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Abstract— In recent years, consumer-grade UAVs have been
widely adopted by first responders. In general, they are op-
erated manually, which requires trained pilots, especially in
unknown GNSS-denied environments and in the vicinity of
structures. Autonomous flight can facilitate the application
of UAVs and reduce operator strain. However, autonomous
systems usually require special programming interfaces, custom
sensor setups, and strong onboard computers, which limits a
broader deployment.

We present a system for autonomous flight using lightweight
consumer-grade DJI drones. They are controlled by an Android
app for state estimation and obstacle avoidance directly running
on the UAV’s remote control. Our ground control station
enables a single operator to configure and supervise multiple
heterogeneous UAVs at once. Furthermore, it combines the
observations of all UAVs into a joint 3D environment model
for improved situational awareness.

I. INTRODUCTION

In disaster response scenarios, the ability to quickly obtain

an overview of the situation is essential for first respon-

ders. Moreover, the situational picture must be continuously

updated throughout the rescue operation. Unmanned aerial

vehicles (UAVs) are increasingly deployed for this task as

UAVs cover large inaccessible areas quickly, independent

of the terrain. In most disaster-response operations, trained

human pilots directly control the UAVs. Autonomous flights

are commonly restricted to high flight altitudes where the

UAV follows preplanned GNSS-waypoint missions without

risking collisions [1]. Autonomous UAVs that don’t need

GNSS-based localization [2]–[4] rely on custom sensor se-

tups and onboard compute to fly in the vicinity of obstacles.

Thus, larger UAVs with special communication interfaces

and sufficient payload are required. This restricts large-scale

deployment and increases risks due to high impact weight

and dangerous propellers.

In this work, we propose remote autonomy for GNSS-

denied flight of affordable lightweight consumer-grade

UAVs, like the DJI Mini 3 Pro. Our solution does not require

custom sensors or any hardware modifications, which makes

it cost-efficient and allows for broad deployment in real-

world operations and for using multiple UAV simultaneously

to quickly obtain situation-awareness.

In particular, our remote autonomy system includes:

• an Android app based on the DJI Mobile SDK (MSDK)

to control a UAV in GNSS-denied environments, includ-

ing obstacle avoidance,
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Fig. 1. Multiple consumer-grade UAVs supervised by a single operator
facilitate Search & Rescue in an industrial hall. Left: External view of the
UAVs; Right: Created 3D RGB map with UAV trajectories (colored arrows).

• an environment mapping module that combines the

observations of all UAVs into a global model, and

• an intuitive user interface and fleet management system

for configuration and supervision of multiple UAVs.

II. RELATED WORK

UAVs are increasingly employed by public safety au-

thorities [5], e.g., for disaster response [6], [7]. This often

includes custom hardware designs for the challenges of

specific rescue operation, e.g., lifebuoy delivery under harsh

offshore conditions [8] or avalanche victim search [9]. For

the task of 3D environment mapping, Lauterbach et al. [10]

equip a large professional-grade UAV with a custom-build

sensor unit including LiDAR. These systems are capable

of autonomous flight but rely on GNSS for navigation.

Furthermore, due to the necessary payload, they are usually

based on large UAV platforms.

For indoor missions, small UAVs are necessary, which

cannot rely on GNSS localization. One example is the low-

cost platform of Tavasoli et al. [11] for damage assessment

of structural columns. The UAV is manually controlled

but the movements for data collection can be automated.

Similarly, the solution of Pliakos et al. [12] is capable of

semi-autonomous GNSS-denied indoor missions, including

waypoint navigation, obstacle avoidance and 3D reconstruc-

tion of the UAV surroundings.

In contrast, Beul et al. [13] developed a 3D LiDAR-

based UAV for SLAM and fully autonomous navigation

in warehouses. Quenzel et al. [14] navigate autonomously

inside industrial chimneys based on 3D LiDAR and a camera.

Reyes-Munoz et al. [15] demonstrate a system with RGB-D

and stereo cameras for fully autonomous flight in GNSS-

denied environments. All of these systems extend commer-

cial air frames with sensors and onboard computers, which

increases complexity, weight, and costs; and which decreases

their flight time.

For a broader applicability, cost-efficient consumer-grade

UAVs are favorable, which do not need hardware modifi-

behnke
Schreibmaschine
IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Galway, Ireland, 2025.



cations. Following this idea, Khosravi et al. [16] use the

DJI Go app and SDK to execute exploration trajectories for

autonomous person search on a DJI drone. However, they

consider outdoor environments where the UAV can operate

at obstacle-free altitudes using GNSS.

