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Abstract— Autonomous driving perception faces significant
challenges due to occlusions and incomplete scene data in the
environment. To overcome these issues, the task of semantic
occupancy prediction (SOP) is proposed, which aims to jointly
infer both the geometry and semantic labels of a scene from
images. However, conventional camera-based methods typically
treat all categories equally and primarily rely on local fea-
tures, leading to suboptimal predictions, especially for dynamic
foreground objects. To address this, we propose Object-Centric
SOP (OC-SOP), a framework that integrates high-level object-
centric cues extracted via a detection branch into the semantic
occupancy prediction pipeline. This object-centric integration
significantly enhances the prediction accuracy for foreground
objects and achieves state-of-the-art performance among all
categories on SemanticKITTI.

I. INTRODUCTION

In current commercial autonomous driving frameworks,
vision-only solutions primarily rely on multiple cameras
mounted around the vehicle to perceive the surrounding
environment. This approach not only mimics the way human
drivers depend on vision but also significantly reduces system
costs by eliminating expensive sensors like LiDAR. Such
cost efficiency, combined with the rich contextual and high-
resolution data captured by cameras, offers a promising path-
way toward human-level driving capabilities and smart sys-
tems in a dynamic world. However, vision-only approaches
face significant challenges in 3D scene understanding. Al-
though state-of-the-art 2D semantic segmentation models
can extract detailed pixel-wise semantic information from
images, the absence of explicit depth information makes it
difficult to accurately reconstruct 3D geometry and effec-
tively map semantics into 3D space. Moreover, occlusions
and perspective distortions inherent in single-view imaging
result in large portions of the scene being partially invisible.
This gap becomes especially challenging when trying to
predict the structure and behavior of dynamic foreground
objects, such as vehicles, pedestrians, and cyclists, which are
critical for safe navigation in dynamic driving environments.

Monocular 3D Semantic Occupancy Prediction (SOP) [1]–
[4] aims to infer a 3D semantic occupancy grid from a 2D
image, effectively representing the geometry and semantics
of the environment around the vehicle. Each spatial location
in the grid records its occupancy and semantic information,
enabling comprehensive environmental perception. However,
the inherently ill-posed nature of this task poses significant
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Fig. 1: OC-SOP predicts a semantic occupancy volume from a
single image using a 2D-to-3D feature lifting and completion
pipeline, while enhancing foreground object-centric awareness via
explicit extraction of bounding box parameters. Parts of the output
scene lie outside of the field of view (FoV), which are visualized
as shadow areas.

challenges in diverse driving scenarios. Despite these diffi-
culties, SOP has attracted significant attention for its poten-
tial to enhance the 3D perception capabilities of autonomous
vehicles.

Traditional semantic occupancy prediction methods
largely extend the 2D semantic segmentation paradigm into
the 3D domain. Approaches such as U-Net–based hierar-
chical feature extraction or Transformer-based self-attention,
which capture voxel-to-voxel dependencies, primarily rely on
local feature extraction and contextual reasoning. Traditional
methods treat each category equally by merely adjusting
category weights based on voxel counts without additional
design, resulting in significant limitations. In autonomous
driving scenarios, background categories (e.g., roads and
buildings) typically yield better prediction results due to their
simple shapes, consistent textures, and spatial continuity.
In contrast, foreground objects (e.g., vehicles, pedestrians,
and cyclists) are much more challenging to predict because
they exhibit complex geometries and diverse appearances.
Moreover, since these foreground objects actively participate
in driving scenarios and display far more intricate behaviors
and interactions, accurately predicting them is critical for
safe driving.
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To address these challenges, we propose Object-Centric
SOP (OC-SOP), a framework that incorporates high-level
object-centric awareness into the SOP pipeline. As shown in
Fig. 1, object parameters such as pose and size provide robust
constraints on object perception, ensuring that the predicted
boundaries more closely align with the actual object dimen-
sions. As a result, OC-SOP significantly improves object
prediction accuracy, reduces the misclassification of empty
space as part of adjacent objects, and mitigates distortions
caused by camera effects. These enhancements ultimately
boost the system’s overall environmental understanding and
decision-making capabilities.
Our main contributions in this paper are:
• We introduce OC-SOP, a novel framework for 3D

semantic occupancy prediction (SOP) that leverages
high-level object-centric awareness by extracting object-
centric cues using a detection-based branch and integrat-
ing these cues into the main completion branch.

