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Abstract— Constructing large structures with robots is a
challenging task with many potential applications that requires
mobile manipulation capabilities. We present two systems for
autonomous wall building that we developed for the Mohamed
Bin Zayed International Robotics Challenge 2020. Both systems
autonomously perceive their environment, find bricks, and build
a predefined wall structure. While the UGV uses a 3D LiDAR-
based perception system which measures brick poses with high
precision, the UAV employs a real-time camera-based system
for visual servoing. We report results and insights from our
successful participation at the MBZIRC 2020 Finals, additional
lab experiments, and discuss the lessons learned from the
competition.

I. INTRODUCTION

Mobile manipulation is needed to handle objects in large
work spaces, e.g. for constructing structures. While ground-
based mobile manipulation has received considerable re-
search attention, robotic aerial manipulation is still in its
infancy. The Mohamed Bin Zayed International Robotics
Challenge (MBZIRC) 20201 posed tasks for robot teams in
a demanding outdoor setting. In its Challenge 2, participants
were required to build walls out of supplied bricks, both with
a UGV and a team of up to three UAVs. The task setting
was particularly interesting, because it required complete
autonomy, robustness under real-world outdoor conditions
with harsh sunlight and wind, and independence from any
outside reference system besides the globally available GPS.

In this work, we describe our entry to the MBZIRC 2020
Finals, which consists of a UGV-UAV team (see Fig. 1). In
addition to describing our integrated systems for solving the
tasks set by the competition and discussing lessons learned,
our technical contributions include:
• a flexible and precise magnetic gripper system for large

objects addressing the unique design constraints on
UAVs,

• a robust and efficient vision-based detection and pose
estimation module for box-shaped objects,

• a laser-based pose estimation and registration module
for the UGV, and

• a highly space- and time-efficient box storage system
for UGVs.
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Fig. 1. Our UAV Lofty (left) and UGV Bob (right) during the MBZIRC
2020 Finals.

II. MBZIRC 2020

In Challenge 2 of the MBZRIC 2020 competition, a team
of one UGV and up to three UAVs had to pick, transport, and
place bricks to build a wall. Four different brick types with
20×20 cm cross-section were used: Red (30 cm length, 1 kg),
green (60 cm, 1.5 kg), blue (120 cm, 1.5 kg), and orange
(180 cm, 2 kg). Each type of robot had a designated pick-
up and place area inside the arena (40×50 m). Fig. 2 shows
the arrangement of the bricks for the UGV and UAVs at
the beginning of the task. Both robots had to build the first
wall segment using only orange bricks. For the remaining
segments (one for the UGV and three for the UAVs), a ran-
dom blueprint defining the order of the red, green, and blue
bricks was provided some minutes before the competition.
Points were granted for correctly placed bricks. The UGV
could archive between 1 to 4 points per brick (45 bricks
in total); the bricks placed by an UAV counted between 3
to 16 points (46 bricks). The time limit for this challenge
was 25 min. All tasks had to be performed autonomously to
archive the perfect score. The teams were allowed to call
a reset at any time to bring the robots back to the starting
location. Resets did not result in a point penalty, but no extra
time was granted.

III. RELATED WORK

UGVs for Wall Building: The application of robots for
wall-building has a long history [1]. One particularly impres-
sive example is the work of Dorfler et al. [2], who developed
a heavy mobile bricklaying robot for the creation of free-
form curved walls. An alternative for creating free-form walls
is on-site 3D printing with a large manipulator arm [3].

UGVs for Disaster Response: Our work mostly relates
to disaster response robotics, where protective or otherwise
functional structures have to be built quickly and with mini-
mal human intervention. The DARPA Robotics Challenge [4]
established a baseline for flexible disaster response robots.
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Fig. 2. Brick pickup arrangement for the UGV (left) and UAVs (right).

In comparison to these and to more recent disaster-response
robots such as Centauro [5], our system has a much higher
degree of autonomy, but is much more specialized for the
task at hand.

Aerial Manipulation: In recent years, aerial manipulation
has become a research focus [6]. Complex systems with fully
actuated multi-DoF robotic arms have been built [7], [8].
Lindsey et al. [9] demonstrated the assembly of structures
with teams of small UAVs. This work relied on an external
motion capture system and self-locking magnetic part con-
nectors. Goessens et al. [10] present a feasibility study of
constructing real-scale structures with UAVs, which is based
on self-aligning Lego-like brick shapes.

