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Abstract— Much work on the detection and pose estimation
of objects in the robotics context focused on object instances.
We propose a novel approach that detects object classes and
finds the pose of the detected objects in RGB-D images. Our
method is based on Hough forests, a variant of random decision
and regression trees that categorize pixels and vote for 3D
object position and orientation. It makes efficient use of dense
depth for scale-invariant detection and pose estimation. We
propose an effective way to train our method for arbitrary
scenes that are rendered from training data in a turn-table
setup. We evaluate our approach on publicly available RGB-D
object recognition benchmark datasets and demonstrate state-
of-the-art performance in varying background and view poses,
clutter, and occlusions.

I. INTRODUCTION

Unstructured environments pose severe challenges to the
perception capabilities of autonomous robots. One major
theme in mobile manipulation is the detection and localiza-
tion of objects that shall be handled by the robot. Much
previous work within this context has considered the detec-
tion and pose estimation of specific object instances. If a
robot, however, needs to perceive objects within classes that
contain a large amount of instances, shallow object instance
detection pipelines do not scale well. Moreover, unknown
instances cannot be detected. Efficient detection pipelines
at the instance as well as category level can be obtained
by grouping the instances in a class taxonomy [1], [2].
Detection can then be successively refined from coarse object
categories up to the individual instance. Perceiving object
classes, however, imposes challenges over object instances,
since the detection must handle intra-class variation but still
needs to distinguish view poses onto the objects.

In this paper, we propose a novel approach to object-
class detection and pose estimation in RGB-D images. We
utilize Hough forests, a learning architecture that combines
discriminatively trained ensembles of random regression
trees with the Hough transform. The random trees not only
model the probability distribution over class labels an image
pixel belongs to, but also cast votes for the pose of the object.
On the category level, we detect a canonical pose for the
instances of an object class, which can be further used for
decision-making or to initialize tracking.

We extend Hough forests to efficiently operate on RGB-D
images. Exploiting dense depth, we normalize image features
in the decision cascade of the trees for scale changes. The
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Fig. 1. Object-class detection and 6-DoF pose estimation in RGB-D
images. We discriminatively train random decision forests to classify pixels
into object classes (upper right) and to vote for the 3D position of objects
(lower right). The pose of the detected object is estimated in a second stage
of Hough voting for the position clusters (lower left).

use of depth also allows for incorporating the right scale
directly into the position and orientation votes of the pixels,
making scale as an additional voting parameter obsolete.
Complementarily, dense estimates of the local surface ori-
entation at each pixel allow for view-point invariant voting
for the object pose. Finally, we utilize 3D information in
training to render arbitrary amounts of novel training scenes
that capture background variability, clutter, and occlusions in
real imagery.

We evaluate our approach on publicly available RGB-
D objects and scenes datasets. We demonstrate that our
approach outperforms Hough forests that operate on RGB
images only and would vote for the 2D pixel location of the
object. Furthermore, our method recovers the pose of the
objects with good accuracy.

II. BACKGROUND

A. Instance-Level Object Detection and Pose Estimation

The development of local scale-invariant features has been
a leap forward in the detection and pose estimation of
object instances in intensity images. Frameworks such as
MOPED [3] that are based on SIFT [4] or SURF [5] features
work well for textured objects, but face difficulties if the
objects are less textured. For 3D data, various local point
features have been proposed that describe shape through the
local constellation of points and surface normals. Prominent
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examples are spin images [6] and signatures of histograms
of local surface orientation (SHOT) [7]. Variants of point
feature histograms (PFH) [8], [9], [10] have been used to
describe and detect whole objects or parts within segments.
Recently, point-pair features (PPF) [11], [12] have been
demonstrated as a robust approach to detecting objects in
3D measurements. PPF methods find locally consistent ar-
rangements of surfel pairs between model and scene through
either Hough voting [11] or RANSAC [12]. Our approach
discriminatively trains a codebook of point-pair-feature votes
to estimate the pose of object classes within a Hough forest
framework.

