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Abstract—Mapping and real-time localization are prereq-
uisites for autonomous robot navigation. They also facilitate
situation awareness of remote operators in exploration or rescue
missions. In this paper, we propose methods for efficient 3D
mapping of environments and for tracking in real-time the 6D
movement of autonomous robots using a continuously rotating 3D
laser scanner. Multi-resolution surfel representations allow for
compact storage and efficient registration of local maps. Real-
time pose tracking is performed by a particle filter based on
individual laser scan lines. We evaluate our approach using both
data generated in simulation and measurements from challenging
real environments.

I. INTRODUCTION

Many challenges must be solved before a robot can
successfully be deployed into an open environment—one of
these being safe and reliable navigation. Search and rescue
missions, in addition, involve time constraints and pose safety
risks. Here, it is essential to provide a remote operator with
sufficient situation awareness. The creation of 3D environment
maps and real-time robot localization contribute to this end.
These abilities are also a prerequisite for autonomous robot
navigation, which can reduce operator workload. The search
and rescue domain frequently poses additional constraints on
mapping and localization, such as limited payload, limited
onboard computing, and cost-effectiveness.

In this paper, we propose a method for using a continuously
rotating small and lightweight 2D laser scanner as the sole
sensor for 3D environment mapping and 6D tracking of a
mobile robot. The Hokuyo UTM-30LX-EA laser scanner was
used for experimentation; to allow for continuous rotation, the
sensor was mounted on a slip-ring as pictured in figure 1. This
affordable sensor has an omnidirectional field of view (FOV),
is independent of lighting conditions, and does not require
textured surfaces. When mapping, a trade-off must be consid-
ered between map quality and memory and performance re-
quirements. We balance these by using multi-resolution surfel
maps, which have been successfully used for real-time RGB-D
SLAM on the CPU [1]. This map representation matches well
to the density of measurements and noise characteristics of
our sensor. It allows for memory efficient storage of the map,
because not all measured 3D points are stored, but only local
measurement statistics. The surface element representation also
supports accurate reconstruction of smooth surfaces, which
facilitates drivability assessment. Given a map, tracking is the
ability to follow the changing pose of a mobile sensor or robot.
The localization problem is the ability to determine both the

initial pose of the sensor within a map followed by tracking.
Within this work, we focus on the tracking and consider the
global localization problem for future research.

The remainder of this paper is structured as follows. In the
next section, we review related work on simultaneous local-
ization and mapping (SLAM) using laser scanners and other
applications of multi-resolution surfel maps. Sec. III gives an
overview of the multi-resolution surfel map framework includ-
ing global graph optimization for scan registration as well
as detailed information concerning scan-to-scan registration.
Real-time tracking using a particle filter is described in Sec. IV
including a motion and observation model derivation. Sec. V
reports evaluation results on the real and simulated experiments
using the presented mapping framework.

II. RELATED WORK

Most traditional research on mapping and localization
using laser scanners in 3D environments focuses on the 2D
sub-problem [2]–[4]. Even some more recent works have
remained in two dimensions [5], [6]. Due to the availability
of 3D laser sensors, research on mapping and localization in
3D has recently boomed [7]–[9]. Mueller at al. [10] compiled
an overview on accuracy and limitations of 6D SLAM using
laser scanners and iterative closest point algorithms (ICP).

Registering and storing all measured 3D points poses high
computational demands. Consequently, multi-resolution maps
have been proposed to maintain high performance and low
memory consumption. Hornung et al. [11], for example, im-
plement a multi-resolution approach based on octrees enabling
the generation of maps at a user specified resolution. Ryde
et al. [12] present a multi-resolution mapping solution using
voxel lists for efficient look-up and localization. Both of these
approaches considers mapping in three dimensions, however
a voxel is the smallest surface unit available within the map.
Our approach can model up to six surfels within a voxel based
upon the view-direction to more accurately model non-cubic
surfaces within voxels.

Thrun et al. [13] implement 2D localization in occupancy
grid maps using Monte Carlo algorithms. Khoshelham pro-
poses using solely planar objects for localization in 3D within
indoor environments [14]. Kuemmerle et al. [15] apply Monte
Carlo localization in Multi-Level Surface maps [16] which
represent occupied height intervals on a 2D grid. Klaess et
al. [17] model the environment in surfel maps in a fixed
resolution, similar to the 3D-NDT [9]. They then localize in
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Fig. 1. Continously rotating Hokuyo UTM-30LX-EW laser scanner.

these maps using a tilting 2D laser by matching line elements
extracted from the 2D scans in a particle filter framework—
assuming motion of the robot in the horizontal plane. Our
approach does not constrain the orientation of the robot and
allows for 6 DoF motion.