A predecessor of our work is Challenge 3 of the last
MBZIRC edition in 2017, where a team of UAVs was
supposed to collect discs. Our entry [11] was quite successful
and reached a third place in this challenge, behind ETH
Zurich [12] and CTU Prague, UPENN and UoL [13]. In
comparison, the 2020 edition of MBZIRC featured much
heavier and larger objects, which could only be grasped on
a specific spot and had to be placed in a specified pose.
To this end, we designed a magnetic gripper that is guided
using visual servoing and has five passive DoFs that allow
flexibility during grasping but facilitate rigid and precise
placement.

IV. UGV SOLUTION

We build our ground robot Bob based on our very success-
ful UGV which won the first MBZIRC competition [14]. We
improved the basis and adapted the manipulator and sensors
for the new challenge. Since 45 bricks had to be picked,
transported, and placed in 25 min to obtain a perfect score,
we developed our UGV to store as many bricks as possible.
We decided to use a 3D LiDAR as the main sensor to detect
and localize the piles of bricks and partially built wall.

A. Hardware Design

UGV components include a four-wheeled omnidirectional
base, a 6-DoF manipulator arm with custom-made magnetic
gripper, a wrist sensor consisting of a 3D LiDAR as well as
an RGB camera, and a 3-DoF storage system.

The base has a footprint of 1.9×1.4 m to provide enough
space for our storage system. It rolls on direct-drive brushless
DC hub motors, controlled by two ODrive driver boards.
Since the motors were originally intended for hover boards,
i.e. personal conveyance devices, they have enough torque
to accelerate the approx. 90 kg UGV. To achieve omnidirec-
tional movement, we coupled each wheel with a Dynamixel
H54-200-S500-R servo which rotates it around the vertical
axis. The developed base supports driving speeds of up to
4 m/s and precise positioning for manipulation tasks.

Fully loaded configurations

3D LiDAR and
RGB camera

6 DoF arm

Steerable wheel

Base with PC, controllers,
WiFi router and battery

Magnetic gripper

3 DoF storage system

Fig. 3. UGV hardware design. Top right: The storage system is capable
of holding either 10 orange bricks (left) or all remaining bricks (20 red, 10
green, 5 blue) (right).

This year’s competition required to manipulate objects of
up to 1.80 m length and to stack them to a total height of
1 m. Instead of the UR5 mounted on our 2017 robot, we used
a UR10e 6-DoF robotic arm, which gives us the benefit of
a larger workspace (1.30 m) and enough payload capability
(10 kg) to carry the gripper, including the sensors, and the
bricks (up to 2 kg). We adapted the arm controller to work
with UGV battery power.

Bob’s gripper is equipped with eight electromagnet and a
contact switch. Since the ferromagnetic parts of the bricks
are very thin (approx. 0.6 mm), we decided to use a larger
number of smaller magnets to distribute the contact surface
as much as possible while keeping the total gripper size
minimal. The switch detects if a brick is securely grasped.

For perceiving the bricks, we mounted a Velodyne VLP-
16 3D LiDAR and a Logitech Brio camera on the wrist. The
LiDAR is our main sensor for detecting the bricks and for
estimating their poses relative to the robot (see Section IV-
C). The RGB images are used to detect the wall marker (see
Section IV-C.2). A second Logitech Brio camera mounted at
the top of the robot provides the operator situation awareness.

We designed a storage system which has three individually
actuated storage compartments. Each compartment has five
bins to store bricks. The ground plate of each bin is 20,5 cm
wide, 20 cm long and is mounted inclined 15◦ backwards.
This inclination forces the bricks to slide in a known pose
inside the storage system even if the bricks are grasped
imprecise. Hence, we do not need an additional perception
system to perceive the current pose of the stored bricks. Side
walls hold the bricks in place during UGV movements. The
walls are 110 cm high which is sufficient to hold the largest
bricks (180 cm long) in place. Furthermore, this system
allows to stack multiple small bricks (up to 4 red bricks, and
up to 2 green bricks) to increase the number of bricks to be



stored in the system. Overall, the system is capable to store
either all large bricks (10 orange), or all remaining bricks (20
red, 10 green, 5 blue, see Fig. 3). Since the storage system
exceeds the workspace of the UR10e, each compartment can
be moved horizontally (using a Dynamixel Pro L42-10-S300-
R and a linear belt drive) to put the desired bin in reach of
the arm.

