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Abstract. Walking controllers often require parametrization which must
be tuned according to some cost function. To estimate these parameters,
simulations can be performed which are cheap but do not fully represent
reality. Real-robot experiments, on the other hand, are more expensive
and lead to hardware wear-off. In this paper, we propose an approach for
combining simulations and real experiments to learn gait stabilization
parameters. We use a Bayesian optimization method which selects the
most informative points in parameter space to evaluate based on the
entropy of the cost function to optimize. Experiments with the igusr

Humanoid Open Platform demonstrate the effectiveness of our approach.

1 Introduction

Walking is a crucial task for legged robots. The state-of-the-art walking controllers
and generators typically require a fine-tuned parametrization that due to its
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Real Robot

Fig. 1. Combining multiple sources of information for learning gait parameters x. Based
on the largest relative entropy E(∆H) of a cost function J , a walking sequence is
performed in simulation or with the real robot. The number of walking sequences
performed with the real robot is reduced by using simulations.

∗Both authors contributed equally.

{rodriguez, behnke}@ais.uni-bonn.de
andre.brandenburger@uni-bonn.de
http://ais.uni-bonn.de
behnke
Text-Box
22nd RoboCup International Symposium, Montreal, Canada, 2018.



2 Rodriguez, Brandenburger, and Behnke

complexity is determined by experts. This puts a constraint on the applicability
of these methods. They can be used mainly by the people who designed them.
In recent years, learning approaches have been proposed in order to reduce the
amount of work and expert knowledge required to tune these methods [7, 18].
This implies thus to perform experiments to estimate parameters. Consequently,
sample-efficient learning approaches are required in order to reduce the hardware
wear-off induced by the experiments. One way to reduce the need for real-robot
experiments is to use simulations, which are cheaper to perform but do not fully
represent reality. This point is particularly relevant for low-cost robots whose
hardware is not as precise as expected. In this paper, we propose a method to
combine simulations and real-robot experiments to optimize gait parameters,
specifically to learn activation values of corrective actions that act on top of
an open-loop bipedal gait generator. The optimization uses a state-of-the-art
sample-efficient Bayesian method which selects the most informative points in
parameter space to evaluate based on the entropy of a cost function.

2 Related Work

Several learning methods have been used to optimize manipulation or locomotion
parameters [1, 7, 9, 12, 18, 20]. Most of the methods are based on Bayesian
optimization—due to its high sample efficiency. Deisenroth et al. [9], for example,
developed a Bayesian approach to tune a cart-pole system, whereas Berkenkamp
et al. [6] proposed to use Bayesian optimization to safely tune robotic controllers
for quadrotors. Moreover, Marco et al. [16] combined Bayesian optimization
with optimal control to tune LQR regulators. In contrast to these approaches,
Akrour et al. [1] suggested to direct the optimization process by using a search
distribution, however, the optimization loses expressibility on a global scope
since it only optimizes locally. Even though these methods take advantage of the
sample efficiency of the Bayesian optimization, the robotic hardware is worn off
unnecessarily in the learning process, especially in the initial stages where the
controllers do not possess any prior knowledge.

Specifically for the problem of gait parameter optimization, Calandra et al. [7]
suggested a Bayesian optimization in order to replicate a given target trajectory
for a bipedal robot. Based on only real experiments, the algorithm was able to
find a stable gait. Because only the real hardware was used for all experiments,
we expect a considerable wear-off of the robot. On the other hand, Heijmink
et al. [12] proposed a method to learn gait parameters and impedance profiles
in simulation for a quadruped robot. This was accomplished by using the PI2
algorithm with a cost function consisting of speed tracking, energy consumption,
joint limits, and torques. Although the results were validated in the real hardware,
no transfer between simulation and the real hardware was addressed. Similarly,
Hengst et al. [13], use a simulator to learn gait parameters that will be tested in
the real robot. This is a reinforcement learning approach that learns the ankle
joint position of the stance leg and the placement of the swing foot.
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There exist several approaches that have transferred knowledge gathered
in simulation to real robotic platforms. Farchy et al. [10], for example, learn
several dynamic parameters of a simulator in order to get a similar performance
compared with real-robot experiments. This approach was extended by Hanna
and Stone [11] by learning the dynamics of the simulator using the differences
of the actions between the real world and the simulation. The walk velocity
of the NAO robot was increased by 43% starting from a state-of-the-art walk
engine. Nevertheless, a human expert was required to select the appropriate
parameters to be learned. Additionally, Cutler and How [8] uses a simulator to
learn a nonparametric prior that will parametrize a learning algorithm that acts
directly on the real platform, in other words, there is an one-step transfer from
simulation to the real robot. In a recent work, Rai et al. [18] uses simulations to
build a lower-dimensional space which is later used to learn gait parameters on
the real hardware. Although this approach was able to achieve good results for a
9-dimensional controller with only 20 iterations, it requires—due to its informed
kernel structure—a large amount of precomputed simulator data.