Most similar to our approach is the work of Surmann et

al. [17], who use small consumer-grade UAVs to explore

indoor environments. Their system offers local 3D modeling

and autonomous corridor following, while otherwise still

relying on manual control. In contrast, our remote auton-

omy solution offers fully autonomous flight and globally

consistent environment mapping which can incorporate the

perception of multiple UAVs.

III. REMOTE AUTONOMY SYSTEM SETUP

Our remote autonomy system works with a variety of

unmodified DJI drones, e.g., Mini 3 Pro, Mini 4 Pro and

Mavic 3T, using the DJI MSDK1 (v5.8+). Figure 2 gives an

overview of our approach.

Each UAV connects to its remote controller (RC) via a

proprietary wireless link. The RC connects to an integrated

Android device, e.g. in the DJI Pro RC, or an external one,

e.g. a smart phone, where the MSDK runs. To reduce latency

as far as possible, all safety-relevant software modules, like

visual-inertial odometry (VIO) and obstacle avoidance, run

within a single Android app on the RCU. The app receives

new tasks from our ground control station (GCS) and sends

images and odometry to the GCS to enable there the fusion

of environment measurements from multiple UAVs to a 3D

map. GCS and the RCUs communicate over WiFi using a

custom server with Protobuf2 for efficient serialization of

transmitted messages.

The UAV’s h265-encoded video feed is decoded on the

RCU for processing within the VIO module. For efficiency,

DJI submits the crucial I-frames exceptionally infrequent.

Missing one I-frame renders the stream useless for one

minute or more. To address this issue, we re-encode the im-

age stream using the RCU’s integrated hardware acceleration

to ensure correct transmission and conserve bandwidth when

forwarding the h265 packages through our Protobuf server.

Our fleet management also has an interface to connect

UAVs from other manufacturers over MAVROS3. For these,

we assume that the main functionality of our Android app

(e.g., odometry and obstacle avoidance) is provided by the

manufacturer’s flight controller.

A. Ground Control Station

The GCS consists of a powerful PC for executing all

resource-intensive and non-time-critical tasks. It computes

a joint environment model (Sec. III-A.1) from the local

perception of each UAV. Additionally, the GCS visualizes

all UAV states in real time and provides an intuitive con-

trol interface, allowing a single operator to configure and

1https://github.com/dji-sdk/Mobile-SDK-Android-V5
2https://github.com/protocolbuffers/protobuf
3https://github.com/mavlink/mavros
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Fig. 2. Remote autonomy system architecture. Software modules are
divided into two layers: For each UAV, the safety-relevant modules are
executed on the UAV’s remote control unit (RCU). It consists of an Android
device and a remote controller (RC), connected via the DJI MSDK. A WiFi
Protobuf server connects each RCU to the ground control station (GCS),
where a single operator configures and supervises multiple UAVs and where
globally consistent 3D environment models are created and visualized. UAVs
from other manufactures can be connected over a MAVROS interface.

supervise multiple UAVs simultaneously (Sec. III-A.2). All

of these modules are implemented using ROS.

1) Globally Consistent 3D Environment Mapping: To

generate a global map, we select keyframes from multiple

UAVs based on a frustum overlap. The selection uses our

VIO pose estimate as a prior and chooses adjacent keyframe

candidates for matching. We extract XFeat [18] from all

keyframes and perform matching with LighterGlue between

candidates. Afterwards, we employ sparse incremental recon-

struction with the optimization backend of GLOMAP [19].

Assuming that multiple UAVs start in the same GNSS-

denied area, our mapping initially reconstruct observations

from a single UAV. Another UAV is added once it has enough

keyframe matches (e.g., 5) with the current reconstruction.

Starting from there, all observations of the UAV will be

included.

The optimization backend provides a reconstruction in an

arbitrary frame with scale ambiguity. Our application re-

quires a common metric reference frame, though. To address

this issue, a RANSAC-based pose alignment facilitates the

scale transformation if GNSS data is available. In GNSS-

denied situations, we estimate the scale from the first 10

poses, and align the origin with the first UAV’s starting

position and orientation.

The resulting map is quite sparse and often diffi-

cult to understand quickly, even by trained professionals.