The UGV is equipped with a standard ATX mainboard
with a quad-core Intel Core i7-6700 CPU and 64 GB RAM.
The whole system is powered by an eight-cell LiPo battery
with 20 Ah and 29.6 V nominal voltage. This allows the robot
to operate for roughly one hour, depending on the task.

Due to resource conflicts when building all robots needed
for the MBZIRC 2020 competition, hardware and software
component development and testing was initially executed
on the modified Mario robot [14]. The larger Bob chassis
was assembled on site in Abu Dhabi for the first time.

B. High-level Control

We implemented a high-level controller consisting of a
finite-state machine (FSM) generating the robot actions, a
database to keep track of every brick relevant for the UGV,
and an algorithm computing the time-optimal strategy for a
given build order.

The FSM includes 32 different states for locomotion, ma-
nipulation, perception, storage logistics, and fallback mech-
anisms. After executing an action, the resulting database and
FSM state was stored to enable quick recovery after a reset.

Since the UR10 arm is very precise, we can manipulate
multiple bricks from a stationary position after perceiving the
environment just once. Our overall strategy was to minimize
locomotion between different positions in front of the piles
and the wall. Thus, the plan was to pick up all orange
bricks and bring them to the wall at once. After successfully
building the orange wall segment, the UGV was to collect all
remaining bricks to build the second wall segment. Whereas
the orange wall segment (two stacks of 5 bricks each) can
be built from two predefined positions, the build order of
the second wall segment highly depends on the supplied
blueprint and can be optimized to minimize the number of
locomotion actions.

We implemented a backtracking algorithm to find the op-
timum build order. To make this approach feasible regarding
runtime, we only consider building the wall from left to
right, but allow starting the next layer before finishing the
first. Let the longer wall axis (from left to right) be denoted
as the x-axis. First, we compute the set of possible place
positions by P = {xi + tx|xi = center of brick i}. The
place pose is shifted by the arm reach tx = 0.675 m to
place the robot such that the number of brick placement
poses in reach is maximized. Due to the wall structure, we
have 7 ≤ |P | ≤ 35. We now enumerate all possible ordered
sequences S ⊆ P . For each pi ∈ S, we build all bricks
which meet the following criteria:

1) The brick was not built already,
2) the brick is in reach based on the position pi,

Pile/Marker
Detection

Render and
Sample

Rough
Alignment

Render and
Sample Bricks

Brick
Alignment

Confidence
Estimation

Trigger TB
W,P PCm

T̃B
W,P

T̃B
biResult

Fig. 4. LiDAR-based brick perception pipeline.

Fig. 5. Top down view for pile detection from LiDAR points (blue). The
robot is located at the small coordinate system (bottom). The search area
can be restricted using geofencing (yellow rectangle). Detected points are
visualized in red and the estimated pile pose is shown.

3) the brick is fully supported by the ground or previously
built bricks, and

4) the left adjacent brick was built.
S = (p1, p2, . . . ) is a valid solution if all bricks are built.
We search for the optimal solution with |S| and dS minimal,
where dS =

∑|S|
i=2 |pi−pi−1|, i.e. the shortest path to traverse

between all building positions. Pruning sub-trees is used to
accelerate the algorithm.

C. Brick and Wall Perception

When the robot is close to either the pick-up location
(called pile) or the place location (called wall), it needs to
localize against these objects and to perform pose estimation
of the individual bricks in order to pick them or place new
bricks next to them.

Our perception pipeline assumes knowledge of the current
state of the world, including a rough idea of the brick poses
relative to the pile or wall. The perception pipeline receives
this information from the high-level control module.

Depending on the target (pile/wall), the perception pipeline
receives an initial guess of the target pose TB

P or TB
W

w.r.t. the robot’s base (B). It also receives the brick pose
TW,P
bi

and brick type ti ∈ {r, g, b, o} for each brick i. For
initial alignment purposes, the individual brick alignment can
be switched off. Finally, bricks can be excluded from the
optimization, for example if they are far away and not of
interest for the next action.

Figure 4 shows the overall perception process. In both
cases, it starts with a rough detection of the target location
from further away.