The main contributions of this work include the integration
of complementary methods to estimate the robot pose through
particle filtering and global graph optimization with 3D scans.
We also propose a fast and accurate method to determine the
observation likelihood of individual laser scan lines against an
allocentric surfel map.

III. 3D MULTI-RESOLUTION SURFEL MAPS

The data structure for representing the environment, the
method for registration of local maps, and localization based
on individual scan lines are the core elements of our approach.

A. Map Representation

We use multi-resolution surfel maps [1] to efficiently
represent environments. Within voxels both surface shape
parameters and surface reflectance distributions are stored.
Octrees are the natural data structure for multiple-resolution
information storage in 3D and thus form the foundation of
our mapping system. Compared to a multi-resolution grid
implementation, the octree data structure only represents space
that has been observed and is thus more memory-efficient.
Because storing all measured 3D points would be challenging
in larger environments, we aggregate the measurements inside
voxels and maintain only their statistical properties. Points P
within a surfel are approximated by a sample mean µ and
covariance Σ and are considered normally distributed. These
statistical properties are stored through all resolutions in the
octree, thus a non-leaf node maintains the statistical properties
of all descendants allowing for quick map sampling at any
resolution. The maximum resolution at a measured point is
determined in dependency of the distance of the point from the
sensor. This way, decreasing sampling density with distance
from the sensor is captured which is caused by the constant
angular resolution of our sensor.

As both shape and reflectance distributions are modeled
by surfels, the mean and covariance represent a 4D normal
distribution. Shape is simply the 3D spatial position in the map
frame while reflectance is represented in the fourth dimension.
We estimate the reflectance of the measured surface points
from the intensity readings of our laser sensor. One must be
careful when using direct reflectance values measured by the

Fig. 2. The simulated terrain environment and accompanying multi-resolution
surfel map generated during simulation trials.

laser scanner as these readings are range and viewing-angle
dependent. However as reflectances are compared using local
contrast as opposed to absolute value, we consider these effects
negligated.

Since complex surfaces may not be represented sufficiently
well by a single Gaussian even within small volumes, the
statistical properties of the measurements are maintained sep-
arately for the six orthogonal volume faces using the sensor’s
view direction to associate data with the appropriate surfel.
This allows for a more accurate representation of detailed
surfaces, improved surface reconstruction, and reduction of
sensor view-angle effects. Figure 2 shows an example surfel
map generated in simulation.

B. Efficient Map Registration

The registration of multi-resolution surfel maps is im-
plemented in two main steps: surfel association and pose
optimization. Both steps are repeated iteratively until the
alignment accuracy reaches a threshold or a maximum number
of iterations is reached.

1) Association: Surfel association must robustly associate
surfels between a target and source map. Surfels are associated
between maps from the finest resolution to coarser resolutions
until associations have been determined for the entire map.
Consequently, a surfel is only associated if no children have
been associated. Using this scheme, associations within reso-
lutions are independent and thus can be computed in parallel
on multi-core machines. For performance results, please see
section V-D.

For a surfel without a previous association, a volumetric
query within the octree is performed to find association can-
didates. The query volume center is the surfel mean trans-
formed by the current pose estimate with a cube edge size
of twice the surfel resolution. Varying the query volume size
from the surfel resolution implicitly causes the adaption of
misalignments from coarse to fine resolutions. Surfels that
have been previously associated are re-associated with the best
matching surfel found within the direct voxel-grid neighbors
of the previous association.

Associations are made between surfels having the closest
Euclidean distance between shape-texture descriptors within
the query volume. However these associations are only ac-
cepted when this distance df (si, sj) is below a threshold
τ = 0.1 where df (si, sj) :=

∑
c∈{sh,r} dc(si, sj) [1] is a

sum of the shape and texture descriptor distances.

2) 3D Laser Observation Model: Given a target map mm

and a 3D laser scan of an environment, we model pose opti-
mization as finding the pose x that maximizes the likelihood



p(z|x,mm) of observing the laser measurements z at the pose
x in the target map mm. Poses x = (q, t)T are represented by
a translational part t ∈ R3 and unit quaternion q. After creating
a map ms from the scan measurements z, we determine the
observation likelihood between the source and target map given
a pose x,

p(ms|x,mm) =
∏

(i,j)∈A

p(ss,i|sm,j) (1)

where A is the set of surfel associations discussed in III-B1
and su,v = (µu,v,Σu,v) is the surfel v in map u. As we
model surfels as normal distributions, we can easily calculate
the observation likelihood of two associated surfels,

p(ss,i|sm,j) = N (di,j(x); 0,Σi,j(x))

di,j(x) := µm,j − T (x)µs,i (2)
Σi,j := Σm,j +R(x)Σs,iR(x)T

where T (x) is the homogeneous transform matrix of pose
estimate x and R(x) is the corresponding rotation matrix.