Hence, we establish dense pairwise correspondences using

MAST3R [20] between our previously matched adjacent

keyframes. Due to time and compute limitations, MAST3R is

initially only applied to the new keyframe with two previous
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Fig. 3. User interfaces on our remote controller (RCU, a) and at the ground control station (GCS, b). RCU: Various status indicators are overlayed on the
video feed for the safety pilot including UAV heading and virtual stick commands. The example shows the thermal image and tracked VIO features on the
color image of a DJI M3T in side-by-side mode. GCS: The fleet management shows the current UAVs’ states including control options (b, bottom left).
The current waypoint mission is shown in the joint 3D environment model (b, bottom right) and overlayed on a satellite image (b, top left). Live-streams
(b, top right) allow direct supervision and targeted inspection.

ones. More previously unprocessed pairs are matched by

MAST3R in a lazy-evaluation scheme, if no new keyframes

are established within some seconds, e.g., when all UAVs

are hovering. We merge shared observations from pairwise

correspondences between multiple keyframes prior to tri-

angulation. The triangulation uses the dense matches from

MAST3R with our reconstructed metric poses. Figure 1

shows estimated camera poses and colored 3D points of au-

tonomous flights of two DJI Mini 3 Pro within the industrial

hall of the DRZ Living Lab.

2) User Interface & Fleet Management: For intuitive

supervision and control of our UAVs, we implemented a

custom extension to Foxglove Studio4 (see Fig. 3b). It

continuously monitors the state of all registered UAVs and

informs the operator about possible errors. During missions,

new UAVs are added anytime just by connecting the Android

app on the corresponding RCU. The app automatically

initiates the connection with the GCS and registers the UAV

into the fleet management module. Here, existing UAVs are

recognized on re-establishing the connection after temporary

interruption.

In addition to supervision, our UI supports switching

between individual UAVs in two control modes. In Velocity

Control, the operator steers the UAV using a gamepad similar

to the original RCU. However, directly commanding flight

velocities is not feasible due to the latency between control

input and video feedback. Instead, we implemented a carrot

mode where the operator moves a virtual target pose in

the local 3D environment. This target is visualized without

latency and facilitates control significantly.

In Waypoint Control, the operator inputs a sequence

of target poses as a list of coordinates via keyboard, by

moving a marker within the 3D environment model using

the gamepad, or by marking positions on satellite images

or maps. Additional parameters like individual wait time

or gimbal orientation provide flexibility for every mission.

Flight patterns like circles are inserted automatically, with-

out manually defining each waypoint. To ensure collision-

freeness, a dynamic trajectory planner [21] interpolates

between waypoints using the global 3D model. The fleet

4https://foxglove.dev/studio

management then transforms the resulting flight plan into

the local UAV frame and keeps sending the next planned

waypoint to the RCU for execution, while monitoring the

progress.

B. Remote Controller with Android App

The RCU runs our Android app (Fig. 3a) as a configuration

and supervision interface for the safety pilot. It visualizes

the current UAV state, camera live-stream, control mode,

and the executed VirtualStick commands. To enable the

autonomy functions, an explicit clearance from the safety

pilot is necessary. Moreover, clearance may be revoked at

any time, e.g., by moving the control sticks of the RC.

The Android app steers the UAV towards the next target

pose using DJI’s VirtualStick commands. These emulate RC

stick movements of an operator and represent 3D linear

velocities and yaw. We obtain target velocities from the

difference between current and target pose using either GNSS

or our state estimation (Sec. III-B.1) as position feedback.

These velocities are clipped at a configurable maximum

flight speed, and adjusted by the reactive obstacle avoidance

(Sec. III-B.2). Once the UAV is sufficiently close to the

target, we switch to DJI’s Position Hold mode. If the UAV

drifts too far from the target pose, we reactivate our control.

In addition to the UAV pose, our app controls the gimbal

either according to a manually defined orientation from the

GCS or automatically during people tracking. For the latter,

we run an EfficientDet Lite0 [22] at ≈ 20Hz directly on

the RCU using the TensorFlow Lite Task library5. Given

the person detection, our app adjusts the gimbal to keep the

bounding box centered.

1) State Estimation: Most autonomy functions rely on

knowledge of our position and orientation relative to the

environment, which is especially important in GNSS-denied

environments. Outdoors, the DJI MSDK provides the UAV’s

GNSS position with up to ±0.1m resolution. In GNSS-

denied environments no position information is given,

though. The MSDK’s reported velocity and orientation are

5https://ai.google.dev/edge/litert/libraries/

task_library/overview



quantized to an accuracy of ±0.1m/s, resp. ±0.1°. More-

over, current MSDKs (v5.8+) supply the current (quantized)

state not on a regular basis, but only once something changes.