1) Rough Pile Detection: In case of the pile, we know
the approximate shape beforehand. We make use of this
and search for corresponding measurements using the 3D
LiDAR sensor. While doing so, one needs to take care to



Fig. 6. Wall marker detection. Starting from the input image (Col. 1), two
color masks are generated (Col. 2). These masks are used for extracting
corners (Col. 3 top) and clustering (Col. 3 bottom). Corners vote for clusters
to detect the wall marker (Col. 4 top). Marker pose is estimated using
oriented bounding box (in orange around projected points col. 4 bottom).

disambiguate the UGV and UAV piles and other distractors
in the arena. The first step in detecting the pile is to confine
the search space to a user-defined search area, so-called
geofencing. We start by filtering out the points that lie outside
of the search area and fit a plane to the remaining points.
Next, we filter out the points that lie on the plane or are
very close to the plane. The remaining points, shown in
Fig. 5, may belong to the pile. After clustering the points
and filtering clusters which do not fit the expected pile size,
we perform PCA on the remaining cluster to estimate the
largest principal component and define the pile coordinate
system such that the X axis is aligned with the 2D-projected
principal axis and the Z axis points vertically upwards.

2) Marker Detection: After picking up bricks, the next
task is finding and estimating the pose of the L-shaped
marker indicating where to build the wall (see Fig. 6).
Our idea for detecting the marker relies on its distinctive
color, pattern and shape best visible in camera images. We
start by specifying volumes within the HSV color space
corresponding to the yellow and magenta tones of the marker.
Now, we exploit the characteristic color composition of the
marker to filter out distractors in the image. For that, we
generate a color mask using all yellow pixels that are close
to magenta pixels and another one for magenta pixels in the
vicinity of yellow pixels (Fig. 6 Col. 2). The resulting masks
preserve the pattern of the marker which we utilize to filter
out further distractors. First, we extract the corners from each
mask separately and then search for corners present in close
vicinity in both masks. Additionally, we fuse both masks
and extract clusters of all masking pixels (Fig. 6 Col. 3).
Next, we let each resulting corner vote for its corresponding
cluster. The cluster gathering most votes is assumed to be
corresponding to the wall marker (Fig. 6 Col. 4 top).

We project each cluster pixel onto the ground plane of
the arena and accumulate the resulting point clouds of the
previous 10 seconds, since the camera has limited FoV and
we can make use of the robot and arm movements to cover
more space. After Euclidean clustering, we compute the
smallest oriented 2D rectangle around the biggest cluster.
The intersection point of the L shape can be found by
looking for the opposite corner, which should have the
highest distance from all cluster points (see Fig. 6 Col. 4
bottom). Finally, the detection is validated by verifying the
measured side lengths.

3) Rendering and Sampling: The next module in the brick
perception pipeline (Fig. 4) converts our parametrized world
model into 3D point clouds that are suitable for point-to-point
registration with the measurements PCs of the Velodyne 3D
LiDAR, which is moved to capture a dense 3D scan of the
pile or brick scene. We render the parametrized world model
using an OpenGL-based renderer [15] and obtain the point
cloud PCm. Both point clouds are represented in the base-
link B. Since we render at a high resolution of 2800×2800
pixels, we downsample the resulting point cloud to uniform
density using a voxel grid filter with resolution d = 0.02 m.

4) Rough Alignment: We will now obtain a better estimate
T̃B
W or T̃B

P of the pile/wall pose. We first preprocess PCs

as follows:
1) Extract a cubic region around TB

W / TB
P ,

2) downsample to uniform density of using a voxel grid
filter with resolution 0.02 m,

3) find and remove the ground plane using RANSAC, and
4) estimate point normals (flipped s.t. they point towards

the scanner) from local neighborhoods for later usage.
We then perform Iterative Closest Point (ICP) with a point-
to-plane cost function [16] with high correspondence dis-
tance, which usually results in a good rough alignment,
followed by a point-to-point alignment with smaller corre-
spondence distance for close alignment.

In case the wall marker was detected, we add another cost
term

Edir( T̃B
W ) = (1− ( R̃B

W · (1 0 0)T )T~l)2 (1)

with ~l being the front-line direction and R̃B
W the rotation

component of T̃B
W . This cost term ensures the optimized

wall coordinate system is aligned with the marker direction.
The above-defined cost function is optimized using the

Ceres solver until either the translation and rotation changes
or the cost value change are below termination thresholds
(λT = 5× 10−8, λC = 1× 10−6).

5) Individual Brick Pose Optimization: When the robot
is close enough, we can determine individual brick poses.
We constrain the following optimization to translation and
yaw angle (around the vertical Z axis), since pitch and
roll rotations can only happen due to malfunctions such as
dropping bricks accidentally. In these cases, the brick will
most likely not be graspable using our gripper, so we can
ignore these cases and filter them later.