3) Pose Optimization: To determine the map pose x of
the observation, we optimize the logarithm of the observation
likelihood from Eq. (2):

L(x) =
∑
a∈A

log (|Σa(x)|) + dTa (x)Σ−1a (x)da(x) (3)

in two stages. ICP uses a closed-form calculation to determine
registration parameters. However this requires surfels to have
a diagonal covariance matrix. As we have potentially non-
diagonal covariances, first we calculate an initial transform
using Levenberg-Marquardt (LM) optimization then using
Newton’s method for refinement.

4) Pose Uncertainty Estimation: An estimate of the ob-
servation pose uncertainty is calculated using the following
closed-form approximation [1], [18]

Σ(x) ≈
(
∂2L

∂x2

)−1
∂2L

∂s∂x
Σ(s)

∂2L

∂s∂x

T (
∂2L

∂x2

)−1
(4)

where x is the pose estimate, s denotes associated surfels in
both maps, and Σ(s) is the covariance of the surfels.

C. Tracking with Dense 3D Laser Scans

Graph optimization is used to globally optimize the tracked
pose from 3D laser scans. For each input 3D scan, a key-view
vi (pose visualized by a coordinate frame) is extracted along
the sensor view trajectory and globally aligned to a reference
key-view. This alignment implies a geometric constraint be-
tween the key-views and is thus maintained as an edge ei,j ∈ E
in a key-view graph G = (V, E). As an additional step, all key-
views deemed “close” are registered against each other to add
edges to the constraint graph. The key-views are optimized in
a probabilistic pose graph using the g2o framework [19].

After each 3D scan has been converted into a local multi-
resolution surfel map and inserted into the key-view graph,
the updated poses of all key-views are used to create a global
surfel map. This global map is used by the particle filter for
observations.

IV. MONTE CARLO TRACKING USING SCAN LINES

The 6-DoF pose of the laser scanner between key-views
in the surfel map is tracked with a particle filter. This pose
estimate is used to initialize the registration transform for the
next key-view. Compared to other filtering methods that allow
for non-linear motion and measurement models such as an
Extended Kalman Filter (EKF), the particle filter allows for
simple integration of a scan line to map measurement model
and also has the ability to solve the global localization problem
for future applications. The general idea of a particle filter is
not discussed here; see [20] for a detailed introduction.

A. State Propagation Model

To compute a suitable state estimate, we model the state
transition with a simple time-discrete linear dynamics model.
The state estimation problem is posed as the estimation of
the full 6-DoF configuration of the laser scanner xt = (r, t)T

represented by a translation part t and Euler angles r. Odom-
etry ot = (∆r,∆t)T is also given as input to the propagation
model with assumed Gaussian noise in both translational and
rotational parts. For convenience, we indicate the translational
part as t(x) and the Euler angles as r(x) for a given pose
x. We model the dynamics as a time-discrete linear dynamic
system (LDS):

t(xt) = t(xt−1) + t(ot) +N (n; 0,Σot)

r(xt) = r(xt−1) + r(ot) +N (n; 0,Σor ) (5)

where Σot represents the noise constant of odometry transla-
tion and similarly Σor the noise constant of odometry rotation.

B. Observation Model

The observation model of a scan line is similar to the model
for 3D scan registration with modifications. As a single scan
line does contain enough data to accurately register to a target
surfel map; we circumvent this issue using the particle filter
and simply determine the likelihood of a scan given a particle
pose x. The observation model measures the alignment of the
scan line Z = {zi}n ∈ R3 with n point measurements to the
current target map mt given a particle pose x,

p(Z|x,mt) =

n∏
i=1

p(zi|x,A(zi, x,mt))

A(zi, x,mt) = argmin
st

dplane(st, T (x)zi) (6)

where A(zi, x,mt) associates the transformed measurement
point ztransformed = T (x)zi to the surfel within the target
map having the smallest distance between the surfel plane and
the target point. The potential surfels to associate are found
using a volumetric query around the transformed measurement
with a volume size corresponding to the distance of the
measurement to the sensor. If no association can be found
within the region, the observation likelihood of the point is
given a default no-association-likelihood corresponding to the
sensor models false/random measurement probability. Given a
surfel association, the observation likelihood of a measurement
to surfel is given by

p(zi|x,A(zi, x,mt)) = p(zi|x, st)
= N (dplane(st, T (x)zi;x); 0,Σsz(x))

Σsz(x) = Σsm +R(x)ΣziR(x)T (7)



where Σzi represents the point measurement covariance in
R3 and dplane(st, T (x)zi) represents the distance from the st
surfel plane and the transformed measurement T (x) zi.

