterwards, we employ sparse incremental recon-
struction with the optimization backend of GLOMAP [19].

Assuming that multiple UAVs start in the same GNSS-
denied area, our mapping initially reconstruct observations
from a single UAV. Another UAV is added once it has enough
keyframe matches (e.g., 5) with the current reconstruction.
Starting from there, all observations of the UAV will be
included.

The optimization backend provides a reconstruction in an
arbitrary frame with scale ambiguity. Our application re-
quires a common metric reference frame, though. To address
this issue, a RANSAC-based pose alignment facilitates the
scale transformation if GNSS data is available. In GNSS-
denied situations, we estimate the scale from the first 10
poses, and align the origin with the first UAV’s starting
position and orientation.

The resulting map is quite sparse and often diffi-
cult to understand quickly, even by trained professionals.
Hence, we establish dense pairwise correspondences using
MAST3R [20] between our previously matched adjacent
keyframes. Due to time and compute limitations, MAST3R is
initially only applied to the new keyframe with two previous
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Fig. 3. User interfaces on our remote controller (RCU, a) and at the ground control station (GCS, b). RCU: Various status indicators are overlayed on the
video feed for the safety pilot including UAV heading and virtual stick commands. The example shows the thermal image and tracked VIO features on the
color image of a DJI M3T in side-by-side mode. GCS: The fleet management shows the current UAVs’ states including control options (b, bottom left).
The current waypoint mission is shown in the joint 3D environment model (b, bottom right) and overlayed on a satellite image (b, top left). Live-streams

(b, top right) allow direct supervision and targeted inspection.

ones. More previously unprocessed pairs are matched by
MAST?3R in a lazy-evaluation scheme, if no new keyframes
are established within some seconds, e.g., when all UAVs
are hovering. We merge shared observations from pairwise
correspondences between multiple keyframes prior to tri-
angulation. The triangulation uses the dense matches from
MAST3R with our reconstructed metric poses. Figure 1
shows estimated camera poses and colored 3D points of au-
tonomous flights of two DJI Mini 3 Pro within the industrial
hall of the DRZ Living Lab.

2) User Interface & Fleet Management: For intuitive
supervision and control of our UAVs, we implemented a
custom extension to Foxglove Studio* (see Fig. 3b). It
continuously monitors the state of all registered UAVs and
informs the operator about possible errors. During missions,
new UAVs are added anytime just by connecting the Android
app on the corresponding RCU. The app automatically
initiates the connection with the GCS and registers the UAV
into the fleet management module. Here, existing UAVs are
recognized on re-establishing the connection after temporary
interruption.

In addition to supervision, our UI supports switching
between individual UAVs in two control modes. In Velocity
Control, the operator steers the UAV using a gamepad similar
to the original RCU. However, directly commanding flight
velocities is not feasible due to the latency between control
input and video feedback. Instead, we implemented a carrot
mode where the operator moves a virtual target pose in
the local 3D environment. This target is visualized without
latency and facilitates control significantly.

In Waypoint Control, the operator inputs a sequence
of target poses as a list of coordinates via keyboard, by
moving a marker within the 3D environment model using
the gamepad, or by marking positions on satellite images
or maps. Additional parameters like individual wait time
or gimbal orientation provide flexibility for every mission.
Flight patterns like circles are inserted automatically, with-
out manually defining each waypoint. To ensure collision-
freeness, a dynamic trajectory planner [21] interpolates
between waypoints using the global 3D model. The fleet

“https://foxglove.dev/studio

management then transforms the resulting flight plan into
the local UAV frame and keeps sending the next planned
waypoint to the RCU for execution, while monitoring the
progress.

B. Remote Controller with Android App

The RCU runs our Android app (Fig. 3a) as a configuration
and supervision interface for the safety pilot. It visualizes
the current UAV state, camera live-stream, control mode,
and the executed VirtualStick commands. To enable the
autonomy functions, an explicit clearance from the safety
pilot is necessary. Moreover, clearance may be revoked at
any time, e.g., by moving the control sticks of the RC.

The Android app steers the UAV towards the next target
pose using DJI’s VirtualStick commands. These emulate RC
stick movements of an operator and represent 3D linear
velocities and yaw. We obtain target velocities from the
difference between current and target pose using either GNSS
or our state estimation (Sec. III-B.1) as position feedback.
These velocities are clipped at a configurable maximum
flight speed, and adjusted by the reactive obstacle avoidance
(Sec. 1II-B.2). Once the UAV is sufficiently close to the
target, we switch to DJI’s Position Hold mode. If the UAV
drifts too far from the target pose, we reactivate our control.

In addition to the UAV pose, our app controls the gimbal
either according to a manually defined orientation from the
GCS or automatically during people tracking. For the latter,
we run an EfficientDet LiteO [22] at ~ 20 Hz directly on
the RCU using the TensorFlow Lite Task library>. Given
the person detection, our app adjusts the gimbal to keep the
bounding box centered.