• We propose a novel transformer module that tokenizes
bounding box parameters into queries, which are then
fused into the latent space of the completion U-Net.

• OC-SOP significantly improves the prediction accuracy
for foreground objects and achieves state-of-the-art per-
formance in camera-based semantic scene completion
(SSC) on SemanticKITTI.

II. RELATED WORK

A. Camera-based 3D Reconstruction

Camera-based 3D perception aligns with the natural hu-
man ability to form a holistic scene understanding from
rich visual information. It is also increasingly favored in
autonomous driving due to its cost-effectiveness. Early multi-
view reconstruction [5]–[8] and SLAM [9], [10] studies
estimated 3D geometry from corresponding 2D feature points
using explicit mathematical constraints. However, their re-
liance on multi-view observations restricted agent movement
and limited scene reconstruction quality. Eigen et al. [11] first
introduced end-to-end monocular depth estimation using a
CNN, enabling 3D reconstruction from a single 2D image.
This addressed the ill-posed problem of 2D-to-3D recon-
struction. Inspired by [11], some works focus on object-level
single-view 3D reconstruction [12]–[15], typically employ-
ing an encoder-decoder structure to learn explicit or implicit
geometry representations. Dahnert et al. [16] expands this
to scene-level reconstruction by lifting 2D panoptic features
into 3D space. However, since single-view reconstruction
focuses only on visible regions, it exhibits weak performance
in predicting occluded areas, significantly hindering holistic
3D scene understanding. To address this, scene completion
is proposed to predict unseen geometry based on observable
information.

B. Semantic Occupancy Prediction (SOP)

Although there is some debate within the community
regarding the definition of Semantic Occupancy Prediction
(SOP), the widely accepted view is that SOP aims to predict
occupancy status and semantics within a grid-based scene

volume, covering both visible and occluded areas [17]. Based
on the input modality, SOP can be categorized into LiDAR-
based SOP [18]–[20], Camera-based SOP [2], and Fusion-
based SOP [21], among others. A broader task is Semantic
Scene Completion (SSC), which jointly predicts geometry
and semantics for both visible and occluded regions [22],
[23]. However, scene representation is not limited to grid-
based formats; it also includes explicit representations like
point clouds [24] and meshes [25], as well as implicit
representations such as Neural Radiance Fields (NeRF) [26].
Voxel-based representations are an effective way to model 3D
scenes, as they discretize space into voxels, each storing at-
tributes like occupancy, semantics, or learned feature vectors.
Due to their compatibility with 3D convolutional operations,
early LiDAR-based SOP [18], [19] methods commonly used
U-Net architectures to predict occluded regions. Later, the 3D
completion U-Net was extended to camera-based approaches.
MonoScene [2] backprojects image features along optical
rays to construct an initial voxel representation, which is
then refined using a 3D completion U-Net. VoxFormer [27]
introduced a Transformer-based approach, encoding spatial
information as queries and context as key-value pairs, lever-
aging deformable attention for 3D-SOP.

Most SOP methods focus on scene-level occupancy, treat-
ing background and foreground objects similarly. However,
foreground objects exhibit fine-grained shapes and com-
plex dynamics, making them more challenging for models
to learn. Our work creates object-centric representations
through an object detection branch, enabling the network
to better capture shape details and refine object category
predictions.

