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Abstract. Central pattern generated walking for bipedal robots has
proven to be a versatile and easily implementable solution that is used
by several robot soccer teams in the RoboCup Humanoid Soccer League
with great success. However, the forward character of generating mo-
tor commands from an abstract, rhythmical pattern does not inherently
provide the means for controlling the precise location of footsteps. For
implementing a footstep planning gait control, we developed a step pre-
diction model that estimates the location of the next footstep in Carte-
sian coordinates given the same inputs that control the central pattern
generator. We used motion capture data recorded from walking robots
to estimate the parameters of the prediction model and to verify the ac-
curacy of the predicted footstep locations. We achieved a precision with
a mean error of 1.3 cm.

Key words: footstep planning, dynamic walking, machine learning, mo-
tion capture

1 Introduction

Central pattern generator based methods and inverse kinematics based meth-
ods are two successful approaches to implement controlled dynamic walking for
bipedal robots, even though they differ in their core aspects. Central pattern gen-
erator based methods [1, 2] generate an abstract, periodic signal stream which
is translated to motor commands resulting in rhythmical weight shifting and leg
swinging motions. Inverse kinematics based solutions [3, 4, 7] precalculate trajec-
tories in Cartesian coordinates for significant body segments, such as the pelvis
and the feet. These trajectories are converted to motor commands by solving the
inverse kinematics with the given trajectories as constraints. In the latter case
the footstep locations are known in advance: they are determined by the inter-
sections of the foot trajectories with the ground. In the former case, however,
footstep locations are not inherently obtainable, since they are indirect results
of amplitudes and frequencies of abstract signal patterns.
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Our goal is to predict the footstep locations of a central pattern generated walk
and to use the predictions to implement a more precise, footstep planning gait
control. We present two different approaches to estimate the footstep locations
and compare their performance in experimental results.

The remainder of the paper is organized as follows. After reviewing related work,
a brief introduction to our gait engine is given in Section 3. Then an overview
of the footstep prediction algorithm is presented in Section 4, leading to the
detailed descriptions of the two different approaches we implemented: a forward
kinematic based approach in Section 5 and a motion capture based approach in
Section 6.

2 Related Work

Footstep planning is a fairly new research topic and feasible solutions are scarce
in comparison. The most prominent proposals in [8–10] and also [11] are based
on the A* algorithm. By imposing a strong discretization on the state space and
using only a small, discrete set of actions, these online solutions plan a few steps
ahead and are able to deal with dynamic environments. Uneven floor plans are
also considered, so that the footstep plans can include stepping over obstacles
and climbing stairs. An intruiging alternative solution has been recently shown
in [12]. Here, a short sequence of future footsteps is considered to be a virtual
kinematic chain as an extension of the robot. Their location is determined us-
ing inverse kinematics. The configuration space and the action space are not
discretized, but the algorithm is computationally expensive. A computationally
more promising method that can plan in a few milliseconds, if the environment
is not too cluttered, has been suggested in [13]. The idea is to solve the footstep
planning problem mostly with a path planning algorithm. Actual footstep loca-
tions are only given in key points, where the walking speed of the robot has to
be zero, for example when stepping over an obstacle. The majority of the foot-
step locations are layed out along the planned paths by the motion generator
developed for HRP-2 [3, 6, 5]. The closest related work is [10], where an A* based
footstep planning algorithm is adapted for the humanoid robot ASIMO. As the
walking algorithm of ASIMO is not precisely known, the authors were forced to
reverse engineer a footstep prediction algorithm from observations with a motion
capture system.