3 Preliminaries

3.1 Gaussian Process Regression

Given a training set D = {(xi, yi)|i = 1, . . . , n)} of n observations, a Gaussian
Process attempts to infer the relationship between the inputs and the targets
given some prior knowledge. The observations are assumed to be corrupted by
normally distributed noise ε ∼ N (0, σ2), such that

y = f(x) + ε (1)

f(x) ∼ GP(µ(x), k(xi,xj)) , (2)

where µ(x) is the prior mean, which can be uniform, and k(xi,xj) is the kernel
also called the covariance function. Using a kernel allows us to transform the
input space into a higher-dimensional feature space such that a non-linear map
from the input vector x to the function value f(x) can be inferred. The kernel
models the uncertainty of the mean estimate and encodes how similar f(x) is
expected to be for two vectors xi and xj . A high value of k(xi,xj) would mean
that the posterior value of f(xj) is significantly influenced by the value of f(xi).
Note that using kernels we do not need to know the shape of the corresponding
feature space, because only the inner products in the input space are required.

3.2 Bayesian Optimization

Bayesian optimization is a gradient-free sample-efficient framework that optimizes
a cost function f(x) using statistical models. Its goal is to find a global optimum
of a cost function which is typically expensive to evaluate. In our case, it would
imply to wear-off the hardware of the robot by performing walking experiments.
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This optimum is found by minimizing a posterior mean function. Often, the
mean and covariance of f(x) are described by a Gaussian Process. The points to
evaluate f(x) are selected through an acquisition function, which also trades off
exploration and exploitation, i.e., to select promising points were the optimum
might be and to reduce the uncertainty about f(x).

A prominent example of those acquisition functions is Entropy Search (ES)[14].
ES is based on the expected change of entropy E[∆H(x)], such that the point to
evaluate in the next iteration is the one that offers most information (highest
entropy change). The location of the minimum is approximated by a non-uniform
grid, which, upon convergence, will be peaked around the actual minimum. The
acquisition function for ES is defined as:

xt+1 = arg max
x∈X

(E[∆H(x)]) . (3)

The approximations to make ES computationally tractable can be found in [14].

3.3 Multi-Fidelity Entropy Search

Marco et al. [15] extends the ES algorithm to integrate multiple sources of
information (Fig. 2). The resulting method is called Multi-Fidelity Entropy
Search (MF-ES) and typically trades off real experiments with simulations. MF-
ES optimizes the cost function

Jreal(x) = Jsim(x) + εsim(x) (4)

over a parameter set x ∈ X. The key idea is to model the cost on the physical
system Jreal as the cost in simulation Jsim(x) plus a systematic error εsim(x).
This error εsim can be a complex transformation, which is learned by the Bayesian
optimization. MF-ES defines two kernel functions ksim and kε, which model the
cost on simulation and the difference to the real experiments, respectively. In
this manner, the kernel is expressed as:

k(ai,aj) = ksim(xi,xj) + kδ(δi, δj)kε(xi,xj) , (5)

where a = (δ,x) is an augmented vector in which δ indicates if a real experiment
was performed and kδ(δi, δj) = δiδj is a kernel indicator that equals one if both
evaluations were performed with the real robot. Accordingly, two real experiments
are expected to covary stronger than evaluations containing simulations.

Since kε is modeled inside the GP, we do not need to address explicitly
the mapping between Jsim and Jreal; we only require assumptions about the
difference between simulation versus real experiments in form of a mean and a
covariance function. Additionally, δ has to be explicitly incorporated into the
acquisition function of the optimization—otherwise only real experiments would
be selected, because they deliver more information about the target function.
This is done by introducing weight parameters wi for both information sources.
Thus, the acquisition function is expressed as

xt+1 = arg max
x∈Rd,i∈{sim,real}

(
∆Ht(x)

wi

)
. (6)
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Fig. 2. Combination of simulation (blue dots) and real-robot (red dots) experiments
in a synthetic example. The dashed red line represents the true cost function. Top:
simulation experiments condition the mean posterior (red line) of the cost function of
the physical system Jreal and influence considerably the simulation uncertainty (blue
shaded), but the uncertainty of the real system (red shaded) is only slightly affected.
Bottom: this uncertainty is significantly reduced by real-robot experiments. Note that
the difference of the simulation data points and Jreal is captured by εsim (Eq. 4) The
influence of simulation costs to the real system uncertainty is encoded in Eq. (5).