For correspondence information, we re-render the scene
using the pose T̃B

W,P obtained from rough alignment. Here,
we include the ground plane in the rendering, since we can
use it to constrain the lowest layer of bricks. We separate
the resulting point cloud into individual brick clouds PCbj .

We now minimize the objective

Emulti =

N∑
j=1

M(j)∑
i=1

1

M(j)
‖(R(θj)pj,i + tj − qj,i)Tnqj,i‖

2, (2)

where the optimized parameters θi and ti describe the yaw
angle and translation of brick i, N is the number of bricks,
M(j) is the number of found point-to-point correspondences
for brick j, pj,i ∈ PCbj & qj,i ∈ PCs are corresponding



Fig. 7. Precise alignment of individual bricks. Laser measurements are
colored orange, model points are shown in purple. Top: Initial solution
found by the rough ICP stage. Bottom: Resulting brick poses.

points, and nq is the normal in point q. This is a point-to-
plane ICP objective with separate correspondences for each
brick. Correspondences are filtered using thresholds λdot and
λdist for normal dot products and maximum point distances.

To keep the wall structure intact during optimization, we
add additional cost terms for relationships between bricks
that touch each other, which punish deviations from their
relative poses in the initialization:

ER
i,j = λr‖R(θi) RB

bi
(R(θj) RB

bj
)−1 RB

bj
R

bi
B − I‖

2
F , (3)

ET
i,j = λt‖t(T (θi, ti) TB

bi
(T (θj , tj) TB

bj
)−1 TB

bj
T

bi
B )‖22, (4)

where || · ||F denotes the matrix norm, and λr, λt are
balancing factors. Note that these pairwise cost terms have
equal strength for all involved brick pairs.

As in the rough alignment phase, the parameters are
optimized using Ceres using the same termination criteria
up to a maximum of 20 iterations. The optimization takes
around 0.15 s on the onboard computer for one iteration with
20 bricks. In addition, we compute a confidence parameter
for each brick as the ratio of found correspondences to
expected visible points according to the rendered model.
Figure 7 shows an exemplary result of the entire pipeline.

D. Experiments

During the MBZIRC 2020 Finals, our UGV Bob per-
formed in six arena runs. We used the three rehearsal days
to get familiar with the arena conditions, fixed Wi-Fi issues,
picked bricks in a semi-autonomous way and fine-tuned our
perception pipeline. Unfortunately, in the first Challenge 2
competition run we had issues regarding the gripper. We
attempted over 15 times picking up an orange brick with
very promising perception results but were not successful.
We were unable to fix this problem since hardware changes
were not allowed during the competition run. In the second
competition run we were able to pick and store a green brick
successfully, but again scored zero points since our UGV was
not able to drive accurately on the slope inside the arena
to reach the wall position. Due to limited test time we did
not discover this problem earlier. Nevertheless, the points
collected by our UAV were enough to secure an overall
second place. In the final Grand Challenge, our UGV was
assigned to first solve Challenge 3 (fire fighting) to maximize

TABLE I
BUILD ORDER OPTIMIZATION

Method |B| dB [m] Runtime [s]

mean stddev mean stddev mean stddev

Optimal 5.0 0.91 3.36 0.97 7.5 29.0
Greedy 5.5 1.10 5.63 1.86 0.0 0.0

Computing the build order (B) using our optimization versus a greedy
approach over 1000 randomly generated blueprints. The path length
to reach all build positions is denoted as dB .

the overall points of our team. After successfully solving
Challenge 3, only two minutes were left, which was not
enough time to score any points in Challenge 2.

After the competition, we evaluated two sub-systems of
our UGV in our lab environment. We compared our algo-
rithm for optimizing the build order with a greedy strategy.
Using the greedy strategy, we take the best local solution,
i.e. given a set of already built bricks, we chose the next
build position such that the number of bricks the UGV
is able to build is maximal. Table I shows the results of
both approaches on 1000 randomly generated blueprints.
The optimization reduces the different build positions needed
from 5.5 to 5.0 on average and gives an even larger improve-
ment regarding the distance needed to be driven by 2.3 m
on average. Performing the optimization takes on average
7.5 s, which is feasible in our use case since it is done
just once before the competition run. Nevertheless, it is—
as expected—much slower than the greedy approach due to
the exponential complexity.