As simply integrating the velocity would be too inaccurate

and without IMU measurements, we adapted OpenVINS [23]

for the provided inputs: i) We merge and retain the current

measurements to submit them to the VIO at a required

continuous rate. ii) We replaced the IMU input during state

propagation with a constant velocity (CV) motion model.

iii) The truncated velocity and orientation are integrated in

the update step considering an appropriate uncertainty. If

available, the UAV’s altitude is further included in the update.

As a result, our modified VIO runs on the RCU on the

monocular FPV camera stream with up to 60 Hz.

2) Obstacle Avoidance: In order to react quickly to dy-

namic or unseen obstacles, we reactively adjust the velocity

commands similar to the Predictive Angular Potential Fields

method [24]. The MSDK provides 360 horizontal obstacle

measurements in a scan line where only a UAV-depending

subset is valid. A Mini 3 Pro supplies valid distances in

forward and backward direction, while a Mini 4 Pro cov-

ers the full 360°. The received distances are aggregated

over a short window into a spherical range image. Before

computing the global potential field P using a L1 distance

transform [25], we define per pixel the force as atan2(ds, r),
with safety distance ds and obstacle distance r. To determine

the direction, i.e., yaw, of the adjusted velocity, we first

project the target command into the potential field image. We

then find the closest zero-force pixel within the FoV using

gradient descent and reproject it into 3D. The magnitude of

the velocity command is determined by the obstacle distance

in the corresponding direction.

In general, we try to maximize the distance to obstacles.

However, close distances cannot be avoided in certain sit-

uations, i.e., when passing through narrow corridors. We

address this using two different safety distances ds and dmin

along with their corresponding potential fields Ps and Pmin.

If no zero-force pixel is found for Ps, we choose a zero-

force pixel from Pmin minimizing Ps. If such a pixel is not

found either, we stop as there is no trajectory with sufficient

obstacle clearance.

3) Door Traversal Mode: The measurement range of DJI

obstacle sensors has a lower limit of 0.5 m. During exper-

iments, we found that closer obstacles are still frequently

detected but the distance measurements become unreliable,

overestimating the actual values. Thus, we enforce an obsta-

cle clearance of at least 0.5 m within our obstacle avoidance.

However, when passing through doors, this clearance cannot

be maintained. Thus, we integrated a specific control mode

for autonomous door traversal.

After approaching the door using the control pipeline

described above, the operator manually triggers the door

traversal mode. In a first step, the door opening is detected

within the horizontal obstacle scan by searching for jumps in

adjacent distance measurements. Since we assume that the

UAV is already roughly oriented towards the door, we restrict

this search to ±60° around the current heading. The detection

Fig. 4. Door detection within horizontal obstacle scan. The current UAV
pose is marked by the coordinate axes. The green line indicates a door
candidate that is filtered out since its normal deviates too much from the
scan’s radial direction. The blue line represents the selected door candidate.
The red and blue arrows correspond to the planned pre- and post-traversal
poses, respectively.

reliability is maximized when the door’s surface normal

aligns with the radial direction of the obstacle scan. Thus, we

remove all detections exhibiting a large deviation from this

alignment. Furthermore, this helps to remove false positives

caused by jumps in the distance scan due to occlusions.

Finally, all candidates are checked for sufficient width and

clearance behind the opening. If multiple suitable detections

remain, we choose the one whose normal aligns best with

the current UAV heading. Figure 4 shows an example of the

door detection.

In a next step, a pre-traversal pose is computed: We

project the end points of the door opening into 3D and

horizontally offset the midpoint along the outward normal.

The target yaw is chosen to align with the direction of the

inward normal. To compensate for drift or inaccuracies in

the obstacle measurements, we only steer the UAV a small

distance towards the pre-traversal pose and update the target

on receiving the next obstacle scan.

When the UAV reaches a stable pre-traversal pose, we fix

the estimated doorway position and steer the UAV along the

doorway normal toward the post-traversal pose placed behind

the door opening. Lateral obstacle avoidance is disabled

while traversing the door.

IV. EVALUATION

1) Control Latency: In a first experiment, we evaluate

the latency of our pipeline. We measure the time from

sending a motion command at the GCS until the movement is

visualized to the operator. Additionally, we record the delay

until the UAV starts moving using a motion capture system.