3.4 Bipedal Walking with Feedback Mechanisms

In this section, we briefly describe the gait we want optimize [3]. The gait is based
on an open-loop gait pattern generator as presented in [5]. It essentially produces
high-dimensional trajectories for omnidirectional walking given a desired target
velocity vector. The open-loop gait makes use of: the joint space, the inverse, and
the abstract leg representations [17]. The abstract leg space is a representation
of the leg pose, consisting of the leg extension, leg and foot angles, and is, in
contrast to representations in Cartesian or joint space, designed for easy use for
walking. The gait starts from a halt pose in the abstract space and incorporates
several motion primitives such as leg lifting and leg swinging, also defined in the
abstract space. The resulting pose is converted into the inverse space where more
motion primitives are incorporated. Finally, the open-loop gait outputs a joint
trajectory by converting the resulting inverse pose into the joint space.

In order to improve the stability and robustness of the robot, feedback
mechanisms were added to the open-loop gait [3]. The orientation of the robot
is represented by fused angles [2]. Using the deviations dα and dβ of the fused
roll αB and fused pitch βB from a desired orientation, e.g., from an upright
torso pose, the activation value u of different corrective actions is calculated.
The elements of u can be considered as the strength of corresponding corrective
actions (feedback mechanisms) which are then applied to the open-loop gait in
the abstract or inverse space. The corrective actions include: arm swinging, hip
movement, COM shifting, ankle tilting, and support foot tilting. In order to obtain
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the activation values u, the deviations dα and dβ are passed through a feedback
pipeline composed of integrators, derivatives, mean filters and smooth deadband
filters to produce a PID vector e ∈ R6. This vector is then multiplied by a gain
matrix Ka ∈ Rm×6 to generate the activation values of the corresponding m
corrective actions.

4 Gait Parameter Learning

As explained in Section 3.4, the gait is composed of two main components: an
open-loop central pattern generator and feedback mechanisms. In this paper, we
address the problem of optimizing of the feedback mechanisms. Specifically, the
activation gains Ka of the corrective actions will be optimized.

4.1 Cost Function

The fused angle deviations dα=αdes − α (pitch) and dβ=βdes − β (roll) give us
an estimate about the unintended tilt of the robot induced by walking. These
measurements are, however, very noisy. We apply thus a mean filter and a smooth
deadband to dα and dβ as proposed in [3]. In other words, we end up with the
proportional part ePα and ePβ of the fused feedback vector e. So, we define the
stability criterion of the entire gait as the integral of ePα and ePα along the gait
duration T ∫ T

0

‖ePα(x)‖1 + ‖ePβ(x)‖1dt . (7)

This stability criterion will be part of our cost function. Additionally, we
introduce a penalty term that smoothly regularizes the parameter x. The penalty
term is a logistic function of the form:

ν(x) =
s

1 + exp (−γ(‖x‖2 − λ‖xmax‖2))
, (8)

where xmax is the upper bound of x, λ is a factor that affects the position of the
transition, s represents the magnitude of the penalization and γ ∈ R controls the
smoothness of the phase transition.

Since corrective actions in the sagittal plane are only activated by the fused
angle pitch α and in the lateral plane by the fused angle roll β, we propose a
cost function for the parameters xl that have an effect on the lateral plane and
another cost function for the parameters xs that affect the sagittal plane:

Jα(xl) =

∫ T

0

‖ePα(xl)‖1dt+ ν(xl) (9)

Jβ(xs) =

∫ T

0

‖ePβ(xs)‖1dt+ ν(xs) . (10)

In order to overcome the intrinsic error of the simulator, i.e., same parameters
yield different results, we perform N evaluations in simulation with the same
parameters and incorporate their mean into the cost function for the simulation:
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J̄sim,i(x) =
1

N

(
N∑
i=1

∫ T

0

‖ePi(x)‖1dt

)
+ ν(x), i ∈ {α, β}. (11)

For real-robot experiments, we set Jreal as given by Eq. (9) and Eq. (10). In
both (simulations and real-robot experiments), if the robot falls, a large cost is
assigned to x.