In a second lab experiment, we evaluated the precision and
repeatability of picking up bricks from a pile (see Fig. 8).
We placed four bricks in front of the robot similar to the
competition setup. Each test consists of scanning the piles,
picking the brick with the highest confidence, and placing
it at a predefined pose. We calculated the mean translation
and rotation error compared to a perfectly aligned center-
grasped brick. Only a rough estimation of the pile location
was provided to the system. We repeated the test ten times
while changing the brick horizontal positions by up to 5 cm
and the rotation by up to 10◦ around the vertical axis. Table II
shows the mean results per brick. The resulting mean error
could be further decreased by investing more time calibrating
the whole system; nevertheless, it is sufficient to place the
bricks reliably into the storage system. The very low standard
deviation in both rotation and translation shows that our
perception and grasping pipeline has a high repeatability and
is very robust.

x

y

Fig. 8. UGV picking robustness. Ground truth place pose (black) and ten
test results for each brick type.



TABLE II
END-TO-END BRICK MANIPULATION PRECISION

Brick Translation x [cm] Translation y [cm] Yaw [◦]

mean stddev mean stddev mean stddev

Red 1.52 0.36 1.49 0.37 1.26 0.80
Green 1.94 0.33 0.67 0.43 1.26 0.68
Blue 1.82 0.49 0.53 0.21 0.76 0.40
Orange 1.34 0.65 0.36 0.39 0.45 0.24

Placement error from perceiving, picking, and placing. Ten tests per color.

V. UAV SOLUTION

Since the initial rules specified a shared wall where UAVs
and UGVs could collaborate, we concentrated our efforts
on the UGV design. In a late rule revision UGV and UAV
walls were separated, making it clear to us that UAV points
had to be scored in order to win. Our UAV design thus
focused on a minimal solution that could achieve almost
full points: We decided to ignore the orange bricks of 1.8 m
length, which were intended to be carried by two UAVs.
Our system should support the red (0.3 m), green (0.6 m),
and blue (1.2 m) bricks.

A. Hardware Design

Because of the weight of the larger bricks and their size,
we decided to use a large UAV, the DJI Matrice 600 (M600),
for this task. The M600 offers sufficient payload and battery
life (roughly 20 min in our configuration).

A key component for aerial manipulation is the robotic
gripper. UAVs pose unique constraints when compared with
ground-based manipulation. The gripper has to be light-
weight in order to fit inside the payload constraints. Fur-
thermore, a certain flexibility and mechanical compliance is
desired for two reasons: First, this allows a grasp to succeed
even if the approach was not fully precise. Secondly, a rigid
connection between the UAV and the ground can be very
dangerous, since UAVs usually tightly and very dynamically
control their attitude in order to hold position. One can easily
imagine situations where the UAV has to drastically change
attitude in response to wind gusts and of course hindrance by
the gripper system should be limited. However, during the
placement phase of the pick-and-place operation, we require
very precise control of the target object. Here—at least while
the target object is still in the air—we want a rigid attachment
to the UAV. To resolve these seemingly contradicting goals,
we designed the gripper system to be rigid only while load
is applied, i.e. the brick is hanging below the UAV.

Our gripper design (see Fig. 9) consists of four carbon
fiber telescopic rods, which hold a plate equipped with 8
electromagnets (similar to the UGV gripper) below the UAV.
When the rods are fully extended, the gripper plate is in a
fixed pose and can only move upwards. The more the gripper
plate is pressed upwards (e.g. due to contact with a brick),
the more it can move sideways and rotate due to the gained
movement range in each rod. The gripper is equipped with
a switch to detect successful grasping.

Since the standard foldable landing legs on the M600
would interfere with the gripper, we replaced them with fixed

landing legs (see Fig. 9).

B. Brick and Wall Perception

The competition task involves two perception challenges:
finding and precisely localizing the bricks and localizing with
respect to the target wall. Similarly to the gripper system,
the UAV places unique constraints on the perception system.
Because the gripper is mounted directly beneath the UAV,
any observation of a brick close to the gripper must be
done from the side. The necessary off-center mounting of
the sensor severely limits the sensor weight. A 3D-LiDAR
as used in the UGV is too heavy. We chose the Intel
RealSense D435 RGB-D camera as a primary sensor for
its light weight and its capability to work in sunlight. To
achieve good coverage of the terrain below the UAV and
to be able to observe large parts of the wall during the
placement process, we mounted three D435 sensors on the
UAV (see Figs. 9 and 10). In contrast to the UGV solution,
the UAV solution needs to be real-time capable to allow
tracking during approach.