B. Category-Level Object Detection and Pose Estimation

In recent years the computer vision community developed
powerful object-class detection methods.

The Implicit Shape Model (ISM) of Leibe et al. [13] com-
bines the ideas of visual appearance codebooks and Hough
transform. Each visual word is augmented with the spatial
distribution of the displacements between the object center
and the respective visual word location. At detection time,
descriptors are matched with visual words that cast votes
for the object center. Deformable Parts Models (DPM) [14]
make the arrangement of parts explicit in a star-model.
The appearance of parts is encoded using Histograms of
Oriented Gradients (HOG) [15]. The authors propose a latent
SVM formulation to discriminatively train the model. Hough
forests learn a dense pixel-wise codebook in a discriminative
way within a random forest framework. A forest consists
of multiple random decision trees that decide on the local
appearance of a pixel in binary decision cascades. At the
leaves of the trees, it stores the spatial distribution of relative
object locations towards the training pixels, which are used
to cast location votes during recall. The learning objective
separates classes and produces Hough votes that focus well.

Detecting objects and concurrently estimating their pose
at the category level recently received much attention in
the computer vision community. The approaches can be
classified into methods along two dimensions that estimate
discrete or continuous view poses and methods that utilize
only RGB images or that exploit dense depth.

Discrete vs. continuous pose estimation. Many ap-
proaches learn detectors for the object class in discrete view
poses [16], [2], [17]. Interpolation techniques need then to
be applied to obtain continuous pose estimates [18], [19].
Sun et al. [20] apply depth registration to find an accurate
pose in a post-processing step. Some approaches extract
local image features either from 3D models obtained through
Structure-from-Motion [21] or from views synthesized from
CAD models [22], [23], and model the 3D constellation of
the features. We propose a method that is discriminatively
trained to cast continuous votes for the 3D location and
orientation of objects. While our method is trained from
discrete views, we exploit local shape properties to transform
the orientation vote of a pixel into a reproducible view-
pose-invariant local coordinate frame to cast continuous pose
votes.

Exploiting dense depth. Only few approaches in the
computer vision literature make additional use of dense
depth. Sun et al. [20] propose Depth-Encoded Hough Vot-
ing (DEHV). They formulate a probabilistic model for joint
object detection and shape recovery that utilizes dense depth,
but is also applicable if no depth is available during recall. To
estimate the pose of the object, a 3D model is registered to
the recovered shape. Our approach directly votes for the pose
of the object, utilizing local shape properties, and consistency
of the votes is integrated as a discriminative training objective
of our random forest. We also propose to use depth as a
feature cue but scale-normalize the features using depth. In
this way, the random forest is not required to capture multiple
scales within its codebook.

Wang et al. [24] use depth to improve Hough forests
during the training stage. In addition to 2D offset uncertainty,
they also incorporate 3D offset dispersion as a split measure
into the Hough forest framework. They incorporate votes
from the spatial context of objects and use depth to store
the relative scale of the votes with respect to the object size.
Since depth is not used during recall, the votes have to be
cast across multiple scales. This approach only votes for the
object location and a bounding box, while ours retrieves the
full 3D position and orientation of the object.

Wohlkinger et al. [25] propose 3DNet, a large-scale object-
class recognition method based on CAD models of instances.
They train classifiers on 3D descriptors extracted from syn-
thetic views that are generated using the CAD models. Our
approach does not require CAD models of the objects and
makes use of combined texture and shape features that are
discriminatively trained for each object class.

III. OBJECT-DETECTION IN RGB-D IMAGES
USING HOUGH FOREST

Hough forests are ensembles of random decision trees.
Each tree maps training pixels in an image to one of its leaves
through a cascade of binary decisions over local appearance.
These leaves can be seen as a discriminative appearance
codebook of visual words. Each leaf stores the distribution
of class labels that reached it. Additionally, the leaves carry
spatial information about the object, e.g., of the relative
location of the object center. During recall, this information
is used to classify test pixels into object classes and to cast
votes in a Hough space parametrized in object location, scale
or orientation.