To define the kernel function of the optimization (Eq.(5)), we used the
Rational Quadratic (RQ) kernel for ksim and kε. The RQ kernel introduces
three parameters (σ2

k, α and l) to be tuned, also called hyperparameters. The l
parameter roughly determines the distance of two points to significantly influence
each other, the scale factor σ2

k determines the problem-specific signal variance,
and α is a relative weight of large-scale and small-scale variations.

4.2 Termination Criteria

The most simple and frequently used criterion to stop global optimization al-
gorithms is based on the number of iterations. Whereas this condition works
fine for problems that are fast to compute, it looses applicability when iterations
become more expensive. We propose a termination criterion which is based on
entropy. We formulate a criterion that stops the algorithm as soon as the relative
entropy E[∆H(xt)] reaches a defined value. Moreover, to ensure that outliers do
not lead to a premature stop, we apply a saturated filter to the relative entropy
(Fig. 3) defined for each iteration t with a velocity factor 0 < v < 1 as:

(1− v)E[∆H(xt−1)] + vE[∆H(xt)]. (12)

This criterion is applied after a minimum number of iterations since a bad
prior mean can lead to a low relative entropy right after the first iteration.
The entropy termination criterion is also combined with a maximum number of
iterations criterion in case the relative entropy threshold is not reached mainly
because the prior assumptions might not represent reality well enough.

0 100 200 300 400 500 600 700

Iteration

0

0.1

0.2

0.3

Fig. 3. Unfiltered (blue) and filtered with v = 0.9 (orange) relative entropy. The latter
is used to terminate the optimization. Iterations after the magenta line can be skipped
because of their very low information gain.
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5 Evaluation

5.1 Experiment Setup

Robot Platform We test our approach on the igusr Humanoid Open Platform
[4]. The robot has in total 20 degrees of freedom: 6 for each leg, 3 for each arm
and 2 for the neck. The links of this platform are fully 3D printed. The robot is
92 cm tall and weights 6.6 kg. The platform incorporates an Intel Core i7-5500U
CPU running a 64-bit Ubuntu OS and a Robotis CM730 microcontroller board,
which electrically interfaces with its Robotis Dynamixel MX actuators. A 3-axis
accelerometer and gyroscope sensors are also contained in the CM730, for a total
of 6 axes of inertial measurement.

Software Architecture Due to the limited computational power of the robot,
the optimization and simulations are performed on a desktop PC with a Core
i7-4890K CPU and 8GB of RAM. The simulations are carried out in Gazebo
2.2 with a real-time factor of 1.5. We use ODE as the dynamics engine without
constraint force mixing and an error reduction parameter of 0.2. The geometries
of the joint links are approximated using convex hulls. The joints are controlled
using the ros_control package. To avoid induced noise in the simulation, the
simulator is reset after each performed trial. The Bayesian optimization run
in Matlab 2017b. All the components required for the gait are implemented in
C++ and executed on the robot’s computer. The interprocess communication is
implemented using the ROS middleware.

Scenarios We propose two scenarios to evaluate our approach. We initially
perform a 2D optimization to learn the P- and D-gain of the Ankle Tilt corrective
action. In the second scenario, a 4D optimization to learn the P- and D- gains
of the Swing Arm and Ankle Tilt actions is performed. In both scenarios, there
are no other feedback mechanisms active. To avoid artifacts coming from the
transient of a robot in a static configuration, all experiments start with the robot
walking on the spot. The walking sequence is then defined as walking on the
spot during three seconds and then walking forward with a speed of 0.3m/s. We
do not bias the optimizer specifying any initial values of the parameters. We
compare the results of our algorithm against manually tuned parameters devised
by experts. These parameters were used by the winning team NimbRo TeenSize
at the RoboCup 2017 competition [19].

Parameters We parametrize the kernel function with l =
(
xmax

8

)
and α = 0.25

to produce a reasonable trade-off between exploration and exploitation. We use
the same values of l and α for ksim and kε. The standard deviation of ksim is set
to σsim = 2.48 and the standard deviation of kε is set to σε = 2.07 for the 2D
optimization, whereas σsim = 2.07 and σε = 1.79 are set for the 4D optimization.
The prior means are set to µsim = 53.3502 and µε = −37.1385. These values
are chosen from initial experiments. Additionally, the penalty function ν(x) is
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parametrized with λ = 0.75 and s = 7.5 to punish parameters larger than λxmax.
The smoothness of the phase transition is set to γ = 6. The effort of the simulation
and real-robot experiments are set to wsim = 10 and wsim = 50, respectively, i.e.,
a real-robot walking sequence is five times as expensive as a simulated one.