C. Object-Centric Perception

Human perception is fundamentally object-centric, as
our cognitive system naturally focuses on distinct objects,
which forms the basis for advanced cognition and effec-
tive interaction with the world. Recent works have ex-
ploited this principle in both 3D object detection [28] and
video prediction. For instance, inspired by the end-to-end
paradigm of DETR [29], DETR3D [30] establishes learn-
able 3D object queries that link 2D images via camera
projection matrices, while OCVP [31] decomposes video
frames into object components and models their dynamics
and interactions to generate future video frames. Leveraging
object-centric awareness for semantic occupancy prediction
is a novel direction. Unlike object detection—which outputs
coarse bounding box representations—semantic occupancy
prediction (SOP) produces finer, voxel-level semantic maps.
Moreover, compared to video prediction, which typically
focuses on visible regions, SOP must also predict occupancy
in unseen or occluded areas, making the incorporation of
object-centric awareness even more critical for accurate
scene understanding.

III. METHOD

We consider a monocular 3D Semantic Occupancy Pre-
diction (SOP) task that jointly predict the occupancy status



Fig. 2: The overall pipeline of OC-SOP can be divided into a main prediction branch (top) and an object detection-based branch (bottom).
In the main branch, the RGB image is first fed into an encoder with dual decoders, where one decoder estimates depth and the other
computes semantic content features. Next, a feature lifting module maps the content features into 3D space, and the resulting 3D features
are processed by a 3D semantic completion U-Net that predicts the full semantic scene volume. In the object detection branch, the 3D
semantic features are fed to a detection head to generate box proposals. Non-maximum suppression (NMS) is applied to select positive
boxes. These positive boxes are then tokenized into queries via an MLP and fused into the completion network’s latent space through
deformable cross-attention.

and semantic label of every voxel in a scene. In this task,
a single RGB image XRGB is used as input to produce a
3D semantic volume Ŷ defined over a target space S with
dimensions (H,W,D). Every voxel in Ŷ is assigned one
of M + 1 labels from the set C = {c0, c1, . . . , cM}, where
c0 represents empty space and c1, . . . , cM correspond to the
semantic classes.

As shown in Fig. 2, our dual-branch network architec-
ture [32] comprises a main prediction branch and an object
detection-based branch, which share a common feature lift-
ing backbone. In the backbone, we adopt an encoder with
dual decoders (EDD), where one decoder estimates depth and
the other computes semantic content features. The semantic
content features, combined with the estimated depth, are then
fed into a feature lifting module that maps the semantic
features into 3D space.

The resulting 3D semantic features are subsequently pro-
cessed by both branches. The main branch employs a 3D
semantic completion U-Net to predict the full semantic
scene, while the object detection branch utilizes an object
detection head to generate box proposals for the individual
objects in the scene. These object detections are later fused
into the latent space of the main branch, thereby enhancing
the object-centric understanding.

A. Main Prediction Branch

Our main prediction network is composed of a feature
lifting backbone and a 3D semantic completion U-Net, which
represents the classic paradigm for vision-based semantic
occupancy prediction originally proposed by Cao and de
Charette in MonoScene [2]. MonoScene suffers from depth
ambiguities caused by simply projecting 2D features along
camera rays, which limits its ability to capture precise depth
information. To address these issues, we enhance feature
extraction by designing an encoder dual decoder (EDD).

Our encoder dual decoder (EDD) architecture disentan-
gles semantic and geometric reasoning into two dedicated
decoding branches. Starting from the shared 2D encoder
feature map, one decoder branch extracts high-level semantic
content, while the other estimates a dense per-pixel depth
distribution over discretized depth bins. These two outputs
are then combined through a depth-aware soft lifting pro-
cess, where each 2D semantic feature is projected along
its corresponding viewing ray, weighted by the predicted
depth probabilities. This lifting operation is not limited
to a single scale, but is performed hierarchically across
multiple decoder layers, enabling the network to capture
spatial correspondences at different levels of context.

Finally, the robust 3D features are fed into the 3D semantic
completion U-Net, which predicts the complete semantic
scene, including occluded regions, thereby significantly miti-
gating the camera effect. Our experiments reported in Sec. IV
show that even without fusing object-centric awareness,
our approach achieves improved performance compared to
MonoScene.