1) Brick Detection & Pose Estimation: The gripper is
visible in all camera images and would lead to confusion with
bricks. For this reason, we mounted an ArUco marker [17]
on it. The marker pose can be efficiently estimated in each of
the three cameras and is low-pass filtered to obtain a robust
estimate of the gripper pose below the UAV. Pixels in the
immediate vicinity to the detected gripper are discarded for
the following processing steps.

Since the white patches on the bricks are quite distinctive
(see Fig. 10), we use them to detect the bricks and estimate
their pose. In a first step, we convert the input image (res-
olution 1280×720) to the HSV color space. To detect high-
saturation pixels (the colored bricks) in the neighborhood, we
downsample the input image to half resolution and run a box
filter with kernel size 290×290 to obtain a local saturation
average S̄ and local value average V̄ . A pixel p is classified
as patch, if S(p) < S̄(p) − λS ∧ V (p) > V̄ (p) + λV , or,
in other words, the saturation is less than the local average
and the value (brightness) is larger than the local average, by
user-specified thresholds. This simple segmentation method
is modeled after the ones used for detecting chessboard
patterns and leads to highly robust performance (see Fig. 10).

Contours with exactly four corners (after contour simplifi-
cation) are processed further: We check that each corner has
a patch pixel on the inside and a high-saturation pixel on

Fig. 9. UAV hardware design. Left: Full assembly. Right: Magnetic
gripper with passive compliance. The four telescopic rods are shown in
fully extended configuration.



a) RGB Input b) Patch Segmentation c) Patch Extraction d) Allocentric Tracking

Fig. 10. Camera-based UAV brick perception pipeline. a) Input frames from all cameras. b) White patch segmentation. c) Patch corner extraction & pose
estimation. Patch contours in orange (verified) and blue (wrong shape). Brick type is indicated by a colored center point. The gripper is overlaid in yellow.
d) Tracking of detections from all three cameras in GPS frame. Detections are shown as bricks, while tracked hypotheses are shown as coordinate axes.

Fig. 11. Wall localization. Left: RGB images from all three cameras. Right:
Top-down view of detected wall points per camera (green, blue, purple) and
detected wall segments (red lines).

the outside at a specified distance d = 4 pixels. The high-
saturation pixels on the outside are independently classified
into the four possible colors. If all agree, the brick is detected.

Finally, a PnP solver is used to determine the 6D pose of
the brick from the recovered 2D-3D correspondences. Here,
we assume that the longer side in the 2D image corresponds
to the longer brick side in 3D—an assumption which is only
violated at extreme viewing angles. To fuse the detections
from all three cameras and to track bricks over time, we
apply a basic Multi-Hypothesis Tracking (MHT) method
with one Kalman filter per hypothesis.

2) Wall Localization: After grasping a brick, the UAV
needs to bring it to the wall and place it. Before the
competition in Abu Dhabi very little was known about the
wall except its geometric shape: Four segments of four
meters length and 1.7 m height, arranged in a “W” shape.
Especially the top part, which is easily visible from the UAVs
perspective, was highly problematic: No information about
visual appearance was available, visibility of the top covering
(gridding with unspecified mesh size) in our depth sensors
was unknown, and later on it would be covered with placed
or dropped bricks. We decided to focus on the side walls
instead, which where specified as more or less flat surfaces.
Especially the side-facing cameras would be able to see the
side walls during close approach.

Consequently, our wall perception module estimates the
height above ground from the depth image of the downward-
facing camera. Points from each camera are then filtered so
that only points above 1.0 m and below 1.7 m remain. The
data is then projected to 2D, where lines can be extracted
using RANSAC. Each line, if fit correctly, corresponds to a
side view of one wall segment (see Fig. 11).

The system is initialized with a user-specified initial wall
pose, which serves as the search pose. Any time two parallel
line segments of valid length with 4 m distance are found,

the wall pose is updated. Under the assumption that the wall
did not rotate 180◦, this is unambiguous.

During close approach, the UAV targets a specific place
pose on one of the wall segments. The detected segment
closest to the expected segment pose is identified and the
goal position is projected onto this segment.

C. High-level Control

Similar to the UGV, the high-level control module is
implemented in a FSM framework. It is supplied with the
target wall pattern as defined by the organizers of the
competition. The basic cycle of events is designed as follows:

1) Fly to the last known pile pose and fly a search pattern
until the next brick requested by the pattern is found.