C. Importance Weights

The importance weights w(i) in a particle filter compensate
for the mismatch between the target and proposal distributions
w(i) = target distribution

proposal distribution . Since we use the motion model as the
proposal distribution, the importance weights for each particle
is given by its observation likelihood,

w(i) = p(Z|x(i),mt). (8)

After importance weight calculations, the particles are re-
sampled with probability proportional to the importance
weight.

V. EXPERIMENTS

Experiments were performed in real environments similar
to those encountered during search and rescue missions. Addi-
tional experiments were performed in simulation. The accuracy
of pose tracking is discussed for all experiments as well as the
performance characteristics of mapping and tracking.

For all experiments, the laser-mounted vehicle was placed
in an unknown pose and a complete 3D scan was accumulated
defining the map frame. After initialization, as no exploration
strategy is implemented, the vehicle is moved by manual
control and brought to rest. A 3D laser scan is then taken
at the new location and globally registered against the existing
scans. This process is repeated until the end of the experiment.

A. Sensor Operation

Our research uses “stop-and-go” to accurately map an
environment. This process consists of the robot maintaining
a stationary pose as a full 3D scan is taken. After this “stop”
3D scan is completed, the sensor measurements are registered
against the internal map and the resulting pose estimates
updates the particle filter belief. The robot may then “go” to a
region of interest for further mapping while tracking is enabled
to initialize the next 3D scan registration. Ideally this process
is repeated until an environment has been sufficiently explored.

In order to accurately map large environments sensor
measurements must be sufficiently dense. To ensure dense
point clouds from 3D laser scans, we rotate the laser at a
slow speed ( 1

15 Hz) when creating full 3D scans. For tracking
we wish to maximize visible space over time period and thus
rotate the laser at a higher speed (1 Hz) during navigation.

B. Outdoor Environments

For all outdoor environment experiments, a laser-scanner
was mounted on a mobile vehicle that recorded odometry and
sensor data. This data was processed in real-time using an
Intel Core i7-3610QM running at 2.3GHz with 16 GB RAM.
An Intel Core i7-4770K (max 3.5 GHz) with 32 GB RAM is
available on the robot, however was not used due to the current
integration state.

Localization is performed using 250 particles with a con-
stant noise variance of 0.0252 for translation and 0.0052
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Fig. 3. Parking garage experiment’s tracked vehicle movement viewed from
above - blue path. Black path - raw odometry input. Green circles - the tracking
estimate when starting a 3D registration. Red circles - the registration estimate.

Fig. 4. Parking garage experiment registered point clouds coloured by height
for visualization.

for orientation. Additional noise is added proportional to the
movement delta with roll and pitch noise discounted by a factor
of 0.02 since it was accurately measured with an IMU.

1) Parking Garage: The parking garage environment is
relatively large for an enclosed space (approximately 25m
x 60m) and contains various structures including vehicles,
girders, support beams, and windows. Within this environment,
7 full 3D scans were taken with an average distance of 5.53
meters between key-views. Ground truth was measured by
hand and consists of the relative distances between scanning
poses. Through this metric, registration received a minimum
error of 2 centimeters with a maximum error of 13 centimeters.
Table I details the tracking accuracy compared to both ground
truth measurements and the graph optimized registration pose
estimate. Figure 3 shows the estimated path from scan line
tracking including registration poses. Figure 4 shows the
aligned point cloud generated during this experiment.

2) Disaster Courtyard: Testing within the open-air court-
yard environment is more difficult for registration as less strong
structural features such as floor/ceiling relationships, corners,

TABLE I. PARKING GARAGE DISTANCES BETWEEN 3D SCANS

Movement (meters) 1 2 3 4 5 6 Avg. Error

Ground Truth 4.20 4.94 6.53 4.45 4.54 8.54
Tracking 4.30 5.26 6.39 4.44 4.85 9.40 0.29

Slam Graph 4.18 4.90 6.37 4.40 4.49 8.43 0.07



TABLE II. COURTYARD DISTANCES BETWEEN 3D SCANS

Movement (meters) 1 2 3 4 5 6 Avg. Error

Ground Truth 6.60 8.25 6.59 6.69 5.69 4.37
Tracking 6.59 8.26 6.47 7.27 5.97 4.57 0.20