B. Object Detection Branch

We feed the 3D semantic features also to an object
detection network to detect individual objects in the scene.
The detection network predicts a set of box proposals B ∈
RN×D = {b0,b1, . . . ,bN}, where each proposal bi is
a D-dimensional vector representing the box parameters,
formulated as bi = [pi, si, sin θ, cos θ, ci, oi]. Here, pi ∈ R3

denotes the center position, si ∈ R3 represents the size,
θ ∈ R is the orientation (expressed via its sine and cosine),
ci ∈ RC indicates the class, and oi ∈ R is the objectness
score.

Inspired by center-based 3D object detection such as
VoteNet [33] and PointRCNN [34], we adopt a lightweight
detection head operating on lifted voxel features. The input



to the detection module is a 3D feature volume F3D ∈
RC′×D′×H′×W ′

, where D′ is the vertical dimension, and
H ′ and W ′ correspond to the front-back and left-right axes
in the bird’s eye view (BEV), respectively.

We first perform average pooling along the vertical axis
to obtain a BEV representation FBEV ∈ RC′×H′×W ′

, which
is then processed by a shallow 2D CNN for spatial feature
extraction. From the resulting BEV feature map, we generate
a dense objectness heatmap H ∈ R1×H′×W ′

, indicating the
likelihood of object centers at each spatial location. Based
on the top-K peaks in this heatmap, we select candidate
positions and apply two independent 2-layer MLPs at those
locations: one for regressing the 3D bounding box parameters
(center, size, and orientation), and the other for predicting
objectness scores and semantic class probabilities.

For each candidate predicted from the heatmap, we assign
a positive label if its center is within 1 m of any ground-
truth object center, and a negative label if it is farther than
2 m, ensuring that proposals with different labels contribute
appropriately to the respective loss computations.

The detection loss is given by:

Ldet = Lobj + Lreg + Lcls, (1)

where the objectness loss Lobj uses cross-entropy to op-
timize the model’s ability to distinguish between positive
and negative samples. Negative proposals, which do not
have a corresponding ground truth box, are only used to
compute the objectness loss, while their box parameters and
class components are ignored. Proposals that are neither
clearly positive nor negative do not contribute to the loss.
For positive proposals, we compute both a regression loss
Lreg and a semantic classification loss Lcls. The regression
loss, implemented using Smooth L1, measures errors in the
predicted box parameters (center position, size, and orienta-
tion), with different weights assigned to each component to
balance their contributions. The semantic classification loss
uses multi-class cross-entropy to ensure accurate category
prediction.

C. Box Feature Fusion

After obtaining a set of box proposals, we apply non-
maximum suppression (NMS) to select the final box features.
In our approach, each selected box proposal is first encoded
into a query vector using an MLP. For a given query q, we
define K sampling points in the latent space, where each
sampling location is determined by a base position p plus
a learned offset ∆pk (for k = 1, . . . ,K). The deformable
attention mechanism then computes the output as follows:

Output(q) =

K∑
k=1

Ak V
(
p+ ∆pk

)
, (2)

where Ak denotes the attention weight at the kth sampling
point and V (·) is the value function that extracts the corre-
sponding feature from the latent space. This output is then
fused into the latent space of the 3D semantic completion U-
Net (via additional convolutional layers or residual fusion),

Fig. 3: Three-stage training strategy of OC-SOP.

thereby integrating complete query information with adap-
tively sampled latent features for effective fusion.

D. Progressive Multi-task Training Strategy

Considering that our framework exhibits multi-task char-
acteristics, in which the feature lifting backbone is utilized
by both the main and detection branches, we adopt a three-
stage training strategy, as shown in Fig. 3.

In Stage 1, we disable the detection branch and train only
the feature lifting backbone along with the 3D completion
U-Net. The goal in this phase is to warm up the backbone
so that it efficiently extracts depth and semantic content
information from the images and forms robust 3D features.