A. Training

Training data. In a Hough forest F , each of the decision
trees T is built using a set of sampled image pixels S0 =
{(I(y), c(y),d(y),ny)}, where I = {I 1, I 2, . . . , IN} is
the appearance of the training image, I j is the jth appearance
channel, c(y) ∈ C : {0, 1} is a class label (0 for negative
sample and 1 for positive sample), if p(·) defines 3D
point corresponding to 2D pixel then, d(y) is the relative
3D location of an object center to the sampled training
point p(y) and ny is a normal vector at p(y). Note that d(y)



is undefined in case of image pixels not belonging to an
object class.

Tree construction. During training, each node n is as-
cribed a pixel-pair-based binary test t : y → {0, 1} over
an appearance channel of the image to separate the training
samples y ∈ Sn that reach the node. For appearance
channel I j and offset vectors u1, u2, the test tj,u1,u2,τ (y)
is then defined as:

tj,u1,u2,τ (y) =

{
0, if Ij(y + u1)− Ij(y + u2) < τ
1, otherwise.

(1)
It compares the value of a pixel pair in one of the appearance
channels with some threshold τ .

At each node n, for all the positive class samples in
the node Pn = {y ∈ Sn|c(y) = 1}, we also compute a
transformation matrix from the local frame of the query pixel
to an object frame. For each training sample y and point at
the two offsets y + uk, k ∈ {1, 2}, the local frame of the
query pixel in the camera frame C, CTk

y = [CRk
y,
Ctky] =

[lk,mk,nk,
Ctky] is calculated as

lk =
ny × p(uk)

||ny × p(uk)||2
,

mk = lk × ny,

nk = ny,
Ctky = d(y). (2)

If we denote CTO as frame of an object in camera frame
then the relative transformation from object frame to query
pixel frame yTk

O is.

yTk
O = (CTk

y)
−1 × CTO, (3)

Hough forests are trained in a supervised way. At each
node, a pool of binary tests {t} is generated by randomly
sampling I j , u1, u2, and τ . The idea is to pick the test
in a way such that uncertainty in the class label and object
pose votes decreases. In order to minimize the class label
uncertainty, a well known entropy measure is used, which is
defined over a set of image pixels as:

M1(n) = −
1∑
l=0

log

(
|{y ∈ Sn|c(y) = l}|

|Sn|

)
. (4)

During recall, displacement vector d(y) and rotation ma-
trix yRj

O, saved at the reached leaf node, vote for object
location and orientation, respectively. Hence it is important
to minimize the uncertainty of votes coming from a single
leaf node. For the displacement vector, we use the same
dispersion (uncertainty) measure as in [26].

M2(n) =
∑
y∈Pn

∥∥∥∥∥∥d(y)− 1

|Pn|
∑

y′∈Pn

d(y′)

∥∥∥∥∥∥
2

. (5)

While training, one of the above mentioned measures is
chosen randomly at each node.

Leaf information. During training each leaf-node l saves
information about the training samples reached to that node.

Fig. 2. We construct local reference frames from the local surface
normal ny at pixel y and the directions towards the offset pixels uk.
All local frames differ only by an angle around the normal. This property
allows for efficiently saving relative orientations towards the object rotation
by angles for training examples.

In our case, relative class frequencies Cl, displacement vec-
tors Dl and orientations Rl are saved.

The orientation votes are not only cast for the two point-
pairs

(
y,y + u1/2

)
of the split test at the leaf node, but

from the point-pairs of all the tests along the path of the
training samples from the root to the leaf. Since the local
frames at the point pairs differ only by an angle around the
normal ny at y (Fig. 2), we can store these 2× d rotations
memory-efficiently by one reference rotation y,0Rk

O for the
orientation at the root node and angular differences αky,n
around ny for each other point-pair in the decision cascade,
i.e.,

y,nRk
O = y,nRy,0 × y,0Rk

O, where
y,nRy,0 = R

(
ny, α

k
y,n

)
.