3 Central Pattern Based Dynamic Walking

In this chapter we introduce the basic concepts of our central pattern based gait
generation method in a simplified level of detail. We concentrate on the core
modules that are important to understand the footstep prediction model.
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3.1 Leg Interface

The leg interface is a low level abstraction layer that allows intuitive control of
a leg with three parameters. The leg angle ΘLeg defines the angle of the leg with
respect to the trunk, the foot angle ΘFoot defines the inclination of the foot with
respect to the transversal plane, and the leg extension η defines the distance
between the foot and the trunk (Figure 1). The output of the leg interface are
joint angles for the hip, knee and ankle. The leg interface allows independent
control of the three parameters and encapsulates the calculation of coordinated
joint angles.

L(ΘLeg, ΘFoot, η) = (ΘHip, ΘKnee, ΘAnkle) (1)

The leg can be bent in roll, pitch, and yaw directions as illustrated in Figure 1
(right). The three directional components can be controlled independently from
each other. Most importantly, the foot is rotated around its own center and not
around the trunk. More detailed information can be found in [1].

Fig. 1. The leg interface allows independent control of three abstract parameters: the
leg angle ΘLeg, the foot angle ΘFoot, and the leg extension η (left). The leg can be
bent independently in roll, pitch, and yaw directions (right).

3.2 Central Pattern Generator (CPG)

The CPG generates patterns of rhythmic activity governed by a periodic internal
clock called gait phase −π ≤ φ < π. The patterns encode the waveforms of the
leg interface parameters. In particular, the leg extension is activated with a
sinusoidal function, whereas the phase of the left leg is shifted by π with respect
to the right leg (Figure 2, left).

Pw = sin(φ) (2)

The antidromic shortening and extending of the legs causes a rhythmic lateral
shift of the body weight alternatingly freeing a leg from its support duty. This
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Fig. 2. The CPG waveforms encode the leg extension (left) and leg swing (right) pat-
terns.

leg can be swung. In concert with the leg extension signal Pw, the CPG generates
a second activation to swing the free leg.

Ps = sin(φ− π

2
), −π ≤ φ < 0 (3)

Ps = 1− φ

π
, 0 ≤ φ < π (4)

As shown in Figure 2 right, the leg is swung forward with a sinusoidal motion
and pushed back with a linear motion in the support phase. Support exchange
is expected to occur at gait phase φ = 0 from right to left and at gait phase
φ = −π from left to right.

3.3 Omnidirectional Gait Control

Walking direction and step size are controlled by modulating the amplitude of
the leg swing activation Ps with a gait control vector g ∈ [−1, 1]3 and applying
it to the roll, pitch and yaw component of the leg angle ΘLeg. Omnidirectional
walking is achieved by applying the swing signal in all three directions simulta-
neously with different intensities. For example, a mixture of the pitch and yaw
components will result in a curved walk forward, where the yaw intensity deter-
mines the curvature of the path. The modulated signals are then transformed
by a configuration vector c ∈ R3, which is a mapping from CPG signal space
to leg angle space expressed in radians. c can be used to adapt the very same
CPG patterns to robots of different sizes, for example from the KidSize and the
TeenSize class and to fine tune individual robots. In summary, these equations
describe the generation of the gait trajectory:

ΘrollLeg = Ps · gx · cx + |gx| · cx (5)

ΘpitchLeg = Ps · gy · cy (6)

ΘyawLeg = Ps · gz · cz + |gz| · cz (7)

At the end of the gait control chain the leg interface converts the leg angles and
extensions to joint angles, as depicted in Figure 3.

Notably, the equation in sagittal direction (6) differs from the lateral and yaw
directions (5,7). In sagittal direction the legs are encouraged to swing fully from
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Fig. 3. The gait trajectory generation chain. The CPG is always active and produces
periodic activation signals clocked by the gait phase φ. After modulation by the gait
control g, the signals are mapped to leg angle space with the configuration c. The leg
interface converts the leg angles to joint angles that are passed to the robot.

front to back. Positive and negative leg angles are likewise allowed. In lateral
direction, however, the legs would collide. To avoid negative leg angles a positive
value is added to the leg roll angle proportionally to the lateral component of
the gait control vector causing the legs to spread out when walking in lateral
direction. As a result, two different step sizes occur: a long step, when the lead-
ing leg is swung in the direction the robot is moving and a short step, when the
other leg is pulled in to meet the leading leg at a leg angle close to zero. The
same is true for the yaw direction.