5.2 Experimental Results

2D Optimization The algorithm performed in total 126 iterations, from which
20 walking trials were carried out with the real robot. This implies that ap-
proximately one real robot walking trial was required for every five simulations,
which shows the applicability of the integration of simulation and real robot
experiments for learning the activation value of the Ankle Tilt corrective action.
The optimized values yielded a cost of 9.3, while the manually tuned ones re-
sulted in a cost of 13.77. Thus, the optimization process found parameters that
are approximately 32% better than the manually by-expert-tuned parameters.
The resulting posterior is depicted in Fig. 4. The difference in the cost of the
simulation compared to the cost with the real robot is mainly caused by the noise
of the simulator, e.g., by modeling errors of the floor impacts.

Our approach was compared with a Random Search algorithm that greedily
searches for the optimal value by corrupting the current best guess with uniform
noise at each iteration. We applied this algorithm on the same experimental
setup and a maximum of 25 real-robot experiments. With a cost of 11.04, the
parameters of the random search outperformed the manually tuned ones. However,
our method performed 20 real experiments and yielded 15% better results than
random search. Additionally, the evaluations of the random search caused one
fall of the robot which never occurred with our approach.
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Fig. 4. Optimization of the parameters for the Ankle Tilt corrective action. The purple
mesh resembles the posterior mean while the gray mesh shows the covariance. At the
first iterations, the algorithm decided to perform only simulations (blue). Once enough
information has been gathered in the simulation, real experiments (red) are carried
out. To stress the contribution of the simulation, the rightmost plot shows the posterior
considering only real-robot experiments.
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4D Optimization For the 4D optimization, 301 iterations were carried out:
271 in simulation and 30 with the real robot, i.e., in average one real-robot
experiment is required for every nine simulations. The resulting parameters were
evaluated against manually tuned parameters, performing with the real robot 15
walking sequences for each set of parameters. The optimized parameters yielded
an average cost of 10.38 and resulted, in comparison to the manually tuned gait
with a mean cost of 16.28, in an improvement of 35%. In order to evaluate only
the contribution of the stability in the cost, we subtract the penalty term of the
cost; the resulting performance of the optimized parameters is 53% better than
the manually tuned parameters.

Moreover, we compared the measured fused angle deviation (not fused angle
feedback) and its integral during five trials. As expected, during the first three
seconds (walking on spot) there are no significant differences. However, as soon
as the robot starts walking forward, the deviations start to diverge and the
difference between the set of parameters becomes apparent. In general, the
optimized parameters reproducibly generate deviations of lower amplitude. The
difference becomes more apparent observing the integral of the mean absolute
deviation D̄α =

∫ T
0
E [‖dα‖] dt depicted in Fig. 5.

A remarkable property of our approach is the fact that the real robot did
not fall a single time during the optimization process, because parameters that
resulted in a fall in simulation were ruled out without the need for real-robot
experiments. Furthermore, the optimized gait looks qualitatively more stable
and generally walks with a more upright torso compared to the manually tuned
parametrization. A video of the gait with the optimized parameters is available
online1. The optimized gait was also tested in a very rough terrain, where the
robot successfully traversed a series of debris (Fig. 5).
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Fig. 5. Phase plots of the optimized (left) and manually (middle) tuned parameters
for our gait. For clarity, only one walking sequence is displayed but all the evaluated
sequences show a similar behavior. Right: integral of the mean absolute fused angle
deviation D̄α of the optimized (red) and the manually tuned (blue) parameters. The
shaded regions cover the values within two standard deviations (±2σ).

1http://www.ais.uni-bonn.de/videos/RoboCup_Symposium_2018

http://www.ais.uni-bonn.de/videos/RoboCup_Symposium_2018
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Fig. 6. Evaluation of the optimized gait parameters on very rough surfaces (artificial
grass with small debris). a) Evaluation setup (leftmost) and pictures of the robot
traversing the debris. b) The corresponding fused angle deviation over time. The
magenta line indicates the moment of contact with the debris.

6 Conclusions

We presented an approach to trade off simulations and real-robot experiments
for learning gait parameters based on a state-of-the-art Bayesian optimizer. We
showed how the gait stability was improved with the parameters found by our
approach. During the optimization process, the real robot did not fall a single time,
which shows that the algorithm was successfully generalizing the information
gathered from the simulation. This generalization also leads to a lower number of
required physical experiments, which enables the applicability of our approach.

We observed a limitation of our method to be applied in higher dimensions.
We hypothesize to solve this issue by using dimensionality reduction methods
and by performing the optimization in a lower-dimensional space. Additionally,
in the future, we also want to learn the hyperparameters of the kernel during
optimization.
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