In Stage 2, we remove the 3D completion U-Net and
load the pre-trained backbone to integrate the detection head
module, with both positive and negative boxes used for loss
computation.

In the final Stage 3, we freeze the detection head and apply
non-maximum suppression (NMS) to select high-confidence,
object-centric features. At this point, the overall network
performance is further improved by effectively integrating
the stable detection outputs into the fusion process.

This three-stage strategy is highly effective in multi-task
learning scenarios for stabilizing training and achieving the
reported results.

IV. EXPERIMENT

A. Experiment Setup

1) Datasets: We train our model using two datasets. For
voxel-wise prediction, we employ the SemanticKITTI [35]
dataset, on which numerous classic baselines have been
validated. Built on the KITTI odometry benchmark, Se-
manticKITTI enables to study semantic segmentation
through manual annotations on raw LiDAR point clouds.
The semantic scene completion benchmark is constructed by
accumulating annotated scans within sequences and voxeliz-
ing them to form a semantic scene volume with dimensions
of 256×256×32 (with each voxel representing 0.2 m). The
dataset contains 21 classes, including 19 semantic labels,
one free label, and one unknown label. In our experiments,
we use the RGB images from cam-2 with a resolution of
1226×370 (cropped to 1220×370) and follow the official
training/validation split of 3834 and 815 samples, respec-
tively.



TABLE I: Quantitative results on the SemanticKITTI test set.
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LMSCNet* [18] 31.38 7.07 14.30 0.30 0.00 0.00 0.00 0.00 0.00 0.00 46.70 13.50 19.50 3.10 10.30 5.40 10.80 0.00 10.40 0.00 0.00
AICNet* [1] 23.93 7.09 15.30 0.70 0.00 0.00 0.00 0.00 0.00 0.00 39.30 19.80 18.30 1.60 9.60 5.00 9.60 1.90 13.50 0.10 0.00

JS3C-Net* [19] 34.00 8.97 20.10 0.80 0.00 0.00 4.10 0.00 0.20 0.20 47.30 19.90 21.70 2.80 12.70 8.70 14.20 3.10 12.40 1.90 0.30
MonoScene [2] 34.16 11.08 18.80 3.30 0.50 0.70 4.40 1.00 1.40 0.40 54.70 24.80 27.10 5.70 14.40 11.10 14.90 2.40 19.50 3.30 2.10
TVPFormer [4] 34.25 11.26 19.20 3.70 1.00 0.50 2.30 1.10 2.40 0.30 55.10 27.40 27.20 6.50 14.80 11.00 13.90 2.60 20.40 2.90 1.50
VoxFormer [27] 42.95 12.20 20.80 3.50 1.00 0.70 3.70 1.40 2.60 0.20 53.90 21.10 25.30 5.60 19.80 11.10 22.40 7.50 21.30 5.10 4.90
OccFormer [3] 34.53 12.32 21.60 1.20 1.50 1.70 3.20 2.20 1.10 0.20 55.90 31.50 30.30 6.50 15.70 11.90 16.80 3.90 21.30 3.80 3.70

OC-SOP 43.30 14.83 30.40 4.80 7.80 6.30 3.50 5.80 3.70 1.30 56.00 27.10 29.50 7.10 21.50 13.30 20.80 8.30 22.20 5.90 6.40

All listed baselines are vision-based methods. * denotes the reproduced results reported by [2].
IoU focuses solely on the occupancy status while mIoU evaluates individual semantic categories. Best and second best results are highlighted.

For detection branch training, we utilize the KITTI [36]
3D object detection benchmark dataset, which comprises
7481 training images and 7518 test images along with their
corresponding point clouds. We follow the train/validation
split defined by Chen et al. [37], dividing the training set
into 3712 training images and 3769 validation images. KITTI
annotates three foreground object categories (Car, Pedestrian,
and Cyclist), which completely align with our definition of
foreground objects and are well suited for object-centric
tasks on SemanticKITTI. Although the KITTI’s semantic
labels are coarser than the fine-grained semantic labels in
SemanticKITTI, these rough labels still provide a semantic
prior for foreground objects in semantic occupancy predic-
tion tasks.