4 The Step Prediction Models

For the implementation of a step planning algorithm, a forward model

F (gx, gy, gz, φ) = (px, py, pθ) (8)

is required that maps a gait control vector g to an expected footstep location
and orientation p ∈ R × R × [−π, π] in Cartesian coordinates. We define p to
be the location and orientation of the footstep in the local coordinate frame of
the support foot. As outlined in the previous Section, a gait control vector g
can produce two different step sizes. The gait phase φ has to be included as pa-
rameter for reasons of disambiguation. The value of φ is determined by keeping
track of the support leg and knowing at which gait phase the next step will occur.

We developed two strategies to obtain this mapping. As an analytic approach
we used a kinematic model of the robot to calculate the forward kinematics from
given joint angles. Alternatively, we collected training data from a motion cap-
ture device and used linear regression to learn the mapping F . Both approaches
are described in detail in the following sections.

5 Kinematic Model Approach

The kinematic model requires a precise skeleton of the robot that we acquired
from the CAD construction blueprints. Predictions are made by applying the
joint angles in the moment of a step to the kinematic model and calculating
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the position and orientation of the swing foot relative to the support foot in
Cartesian space (Figure 5). To get hold of the joint angles in the moment of a
step for a specific gait control vector g, we set the appropriate gait phase φ (0
or −π) and execute the gait trajectory generation chain (Figure 3). The CPG
will output the signals that it would produce in the moment of a step. Using the
configuration c of a specific robot and the gait control vector g, we acquire the
desired joint angles.

Due to their analytic nature, the predictions can be calculated very efficiently.
However, some sources of error are inevitable. Inaccuracies in the skeleton can-
not be completely avoided as well as the fact that the robot does not perfectly
obey the commanded joint angles. There is always mechanical wear, backlash
in the gears and undesired elasticities that cause the physical system to deviate
from theory. We decided to take an alternative approach and learn from data
collected from the actual physical system. This approach is presented in the next
Section.

6 Machine Learning Approach

As an alternative course, we collected ground truth data with a motion capture
system to learn from the footsteps as they really happen. Two KidSize robots
were equipped with reflective markers in groups of three or four on the head,
the hip, and the feet, as shown in Figure 4. With both robots we recorded ap-
proximately five minutes of more or less random walking speeds and directions,
trying to explore the entire gait control space. The output of the motion capture
device are trajectories of the reflective markers, which we synchronized with a
recording of the gait control vector. In data post processing, we calculated the
centroids of every marker group to represent the head, the hip and the feet with
only one point. The centroids were used for further post processing. From the
hip marker group we calculated the orientation of the robot with respect to the
global vertical axis. The orientation describes in which direction the robot is
facing in the world coordinate frame, but this is not necessarily equal to the
walking direction. Using the feet marker groups we also computed the orienta-
tion of both feet relative to the global orientation of the robot.

Fig. 4. Groups of reflective markers were used to indicate the head, the hip and each
of the feet.
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Fig. 5. Visualization of the data obtained from the motion capture device: the marker
cloud, the kinematic model fitted into the cloud and performing a step, the orientation
of the robot and the feet, and some of the extracted footstep locations on the floor.
The arrow between the feet illustrates the vector we extract from the kinematic model.

To produce the training data, single steps had to be identified. We used the
feet centroids to extract two features: the height of the feet hl and hr and the
velocities of the feet vl and vr calculated from two consecutive frames. A step
is recognized when the feet have approximately the same height and the same
velocity:

|hl − hr|+ |vl − vr| < 0.01 . (9)

Altogether we identified approximately 3000 footsteps and matching gait control
vectors. Figure 5 shows a visualization of the marker cloud, the kinematic model
fitted into the cloud, the orientation of the trunk and the feet, and some of the
extracted footstep locations on the floor.