(6)

B. 6-DoF Object Detection

During recall, each image pixel ŷ traverses through all
the trees t ∈ {1, . . . , N} and the class probability of the
image pixel is computed by averaging the frequency of class
labels at the reached leaf nodes lt(ŷ) that have been recorded
during training, i.e.

p(c | F , ŷ) =
1

N

N∑
t=1

p(c | lt(ŷ)), (7)

where p(c | lt(ŷ)) = Clt(c) is set to the class frequency in
leaf lt of tree t.

Detection is done in two phases. In a first phase, each
reached leaf node casts probabilistic votes for the object
position in a 3D Hough space and maxima are sought.
Training samples which contributed to position maxima then
again vote for the orientation of the object in a 4D Hough
space, parameterized in quaternions.

We discretize the 3D Hough space into image locations
and scales. The latter is represented in inverse depth to model
higher position accuracy at closer distances. For each relative
object position stored in the leaf that has been reached by
pixel ŷ, we add the weight

w = Cl(c) · dist(ŷ) (8)

to the corresponding bin in Hough space. The weighting is
proportional to the relative class frequency and scaled by the



(a) (b) (c) (d) (e)
Fig. 3. During detection, for each test pixel in test image (a), class probability (b) is computed, pixels labeled as object class then vote for object location
in 3D Hough space (c) and maxima are sought. Votes those contributed to found maxima then again vote for object orientation in the 4D Hough space
corresponding to each maxima (d). Similarly maxima in orientation Hough space is searched. Once complete 6-DOF object pose is found, pre-computed
bounding boxes are projected (e).

distance towards the pixel to account for the projected size
of the object in the image.

The orientation votes are computed for all nodes that
pixel ŷ has passed on its path from root to leaf in each
tree. At the root node, the orientation votes CRk

O = CRk
ŷ,0×

y,0Rk
O are computed from the local frames for the offsets k ∈

{1, 2}. All other nodes vote for the orientations
CRO = CRk

ŷ,n ×R
(
ny, α

k
y,n

)
× y,0Rk

O

(9)

which are recovered from the relative rotations R
(
ny, α

k
y,n

)
towards the reference orientation in the root.

Once a full 6-DoF pose is detected, a pre-measured 3D
bounding box is projected into the image (see Fig. 3).

C. Features

We train our binary decision functions at each node
on different appearance channels such as color in Lab
space, 1st- and 2nd-order gradients in x and y dimensions on
the intensity channel, depth, surfel-pair features, and HoG.
HoG channels are produced as a soft bin count of gradient
orientation in a depth-normalized window around each pixel.
To boost invariance against noise and disturbance, we further
perform min and max filtration with depth-normalized kernel-
size in a local neighborhood.

Depth. It has been observed that depth cues can improve
object detection tremendously [27], [28]. It enriches the in-
formation about object in terms of geometry, shape, contour
etc. We thus use depth as an additional appearance channel.

Unlike [26], we use depth-normalized offset vectors in
binary node tests. This way, the size of the offset vectors
is automatically adjusted according to the scale of objects in
the image, which obviates the need of presenting object class
training images at multiple scales and handles variable scales
efficiently during recall. Using the depth information at each
pixel Id(y), the binary test function Eq. (1) is changed as
below:

tj,u1,u2,τ (y) ={
0, if Ij

(
y + u1

Id(y)

)
− Ij

(
y − u2

Id(y)

)
< τ

1, otherwise.
(10)