On average, it took 496 ms until a motion started and another

344 ms for the updated VIO estimate to be visualized at the

GCS. The round-trip time of the WiFi connection between

GCS and Android RCU was only 4.5 ms. The total latency

of 839 ms emphasizes the necessity for our carrot mode

as manual control with raw velocity commands becomes

infeasible at this latency.

2) Flight Towards a Waypoint: DJI lets us control the

UAV via velocity commands with a resolution of 0.1 m/s at
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Fig. 5. Evaluating position control accuracy. Horizontal black lines depict five target positions with the gray-shaded area indicating to the target threshold.
The colored lines show the trajectories of five different runs as estimated by the VIO.

a) b)

Fig. 6. Obstacle avoidance experiment. a) The UAV is commanded to fly
straight towards two obstacles. b) The flight trajectory is shown as sequence
of coordinate axes. Detected obstacles are black. The arrows depict the
target velocity (red) and the executed velocity (blue) after adjustment by
the obstacle avoidance module.

a frequency of 10 Hz. To analyze how accurately we reach

a given target, we autonomously fly towards five different

poses using a target threshold of 5 cm per axis. The resulting

trajectories (estimated from VIO) for five repeated flights are

shown in Fig. 5. We successfully reached all targets in all

tries. Occasionally, the UAV drifted out of the target zone but

our control directly steered it back. We tracked the distance

between the VIO and target poses, from first entering the

zone until the next target was sent. On average, we achieve

an accuracy of 4.7 cm with a std. dev. of 1.2 cm.

3) Obstacle Avoidance: Next, we evaluate our obstacle

avoidance. The UAV was commanded to fly straight forward

towards traffic cones (Fig. 6 a). As shown in Fig. 6 b, our

method successfully adjusted the velocity commands and

steered the UAV around the obstacles.

4) Door Traversal: Additionally, we tested the Door

Traversal Mode by commanding the UAV to fly through a

door within our lab (Fig. 7). In the onboard camera, the door

opening was only partially visible from the start position

(Fig. 7 a) and not visible anymore after reaching the pre-

traversal pose (Fig. 7 c). Nevertheless, the door was reliably

detected within the obstacle scan during the whole flight.

The estimated door width ranged from 0.78 m to 1.38 m,

with an average of 1.10 m and a std. dev. of 0.12 m, thus

slightly underestimating the actual width of 1.25 m most of

the time. The detected door orientation ranged from 0.2° to

30°, with average 6.7° and std. dev. 6.4°. The inaccuracies

in the estimation of the door pose were successfully handled

by continuously updating the pre-traversal pose to the most

recent detections. Figure 7 d shows that the UAV passed

through the center of the door opening with sufficient safety

clearance to the door frame.

5) 3D Mapping: Finally, we evaluate the global environ-

ment mapping. Figure 8 shows an example of a reconstructed

3D point cloud from three different UAVs (DJI Mini 3 Pro,

a)

b)

c)

d)

Fig. 7. Door traversal experiment. Obstacles scans including the current
UAV pose (axes), door detections (blue line) and current target pose (red
arrow) are depicted on the left. a)-c) show corresponding onboard footage,
while d) shows an external view of the UAV passing the door.

Mini 4 Pro, and Mavic 3T) flying simultaneously in the DRZ

Living Lab. Additionally, we tested our system in an outdoor

scenario. A densely aggregated LiDAR point cloud [26]

provides a reference for the reconstruction when either

GNSS or odometry poses are used. For the comparison,

we compute the point-to-point distance to the LiDAR map.

To cope with unrepresented areas within the LiDAR map,

we threshold distances above 0.5 m and 1 m. The mean

distance is 0.081 m at threshold 0.5 m for both sets of poses.

However, we obtain 0.135 m for the odometry and 0.150 m



Fig. 8. Reconstructed colored 3D map from images of three UAVs. Colored
arrows represent the UAV flight trajectories.

using GNSS at threshold 1 m. Moreover, the odometry poses

are more consistent as emphasized by the 33% higher count

of triangulated points whereas the percentage of points above

the threshold is similar.

V. CONCLUSION & FUTURE WORK

We presented a remote autonomy pipeline for flight

in GNSS-denied environments using small consumer-grade

UAVs. We developed an Android app for the remote con-

troller that steers the UAV towards target poses while

successfully avoiding obstacles. The ground control station

fuses the perception of multiple UAVs into a global 3D

environment model, while offering an intuitive interface for

configuration and supervision of multiple UAVs by a single

operator. As a next step, we plan to conduct a user study in

a simulated rescue operation to evaluate the usability of our

approach under realistic conditions by real first responders.
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