As mentioned in Section 3.1, the leg interface implements independent control of
the footstep location and orientation. This allows the assumption that instead
of the three dimensional function F (8), three independent one dimensional
functions can be learned. However, when performing a step, the fixed frame of
reference is the support foot and not the coordinate frame of the trunk. The gz
component of the gait control vector applies a rotation to the footstep location
by an angle α and consequently px and py both depend on gz. This is shown
in Figure 6 (a). To tackle this problem, we introduce a footstep q = (qx, qy, α)
in the reference frame of the trunk (Figure 6 (b)). qx and qy are defined as the
distances between the feet in x and y directions and α is the orientation of the
swing foot with respect to the trunk. In this frame of reference qx depends only
on gx, qy only on gy, and α only on gz. These are the mappings that we learn. We
salvage (qx, qy, α) from the identified steps in the motion capture data. Knowing
the reference frame of the trunk from the hip marker group, we calculate (qx, qy)
from the difference between the foot coordinates of the fitted skeleton. α is equal
to the swing foot orientation that we calculated from the foot marker group. We
found the support foot angle and the swing foot angle to be symmetrical enough,
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Fig. 6. The gz component of the gait control vector rotates the footstep location by
the angle α around the support foot and influences px and py (a). The footstep q in
the trunk frame, however, is independent from the rotation (b). q is mapped to the
support foot related footstep p with a rotation by α (c) and an additional rotation of
the swing foot again by the angle α (d).

so that they do not have to be modeled separately. The trunk oriented footstep q
is then transformed to the support foot oriented footstep p with a step transform
function T as depicted in Figure 6 (c) and (d). (qx, qy) is rotated in the frame
of the support foot by the angle α. Then, the swing foot is rotated around it’s
own origin again by the angle α. The transform function T is given by:

(px, py) = (qx, qy) ·R(α) (10)
pθ = 2α (11)

where R denotes a rotation matrix.

Moreover, we implemented another simplification of the learning task. Figure 7
shows a decomposition of function F . Given g and φ as input, the gait control
chain (Figure 3) can be used to calculate the leg angles at the moment of the
next step. The step function S is the actual physical step. It maps the leg an-
gles to a footstep q in the reference frame of the trunk. The step transform T
translates q to the footstep p in the reference frame of the support foot. Only S
needs to be learned and can be approximated by three simple, independent, one
dimensional functions:

qx = qx(ΘrollLeg), (12)

qy = qy(ΘpitchLeg ), (13)

α = α(ΘyawLeg ). (14)

Using the gait chain as an executable building block also allows us to incorporate
different robot configurations just by exchanging them in the gait control chain.
We expect better adaptability of the algorithm to different individuals of the
same robot type.
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Fig. 7. A decomposition of function F . Given g and φ, the gait control chain calculates
the leg angles at the moment of the next step. The physical step S maps the leg angles
to the footstep q in the reference frame of the robot. The step transform T translates
q to the footstep p in the reference frame of the support foot.

7 Experimental Results

Figure 8 presents data from Mocap and the approximated functions for qx, qy
and α (eqs. 12-14). All three relationships show a strong linear character and
can easily be fitted in the most simple manner with linear functions. Naturally,
one would expect the functions of leg angles to step sizes to be sinusoids. The
most likely explanation for the seemingly linear coherence is that our robots are
taking relatively small steps and sinusoid functions can be well approximated
with linear ones, as long as their argument stays close to zero. The function
mapping ΘyawLeg to α is almost identity. The small deviation from identity must
originate from the error the physical system makes when at the commanded leg
angle. With this deviation accounted for we can expect an improvement in our
footstep predictions.