Surfel-pair features. The availability of dense depth
images allows incorporating geometry features into the de-
cision cascade. For example, a soda can has a cylindrical

shape whereas cereal boxes are cuboid. In order to capture
such characteristic shape, we include tests on 4 dimensional
surfel-pair features [8] as additional node splitting criteria.
These features characterize the relative position and local sur-
face orientation between two points in the scene. For any two
points p1 and p2 and their corresponding normals n1, n2,
the surfel-pair feature is computed as:

S(p1,p2) = (‖d‖2 ,∠(n1,d),∠(n2,d),∠(n1,n2)) , (11)

where d := p2−p1. If one channel of the surfel-pair features
is chosen for the test function, the function thresholds on the
value of the feature directly through

tj,u1,u2,τ (y) ={
0, if Sj

(
p
(
y + u1

Id(y)

)
,
(
y − u2

Id(y)

))
< τ

1, otherwise.
(12)

IV. GENERATION OF RICH TRAINING DATA

Visual object detection in unstructured environments is
challenging due to background variability, clutter, occlusions,
changes in illumination, different viewpoints and variable
scales. It is important to capture these variations during
training to achieve robustness of the system. However, man-
ually annotating a rich training dataset with large variety
in scenes with ground truth object detections and poses
is barely feasible. Instead we propose to make use of a
simple controlled training setup that provides ground truth
conveniently, and to artificially render a variety of scenes
from this data.

We obtain many view points onto the objects in a turn-
table setup with varying angles in pitch and yaw. Object
segmentation and ground truth pose are easily obtained
through segmenting the object above the turn table plane
and utilizing knowledge about the turn-table rotation and
the relative location and orientation of the camera towards
the turn-table. The object’s 3D center and bounding box is
found through overlaying object segments from 360◦ viewing
directions into a single point cloud and measuring extents of
the points.

To generate new training scenes, we extract RGB-D seg-
ments of the objects from the turn-table views. We render
table planes with varying texture, color, and lighting con-
ditions, and distribute the object views on the plane. For
training examples for the object classes, the object to be
trained is placed at its original location and orientation in the



Fig. 4. We render new RGB-D training images by increasing context
information and introducing intensity variations similar to real world scenes

turn-table scene. To simulate clutter and occlusions, we place
object views of other classes around the object. Example
images for the background class are simply populated with
views of all other object classes. Although our approach does
not provide a photo-realistic rendering, our goal is to achieve
a similar statistical distribution in intensity, color and depth
as in natural scenes. Fig. 4 shows training images rendered
with our approach using the RGB-D Objects Dataset [29].

V. EXPERIMENTS

TABLE I
AVERAGE ACCURACY AT EER FOR DIFFERENT CHANNEL

COMBINATIONS (C: COLOR, D: DEPTH, S: SURFEL-PAIR, H: HOG) AND

ANGULAR DEVIATION ON THE SCENES SEQUENCES. SEE TEXT FOR

DETAILS.

category
appearance channel c+d angle

c+d c+d+s c+d+s+h c+h [26] deviation(◦)
(%) (%) (%) (%) (µ± σ)

bowl 66 68 49 21 15.98 ± 18.55
cap 64 62 64 8 17.86 ± 17.15

cereal box 83 77 80 20 13.91 ± 10.34
coffee mug 44 45 43 17 13.22 ± 13.79
flashlight 64 66 60 16 12.35 ± 9.86
soda can 65 65 66 27 12.0 ± 11.21

We evaluate our approach on the publicly available RGB-
D Objects and Scenes Datasets [29]. The Scenes Datasets
contain RGB-D images of annotated objects in the 6 classes
bowl, coffee mug, cap, cereal box, flashlight, and soda can1.
In the Objects Dataset, the objects are placed on a turn-table
and viewed in 3 pitch angles (30◦, 45◦, 60◦) and approx. 10◦

steps in yaw. The same object instances have been placed in
scene imagery for the Scenes Dataset. It comprises video
sequences of common indoor environments, including office
workspace, kitchens, and meeting rooms.