2) Implementation Details: The model is trained on an
NVIDIA A6000 GPU in three stages: a warm-up Stage 1
for 5 epochs, a detection branch training Stage 2 for 10
epochs, and a joint fine-tuning Stage 3 for 10 epochs. During
joint fine-tuning and inference, we set the detection head’s
objectness threshold to 0.2 to filter out low-score negative
predictions, followed by applying an NMS module to obtain
the final box proposals. The NMS IoU threshold is set to
0.7.

B. Main Results

We evaluate our model on the SemanticKITTI test set
using two metrics. Intersection over Union (IoU) metrics
focus only on occupancy status without considering semantic
labels. Mean IoU (mIoU) is used to evaluate the accuracy of
the semantic labels. Specifically, the IoU for each semantic
category is first computed, and then the average of these
values is taken to reflect overall performance. All IoU
calculations exclude the unknown category. The results are
reported in Tab. I, where we also compare our approach
with several vision-based baselines on the SemanticKITTI
benchmark. The results show that OC-SOP significantly
outperforms all baselines on foreground object categories.
For instance, when considering only foreground object cat-

egories, OC-SOP achieves an mIoUobj of 7.95%, which is
3.71 percentage points higher than the second-best method,
VoxFormer, which achieves an mIoUobj of 4.24%. Moreover,
even though background categories do not directly benefit
from object-centric awareness, the design of our EDD and
3D semantic completion U-Net still achieves comparable
performance, slightly outperforming most baselines.

Fig. 4 shows several qualitative results from the Se-
manticKITTI validation set. We compare our predictions
with those of MonoScene to highlight the benefits of in-
corporating object-centric awareness. In Scene A, multiple
vehicles are parked along both sides of the road with
narrow gaps between them. MonoScene merges these ve-
hicles into one block, making it difficult to identify the
number of vehicles and resulting in severely distorted shapes.
In contrast, our method clearly distinguishes each vehicle,
preserving distinct gaps and maintaining shape integrity. In
Scene B, a bicyclist appears in front of the ego-vehicle.
MonoScene misclassifies the bicyclist as a motorcyclist,
and its shape is significantly distorted by camera effects.
Our predictions, guided by bounding box constraints, more
accurately capture the bicyclist’s shape. It is important to
note that since SemanticKITTI’s ground truth is derived from
aggregating multiple frames, dynamic objects may exhibit
ghosting artifacts, a limitation that partly contributes to the
misclassifications observed in MonoScene. Scene C presents
a similar issue with a bicyclist, and in addition, MonoScene
fails to detect vehicles near the field-of-view boundaries. This
suggests that traditional SOP methods are less sensitive to
objects that are severely truncated in the view frustum, even
though such objects, often located near the ego-vehicle, are
vital for accurate scene understanding. Finally, in Scene D,
MonoScene mistakenly predicts a vehicle in an area where
none exists, likely due to misleading lighting and shadow
cues. The error from the semantic segmentation module is
not corrected by the reprojection process and thus appears
in the final output. In practical applications, this could lead
to incorrect estimation of dynamic variables such as speed



car bicycle motorcycle truck other-vehicle person bicyclist motorcyclist road parking sidewalk
other-ground building fence vegetation trunk terrain pole traffic-sign

Fig. 4: Qualitative results on the SemanticKITTI validation set. Only the 19 semantic classes are visualized; voxels labeled as empty
space are omitted for clarity. Voxels located in unknown regions are rendered with 20% opacity to reflect uncertainty. Parts of the scene
that lie outside the field of view (FoV) are visualized as shaded areas.

and trajectory, thereby affecting the comfort and even the
safety of passengers and other traffic participants. In our
framework, however, the objectness score helps to correct
such misestimations, preventing these hallucinations in the
final prediction.

C. Ablation Studies

We conducted ablation studies on the SemanticKITTI
validation set to assess the contributions of each sub-module.