2) Grasp the brick and lift it.
3) Fly to the target position (relative to the last known

wall pose) and look for a wall segment.
4) Approach the projected position on the wall segment

and place the brick.
Similarly to our MBZIRC 2017 approach [11], we utilize

a “cone of descent” during grasping and placement, in which
the UAV is allowed to descend towards the target pose. If it
drifts outside of the cone, it has to stay at that height until the
disturbance has been rejected. The cone angle is 10◦ with a
hysteresis of 3◦ to prevent oscillations. The cone was shifted
such that at the target height it had a radius of 9 cm, which
was determined as the maximum deviation that would still
allow successful magnetic grasping.

D. Experiments

During the MBZIRC 2020 Finals, our UAV Lofty per-
formed in six arena runs: three rehearsal runs, two Chal-
lenge 2 runs, and the final Grand Challenge run.

We used the rehearsal runs to get used to the conditions in
Abu Dhabi and continuously improved our pick success rate.
During our first Challenge 2 run, we only picked one red and
one green brick due to difficulties with our magnetic gripper.
Both bricks were dropped close to, but not on the wall due to
wall tracking problems. The wall tracking module had not
been tested until this point due to short development time
and lack of suitable testing opportunities at the competition.
After improving our gripper overnight, we managed to pick
four red bricks and one green brick and placed two red
bricks successfully during our second Challenge 2 run. The
other bricks were sadly dropped right next to the wall due
to another wall tracking problem. This run was scored as
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Fig. 12. Picking robustness. Left: Success rate over the duration of
the competition. Right: Histogram of failed pick durations. The average
successful pick duration is shown in green.

1.33 points, which secured a second place in Challenge 2,
next only to the Prague-Pennsylvania team.

In the Grand Challenge, Lofty managed to pick a red brick,
but placed it a bit too high and it fell off the wall. After a
longer pause to allow our Challenge 1 UAV to operate, it
started again and picked up a green brick. Sadly, it falsely
detected a W-shaped wall behind the arena netting. Due to
a rushed setup sequence, the geofencing was not configured
correctly and did not prevent Lofty from flying into the net.
After a short unsuccessful rescue attempt during a reset, we
had to leave it there for the rest of the Grand Challenge.

Overall, Lofty executed 132 pick attempts in Abu Dhabi,
of which 22 were successful, which gives a success rate
of 16.7%. Since a failed attempt took 12 s on average, this
limited the number of attempts we had for placing bricks
on the wall. The number of pick attempts increased over
the duration of the competition (see Fig. 12) as the rest
of the system became more robust. There are two peaks
in the duration histogram for failed picks: One at roughly
three seconds which corresponds to tracking failures during
the initial approach, and a larger one around 10 s, which
corresponds to misaligned picks or magnet failures.

VI. CONCLUSION

We take the opportunity to identify key strengths and
weaknesses of our system and development approach. We
also want to identify aspects of the competition that could
be improved to increase scientific usefulness in the future.

First of all, this edition of the MBZIRC suffered from low
team performance, to the extent that the Grand Challenge
price money was not paid out on recommendation of the
jury. This underperformance of all teams points to systematic
issues with the competition. From the perspective of partic-
ipants, we think the late changes of the rules have certainly
contributed to this situation. A pre-competition event such
as the Testbed in the DARPA Robotics Challenge can help
to identify key issues with rules and material early in the
competition timeline. Another issue was the required effort
to participate in all the different sub-challenges. MBZIRC
2020 defined seven different tasks—ideally, one would de-
velop specialized solutions for all of these. Focusing the
competition more on general usability, i.e. defining multiple
tasks that can and should be completed by one platform,
would lower the barrier for participants.

Regarding our system, we saw very little problems with
our hardware design—both robots could have scored their
theoretical maximum. After solving initial problems with

our magnets, especially the passive UAV gripper turned
out to be an advantage over other teams, who could not
manipulate the heavier bricks. The UGV brick perception
provided reliable brick poses during the competition and
during lab experiments.

The biggest issue shortly before and during the competi-
tion was unavailable testing time. Robust solutions require
full-stack testing under competition constraints. Since we
postponed many design decisions until the rules were set-
tled, our complex design could not be tested fully. In the
end, simpler designs with fewer components, which would
have required less thorough testing, could have been more
successful in the short available time frame.

We presented a UGV-UAV system for autonomous wall
building, which successfully competed at the MBZIRC 2020.
We will continue research into aerial and terrestrial manip-
ulation and further UAV-UGV cooperation.
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