1) State Estimation: Most autonomy functions rely on
knowledge of our position and orientation relative to the
environment, which is especially important in GNSS-denied
environments. Outdoors, the DJI MSDK provides the UAV’s
GNSS position with up to £0.1m resolution. In GNSS-
denied environments no position information is given,
though. The MSDK’s reported velocity and orientation are

Shttps://ai.google.dev/edge/litert/libraries/
task_library/overview



quantized to an accuracy of £0.1m/s, resp. =0.1°. More-
over, current MSDKs (v5.8+) supply the current (quantized)
state not on a regular basis, but only once something changes.

As simply integrating the velocity would be too inaccurate
and without IMU measurements, we adapted OpenVINS [23]
for the provided inputs: i) We merge and retain the current
measurements to submit them to the VIO at a required
continuous rate. ii) We replaced the IMU input during state
propagation with a constant velocity (CV) motion model.
iii) The truncated velocity and orientation are integrated in
the update step considering an appropriate uncertainty. If
available, the UAV’s altitude is further included in the update.
As a result, our modified VIO runs on the RCU on the
monocular FPV camera stream with up to 60 Hz.

2) Obstacle Avoidance: In order to react quickly to dy-
namic or unseen obstacles, we reactively adjust the velocity
commands similar to the Predictive Angular Potential Fields
method [24]. The MSDK provides 360 horizontal obstacle
measurements in a scan line where only a UAV-depending
subset is valid. A Mini3Pro supplies valid distances in
forward and backward direction, while a Mini4 Pro cov-
ers the full 360°. The received distances are aggregated
over a short window into a spherical range image. Before
computing the global potential field P using a L; distance
transform [25], we define per pixel the force as atan2(ds, ),
with safety distance dy and obstacle distance . To determine
the direction, i.e., yaw, of the adjusted velocity, we first
project the target command into the potential field image. We
then find the closest zero-force pixel within the FoV using
gradient descent and reproject it into 3D. The magnitude of
the velocity command is determined by the obstacle distance
in the corresponding direction.

In general, we try to maximize the distance to obstacles.
However, close distances cannot be avoided in certain sit-
uations, i.e., when passing through narrow corridors. We
address this using two different safety distances dg and dp;,
along with their corresponding potential fields Py and Ppyy,.
If no zero-force pixel is found for P, we choose a zero-
force pixel from Py, minimizing Ps. If such a pixel is not
found either, we stop as there is no trajectory with sufficient
obstacle clearance.

3) Door Traversal Mode: The measurement range of DJI
obstacle sensors has a lower limit of 0.5 m. During exper-
iments, we found that closer obstacles are still frequently
detected but the distance measurements become unreliable,
overestimating the actual values. Thus, we enforce an obsta-
cle clearance of at least 0.5 m within our obstacle avoidance.
However, when passing through doors, this clearance cannot
be maintained. Thus, we integrated a specific control mode
for autonomous door traversal.

After approaching the door using the control pipeline
described above, the operator manually triggers the door
traversal mode. In a first step, the door opening is detected
within the horizontal obstacle scan by searching for jumps in
adjacent distance measurements. Since we assume that the
UAV is already roughly oriented towards the door, we restrict
this search to £60° around the current heading. The detection
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Fig. 4. Door detection within horizontal obstacle scan. The current UAV
pose is marked by the coordinate axes. The green line indicates a door
candidate that is filtered out since its normal deviates too much from the
scan’s radial direction. The blue line represents the selected door candidate.
The red and blue arrows correspond to the planned pre- and post-traversal
poses, respectively.

reliability is maximized when the door’s surface normal
aligns with the radial direction of the obstacle scan. Thus, we
remove all detections exhibiting a large deviation from this
alignment. Furthermore, this helps to remove false positives
caused by jumps in the distance scan due to occlusions.
Finally, all candidates are checked for sufficient width and
clearance behind the opening. If multiple suitable detections
remain, we choose the one whose normal aligns best with
the current UAV heading. Figure 4 shows an example of the
door detection.

In a next step, a pre-traversal pose is computed: We
project the end points of the door opening into 3D and
horizontally offset the midpoint along the outward normal.
The target yaw is chosen to align with the direction of the
inward normal. To compensate for drift or inaccuracies in
the obstacle measurements, we only steer the UAV a small
distance towards the pre-traversal pose and update the target
on receiving the next obstacle scan.

When the UAV reaches a stable pre-traversal pose, we fix
the estimated doorway position and steer the UAV along the
doorway normal toward the post-traversal pose placed behind
the door opening. Lateral obstacle avoidance is disabled
while traversing the door.