In Setting I, we employ the full model, which achieves
the best performance for all foreground object categories and
most background categories, yielding overall best results.

In Setting II, to isolate the impact of the box feature
fusion module, we replace the deformable cross attention
with spatial concatenation fusion. Specifically, each box
proposal’s feature is first transformed using an MLP and
then concatenated along the channel dimension with the main
branch’s latent space. Subsequent convolution layers fuse
these features. The results indicate that although Setting II
still incorporates object-centric awareness, the deformable
cross attention used in Setting I more effectively integrates
box proposals with the latent features. This leads to a notable
improvement in foreground object performance. For back-
ground categories, the performance of Setting II is slightly
lower than that of Setting I, but the difference is not as

pronounced as for foreground objects.

In Setting III, only the main prediction branch is used for
inference without any object-centric awareness. Comparing
Setting I with Setting III, we observe that incorporating
object-centric awareness significantly enhances the estima-
tion of foreground objects, with performance improving
by approximately 4.54 percentage points (from 3.41% to
7.95%) while background categories show only a modest
improvement of around 1.02 percentage points (from 18.81%
to 19.83%). Notably, the main prediction branch consists of
an encoder dual decoder (EDD) and a 3D completion U-Net.
This architecture effectively enhances the extraction of depth
information, thereby mitigating camera effects, and still
achieves competitive performance that slightly outperforms
MonoScene.

Finally, Setting IV retains only the 3D semantic comple-
tion U-Net, which relies solely on the raw image and an
external depth predictor to form a pseudo-LiDAR 3D map.
Due to the lack of a robust feature extractor, Setting IV shows
poor performance, with limited ability to predict several
foreground categories and weak performance on background
categories. The comparison between Settings III and IV
clearly demonstrates the effectiveness of the EDD in enhanc-
ing feature extraction for semantic occupancy prediction.



TABLE II: Ablation study of each sub-module on the Se-
manticKITTI validation set.

Setting I II III IV

Dual Decoder X X X -
Detection Branch X X - -

Deformable Cross-attention X - - -

O
bj

ec
ts

car 30.40 25.60 17.80 17.30
truck 4.80 3.90 3.10 0.70

bicycle 7.80 5.30 0.40 0.00
motorcycle 6.30 4.20 0.70 0.00

other-vehicle 3.50 3.40 2.50 0.00
person 5.80 4.40 1.50 0.00

bicyclist 3.70 3.10 1.10 0.00
motorcyclist 1.30 1.20 0.20 0.00

B
ac

kg
ro

un
d

road 56.00 55.80 55.30 46.30
parking 27.10 26.50 27.70 12.10
sidewalk 29.50 29.10 28.20 20.10

other-ground 7.10 6.90 7.30 4.20
building 21.50 19.90 18.70 10.70

fence 13.30 12.90 10.90 6.90
vegetation 20.80 20.50 19.00 10.30

trunk 8.30 8.50 6.30 1.30
terrain 22.20 21.50 22.90 11.20
pole 5.90 5.50 4.80 0.30

traffic-sign 6.40 6.10 5.80 0.10

IoU 43.30 41.98 41.52 29.78
mIoU 14.56 13.92 12.33 7.45

IoU focuses solely on the occupancy status while mIoU evaluates indivi-
dual semantic categories. Best and second best results are highlighted.

V. CONCLUSIONS AND OUTLOOK

We propose OC-SOP, which innovatively integrates object-
centric awareness into the semantic occupancy prediction
task. Our results on the SemanticKITTI test set demon-
strate that OC-SOP significantly improves the accuracy of
foreground object predictions. By focusing on other traffic
participants, our approach enhances the perception system’s
ability to understand complex traffic scenarios, ultimately
contributing to safer decision-making in autonomous driving.
In future work, we plan to explore emerging techniques in
prompt-driven representation learning [38]–[40] and multi-
modal fusion [41], [42] to further improve object-centric se-
mantics and generalization across diverse sensing conditions.
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