Our training settings are as follows: Every class-specific
Hough forest consists of 5 decision trees. For each tree we

1We only evaluate on these 6 classes for this reason.
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(e) Flash-Light (f) Soda-Can
Fig. 5. Precision recall curves for the objects: (a) Bowl, (b) Cap, (c)
Cereal-Box, (d) Coffee-Mug, (e) Flash-Light and (f) Soda-Can, computed
for all the eight RGB-D Scene Datasets [29]. All plots are computed for
color + depth channel combination

randomly choose 250 images of the object class and 250
images of background. The background images are mixed
from rendered scenes (Sec. IV) and real scene imagery from
the datasets that do not contain the objects to be classified2.
We choose 1000 and 1000 random pixels from each image,
respectively. At every node, 2000 tests are generated, while
the trees are trained up to a maximum depth of 20.

During detection we discretize scale into 10 bins for the
3D position Hough space. We count detections ( with score
higher than a set threshold ) as true positives, if its bounding
box overlaps by at least 50% with the ground truth. Each
ground truth bounding box may only be associated once with
a detection. For our 3D approach, we determine an enclosing
2D bounding box on the projected corner points of the found
3D bounding box. To generate a fair comparison with the
method in [26], we augmented their approach to suppress
local submaxima within the bounding boxes of strongest
maxima detections.

We evaluate precision and recall for varying detection
threshold on the RGB-D Scenes dataset [29] (Fig. 5). In
Table I, the average accuracy at equal precision/recall error

2Note that our results are not comparable to [2] since we do not evaluate
on the turn-table scenes.



rate (EER) over all sequences is tabulated for different
channel combinations and compared to the method in [26].
The last column shows mean and standard deviation in the
upward orientation estimate. We observe that our method
outperforms pure RGB based object recognition as in [26]
with significant margin. The depth channel introduces es-
sential information about object shape. It allows spatial
information to be represented in 3D, which reduces the
smearing of votes in Hough space and increases the overall
recognition rate. Among all the objects we used for testing,
performance of coffee-mug is lowest mainly due to its high
shape resemblance with other object categories such as
soda-can and bowl. HoG channels are highly informative
about object shape near object boundaries. We expect the
performance of surfel-pair features or HoG to make a dif-
ference with larger numbers of sample pixels and sample
node tests during training. Such large sample densities are
currently prohibitive by the time-expensive training with
our CPU implementation. For low number of samples the
addition of HoG channels seems to reduce the probability
of selection of other useful channels during the node test
optimization and hence reduces the performance. A faster
GPU implementation could make HoG channels applicable.
The size of the objects also influences detection rate as
for large objects, detection is achievable even at further
distances, e.g. for the cereal-box. Our method provides good
estimates of object orientation with an average mean error
of ca. 14◦. It could therefore be useful for initializing a pose
optimization method such as ICP or pose trackers. Naturally,
objects with spherical shapes, such as the caps or bowls, yield
higher angular deviation.

VI. CONCLUSIONS

In this paper, we proposed a novel approach to object-class
detection and continuous pose estimation in RGB-D images.
We discriminatively train random decision forests to classify
pixels and to vote for 3D object location and orientation. We
exploit depth at various stages of the processing pipeline. For
training, we extract object views and render new training
scenes with varying background, clutter, lighting changes,
and occlusions. The features used in the random decision
forest are made scale-invariant through depth-normalization.
We furthermore use depth cues to make use of the geometry
information contained in the RGB-D images for detection.
Finally, 3D orientation votes are cast from local reference
frames that are created from local surface normals and 3D
point configurations.

Our experiments demonstrate that our approach yields
good accuracy in detecting objects and recovering their pose.
It well compares with a state-of-the-art approach to object-
class detection that only utilizes RGB information during
recall.

In future work, we will evaluate our approach for scalable
multi-class detection that detects classes in a taxonomy.
For scalable training on large datasets or on-line interactive
learning of the trees, we will pursue a GPU implementation
of the method.
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