IV. EVALUATION

1) Control Latency: In a first experiment, we evaluate
the latency of our pipeline. We measure the time from
sending a motion command at the GCS until the movement is
visualized to the operator. Additionally, we record the delay
until the UAV starts moving using a motion capture system.
On average, it took 496 ms until a motion started and another
344 ms for the updated VIO estimate to be visualized at the
GCS. The round-trip time of the WiFi connection between
GCS and Android RCU was only 4.5 ms. The total latency
of 839ms emphasizes the necessity for our carrot mode
as manual control with raw velocity commands becomes
infeasible at this latency.

2) Flight Towards a Waypoint: DII lets us control the
UAV via velocity commands with a resolution of 0.1 m/s at
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Fig. 5. Evaluating position control accuracy. Horizontal black lines depict five target positions with the gray-shaded area indicating to the target threshold.
The colored lines show the trajectories of five different runs as estimated by the VIO.
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Fig. 6. Obstacle avoidance experiment. a) The UAV is commanded to fly
straight towards two obstacles. b) The flight trajectory is shown as sequence
of coordinate axes. Detected obstacles are black. The arrows depict the

target velocity (red) and the executed velocity (blue) after adjustment by
the obstacle avoidance module.
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a frequency of 10 Hz. To analyze how accurately we reach
a given target, we autonomously fly towards five different
poses using a target threshold of 5 cm per axis. The resulting
trajectories (estimated from VIO) for five repeated flights are
shown in Fig. 5. We successfully reached all targets in all
tries. Occasionally, the UAV drifted out of the target zone but
our control directly steered it back. We tracked the distance
between the VIO and target poses, from first entering the
zone until the next target was sent. On average, we achieve
an accuracy of 4.7 cm with a std. dev. of 1.2cm.

3) Obstacle Avoidance: Next, we evaluate our obstacle
avoidance. The UAV was commanded to fly straight forward
towards traffic cones (Fig. 6a). As shown in Fig. 6b, our
method successfully adjusted the velocity commands and
steered the UAV around the obstacles.

4) Door Traversal: Additionally, we tested the Door
Traversal Mode by commanding the UAV to fly through a
door within our lab (Fig. 7). In the onboard camera, the door
opening was only partially visible from the start position
(Fig. 7a) and not visible anymore after reaching the pre-
traversal pose (Fig. 7c). Nevertheless, the door was reliably
detected within the obstacle scan during the whole flight.
The estimated door width ranged from 0.78 m to 1.38m,
with an average of 1.10m and a std. dev. of 0.12m, thus
slightly underestimating the actual width of 1.25m most of
the time. The detected door orientation ranged from 0.2° to
30°, with average 6.7° and std. dev. 6.4°. The inaccuracies
in the estimation of the door pose were successfully handled
by continuously updating the pre-traversal pose to the most
recent detections. Figure 7d shows that the UAV passed
through the center of the door opening with sufficient safety
clearance to the door frame.

5) 3D Mapping: Finally, we evaluate the global environ-
ment mapping. Figure 8 shows an example of a reconstructed
3D point cloud from three different UAVs (DJI Mini 3 Pro,
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Fig. 7. Door traversal experiment. Obstacles scans including the current
UAV pose (axes), door detections (blue line) and current target pose (red
arrow) are depicted on the left. a)-c) show corresponding onboard footage,
while d) shows an external view of the UAV passing the door.

Mini 4 Pro, and Mavic 3T) flying simultaneously in the DRZ
Living Lab. Additionally, we tested our system in an outdoor
scenario. A densely aggregated LiDAR point cloud [26]
provides a reference for the reconstruction when either
GNSS or odometry poses are used. For the comparison,
we compute the point-to-point distance to the LiDAR map.
To cope with unrepresented areas within the LiDAR map,
we threshold distances above 0.5m and 1m. The mean
distance is 0.081 m at threshold 0.5 m for both sets of poses.
However, we obtain 0.135m for the odometry and 0.150 m



Fig. 8. Reconstructed colored 3D map from images of three UAVs. Colored
arrows represent the UAV flight trajectories.

using GNSS at threshold 1 m. Moreover, the odometry poses
are more consistent as emphasized by the 33% higher count
of triangulated points whereas the percentage of points above
the threshold is similar.

V. CONCLUSION & FUTURE WORK

We presented a remote autonomy pipeline for flight
in GNSS-denied environments using small consumer-grade
UAVs. We developed an Android app for the remote con-
troller that steers the UAV towards target poses while
successfully avoiding obstacles. The ground control station
fuses the perception of multiple UAVs into a global 3D
environment model, while offering an intuitive interface for
configuration and supervision of multiple UAVs by a single
operator. As a next step, we plan to conduct a user study in
a simulated rescue operation to evaluate the usability of our
approach under realistic conditions by real first responders.
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