Slam Graph 6.58 8.18 6.55 6.66 5.67 4.35 0.03
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Fig. 5. Courtyard experiment’s tracked vehicle movement viewed from above
- blue path. Black path - raw odometry input. Green circles - the tracking
estimate when starting a 3D registration. Red circles - the registration estimate.

etc. exist. The selected location was relatively feature-bare,
thus boxes and large containers were arranged to create a
more realistic test environment. Ground truth information is
measured by relative distances between 3D scan locations.
During the experiment, the average distance between key-
views was 6.37 meters while the minimum and maximum
errors from the SLAM-graph were 0.00 and 0.05 meters
respectively. Table II details the relative distances between
ground truth, tracking, and graph optimization. Figure 5 shows
the estimated path from scan line tracking while figure 6 shows
key-frame positions with the registered point clouds.

C. Simulation

Similar to the real-world experiments, the simulated exper-
iment consisted of a mobile vehicle with a roof mounted laser
scanner that is rotated to measure 3D scans. In simulation,
odometry is generated from the true movement of the robot
with systematic noise and used to update the particle filter.
Ground truth information is known allowing for exact evalua-
tion of the mapping and tracking systems. Figure 2 shows the

Fig. 6. Courtyard experiment registered point clouds coloured by height for
visualization.
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Fig. 7. Simulation experiment plots showing localization trajectory com-
pared to odometry and ground truth. Blue scatter points show Graph-SLAM
estimates, red scatter points (barely visible) are ground truth.

terrain environment used for experiments.

Sturm et al. suggest using absolute trajectory error (ATE)
to evaluate SLAM trajectories [21]. ATE aligns the estimated
and true path using timestamps for data-association and then
calculates the absolute pose differences.

Table III shows ATE results from one simulation exper-
iment for both localization and global registration estimates.
A maximum localization error of ca. 0.4 meters is not ideal
- however an average error of ca. 7 centimeters allows for
excellent registration input. Graph-SLAM had an average error
of ca. 3 centimeters with a maximum error of ca. 6 centimeters.
For scale, figure 7 shows the trajectories for localization and
Graph-SLAM.

D. Performance Characteristics

Figure 9 shows the time required to create the multi-
resolution surfel map depending on point count. To account
for timing error, each cloud was processed ten times and
construction times were averaged. To frame these results, the
insertion of ca. 1.23 million points took 2.792 seconds, while
the accumulation of sensor data took 15 seconds.

Figure 8 shows the time required to perform graph SLAM
during the garage experiments. Section III-C explains that all
poses within a threshold distance are connected through the
graph optimization, thus requiring map to map registration.
This accounts for time growth after adding additional scans.
However as a robot would not remain in a small area, the
number of close key-views would eventually plateau and result
in steady 3D scan addition times.

TABLE III. ATE ERROR METRICS FOR LOCALIZATION AND
GRAPH-SLAM DURING SIMULATION.

Metric Localization Error (m) Graph-SLAM Error (m)

RMSE 0.084 0.037
Mean 0.069 0.034
Median 0.060 0.033
Std 0.072 0.015
Min 0.001 0.009
Max 0.397 0.061
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Fig. 8. Time for adding a 3D scan given previous key-view count.
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Fig. 9. Multi-resolution surfel map construction time.

Localization using the particle filter is limited by the
laser scanner data acquisition rate. Using the Hokuyo laser
scanner running at 40 Hz, the localization rate was observed
between 30 Hz and 35 Hz depending upon the number of valid
measurements from the scan lines.

VI. CONCLUSION

In this paper an approach for mapping and 6D pose tracking
using a single laser scanner was presented. By combining
multi-resolution surfel maps to efficiently represent the envi-
ronment and a global optimizing SLAM graph used to align
point cloud data, this method allows for robust and memory-
efficient mapping suitable for path planning, object recog-
nition, and other perception tasks. Real-time tracking using
individual laser scans is possible through particle filtering and
an allocentric multi-resolution surfel map.

Both real and simulated experiments have been demon-
strated to successfully perform mapping and tracking tasks.
During real-environment experiments, accuracy from SLAM-
graph registration estimates had a maximum error of 13
centimeters, while maintaining an average of 7 centimeters
and 3 centimeters in the garage and courtyard experiments
respectively.

Accuracy within the simulated environment using noisy
odometry and sensor readings indicates robustness within the
framework, as an average SLAM estimate had an average of
ca. 3 centimeters error.

Future work includes integrating occupancy mapping for

an improved observation likelihood model and integrating
further sensors into the framework. Additionally, while the
current implementation is heavily parallelized, research on the
applicability of GPUs to further reduce processing time is of
interest. Similarly, the integration of additional sensors within
the framework could lend itself well to future research topics.
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