Fig. 8. Plots of the collected data and the approximated functions for qx (upper left),
qy (upper right), and α (lower left). All three relationships show a linear character.
The comparison of the prediction accuracies of the analytic model and the machine
learning model on the full step set and the robot specific experiments are shown in the
lower right.
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Fig. 9. The working spaces of the left foot and right foot. The height of the graph
shows the measured error at each footstep location.

We used the motion capture data to compare the performance of the forward
kinematic approach and the machine learning approach. The error of a single
prediction is measured by the Euclidean distance between the predicted foot-
step and the ground truth footstep taken from the motion capture data. We
present figures of the mean error and standard deviation measured in three dif-
ferent experiments in Figure 8 lower right. In the first experiment we compared
the performance of the forward kinematic model and the machine learning ap-
proach on the complete set of approximately 3000 footsteps. The performance
of the machine learning approach was measured by 4-fold cross validation. In
the second and third experiment we compared the two methods exclusively on
the step set produced by only one of the robots, e.g. Conny and Ariane re-
spectively. Additionally, we evaluated transfered models that were trained with
500 steps randomly sampled exclusively from the step set of the other robot.
All trained models outperformed the forward kinematic approach. Since the for-
ward kinematic is the same for both robots, the difference in accuracy between
the Conny experiment and the Ariane experiment can be explained by a more
instable walking of Conny, which is more difficult to predict due to occasional
stumbling. Even though the best results were achieved on Ariane (1.1 cm), we
believe this model to be overly adapted to this robot and use the mode trained
on the full step set as reference, which achieved an accuracy with a mean error
of approximately 1.3 cm.

Figure 9 shows a representation of the working spaces of the feet. Every step
was plotted by assuming the support foot location to be at the origin. The
height describes the measured error. In the base stance of the robot, even if the
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gait control vector g is 0, the feet are 12 cm apart. These “zero” steps of the
robot are roughly in the respective centers of the two areas. A not unexpected
tendency of the prediction error growing with the deviation from the zero step
can be observed. The diameters of the working spaces are approximately 20 cm
and the avarage step size was determined to be 14.4 cm. Comparing the mean
error of 1.3 cm to the avarage step size leads to the conclusion, that our pre-
dictions are in avarage 90.97% accurate. Future work will show if this accuracy
is enough for a step planning algorithm to hit a small target such as a tennis ball.

Investigating further possibilities to improve the prediction accuracy, we consid-
ered discarding the independency assumption and using a non-linear regression
method to learn the function

f(ΘrollLeg, Θ
pitch
Leg , ΘyawLeg ) = (qx, qy, α) (15)

in one sweep. For this attempt to be fruitful, some dependency has to exist
between the three parameters and each of the output dimensions. We examined
the correlation between the leg angles produced by the gait and the deviation ∆q,
which is the difference between the robot centered footstep q and the expected
footstep predicted by our linear estimators. Table 1 contains the correlation
coefficients. Apart from a small influence of ΘyawLeg on qx, no correlation between
the parameters and the footstep deviations can be identified. Consequently, our
linear approach has already exhausted the learning problem. A more complex
approach cannot be expected to produce significantly better results on the same
data.

8 Conclusions

We presented a footstep prediction algorithm for a central pattern generated
omnidirectional walk. We were able to decompose the footstep prediction into
three independent functions that could be approximated with linear regression
performed on motion capture data. We achieved a prediciton accuracy with a
mean error of 1.3 cm. The learned model outperformed the analytic, forward
kinematic based solution and showed some transferability to different individ-
uals of the same robot model. We claim that our linear approach cannot be
significantly improved with a more complex technique. In future work we plan

∆qx ∆qy ∆α

Θroll
Leg 0.022 0.043 0.037

Θpitch
Leg 0.070 0.028 0.020

Θyaw
Leg 0.241 0.013 0.001

Table 1. Correlation coefficients between the leg angles in roll, pitch and yaw directions
and the deviation of the footstep q in the reference frame of the trunk.
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to use the footstep predictions for a step planning gait control and test the
algorithms in real robot soccer games.
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