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Abstract. We present the approaches and contributions of the winning
team NimbRo@Home at the RoboCup@Home 2024 competition in the
Open Platform League held in Eindhoven, NL. Further, we describe our
hardware setup and give an overview of the results for the task stages and
the final demonstration. For this year’s competition, we put a special em-
phasis on open-vocabulary object segmentation and grasping approaches
that overcome the labeling overhead of supervised vision approaches,
commonly used in RoboCup@Home. We successfully demonstrated that
we can segment and grasp non-labeled objects by text descriptions. Fur-
ther, we extensively employed Large Language Models (LLMs) for natu-
ral language understanding and task planning. Throughout the competi-
tion, our approaches showed robustness and generalization capabilities.
A video of our performance can be found onlindﬂ

1 Introduction

NimbRo has a well-established track record of successful participation in robotic
competitions ranging from humanoid soccer in the RoboCup AdultSize class [21],
mobile manipulation in unstructured environments at the DLR SpaceBot Cup [23]
and the DARPA Robotics Challenge [27], cluttered bin picking at the Ama-
zon Picking / Robotics Challenges [26125], multiple UGV and UAV tasks at
MBZIRC 2017 [24/1] and 2020 [1212], and immersive telepresence at the ANA
Avatar XPRIZE competition [I3]. After winning RoboCup@Home three times
in a row 2011-2013 [29], we participated again at RoboCup@Home 2023 in Bor-
deaux [I7] and now won the RoboCup@Home 2024 competition in the Open
Platform League. Figure [1] shows our team at RoboCup 2024 in Eindhoven, NL.

In this paper, we give an overview of the hardware setup, describe the ap-
proaches and methods used in the competition and present the results of the
RoboCup 2024 world championship in the @Home Open Platform League. Our
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Fig. 1. The NimbRo@Home team at RoboCup 2024 in Eindhoven, NL.

team won the competition with a final score of 8,852, followed by team Tidyboy-
OPL (South Korea) with a score of 7,495 and SocRob@Home (Portugal) with a
score of 6,901. Novelties of this year’s participation include a modified robot plat-
form, improvements in our grasping and vision approaches and the integration
of LLMs for task planning. We focused on the integration of open-vocabulary
approaches for object segmentation.

2 Hardware

For RoboCup@Home 2024 participation we used a modified TIAGo++ robot [20]
(see Figure [2) which is equipped with an omnidirectional mobile base, a linear
liftable torso with two 7-Degrees of Freedom (DoF) arms and a pan-tilt-unit with
an RGB-D camera. A ZBOX QTG7A4500 with an NVIDIA RTX A4500 is used
for model inference and is mounted on the robot’s back. An Ouster OSDOME-
128 with a 180° FOV is used to gather a frontal hemispherical view of the robot
for small obstacle avoidance and precise estimates for distant 3D perception.
The Light Detection and Ranging (LiDAR) is calibrated against a wide FoV
IDS uEye+ Camera to colorize the point cloud and to project detections from
the camera to the LiDAR frame. For 2D mapping and localization, two Sick
TiM 571 LiDAR sensors are used to cover the robot’s surroundings. A 10-inch
IPS touch screen is mounted at the front of the robot to improve human-robot
interaction. For speech recognition, a Zoom Am7 microphone is used. A Teltonika
RUTX50 Wi-Fi + 5G router served as a hybrid Wi-Fi and 5G connection for the
robot, using the 5G connection when it couldn’t connect to the Wi-Fi network to
ensure connectivity to online API services we utilize. We increased the height of
the robot by 200 mm to improve the grasping workspace and limit the extent of
the elbow joints when grasping objects from table and shelf heights. The speaker
of the robot was upgraded to Bose SoundLink Max to enhance its audibility in
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Fig. 2. Enhanced TIAGo++ omnidirectional robot platform.

noisy environments. We use ROS 2 Foxy [16] on the robot’s back computer and
bridge ROS 1 topics from the robot’s onboard computer. A second robot with a
similar configuration was used for redundancy and to allow for parallel testing.

3 Software for Perception and Planning

The developed software modules address mapping and navigation, person and
object perception, human-robot interaction, and task planning using LLMs.

3.1 Mapping and Navigation

We employ the SLAM Toolbox [15] to perform the mapping and utilize AMCL
for localization. SLAM toolbox is a graph-based approach with high mapping
accuracy due to loop closure support. When the operation area is unknown
in advance (Carry My Luggage task), we use the SLAM Toolbox localization
mode that updates the graph to new regions. In known environments, we utilize
pose location markers to encode poses of interest. In addition, we can use those
markers to define regions that can be used to distinguish between different areas
(rooms), to constrain person and object search areas, or to restrict specified
areas for the robot. An example of the underlying map is shown in Figure [Ja.
We edit the map in a web interface created with Viser Studio.

3.2 Person Perception

The exemplary person detection shown in Figure b uses YOLO V8 [9] models
for both pose and face detection. Both methods are combined by computing the
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Fig. 3. Software modules used in the competition. (a) Map including location markers
and annotated regions. (b) Person detection using YOLO V8, body pose estimation,

action and face recognition. (c) Projected object segments using mmGrounding-DINO.

Mean Intersection over Union (MIoU) of the bounding boxes of the face detection
and the estimated face from the pose. For face recognition, we employ a VGG-
Face [5] embedding model from DeepFace [28]. Compatible with both the Gemini
and IDS cameras, the system can access depth for each detection, allowing it to
naively recognize gestures such as hand waving, and discard detections of persons
outside a specified area, such as the competition arena.

For tracking, we employed a combination of 2D person detector from an
RGB-D camera and a re-identification approach [32] that continuously collects
features of the tracked person to distinguish the operator from the remaining
crowd. In case the operator is lost, the re-identification approach is used to
re-identify the operator. If that fails, the robot asks the operator to wave to
the robot to reinitiate the tracking. During the tracking phase, we adjust the
robot’s head to continuously look at the operator. This improves the interaction
and should minimize that the operator’s track is lost when the robot’s navigation
is not optimally facing the operator.

3.3 Object Perception

In this year’s RoboCup participation we utilized both, supervised and open-
vocabulary object segmentation approaches and could flexibly switch between
the two approaches. The closed vocabulary training and detection pipeline is
supported by a dataset of household objects spanning 63,516 object instances
from 104 classes in 5,088 frames. It was captured in our lab in Bonn as well
as at previous competitions and annotated using SAM [I1] interactively. At
RoboCup, the dataset was extended to include the local objects in cluttered
arrangements. Over the setup days, more data was collected for objects which
were not, performing well in the detection metrics and for difficult scenarios such
as faraway objects on the floor. These local datasets can be mixed with the base
dataset by remapping labels to visually similar local object classes to improve
recall or mixing in unrelated objects as negative examples to improve precision.
Our object perception pipeline is depicted in Figure 4l Fine-tuning of detection
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Fig. 4. Object perception pipeline including annotation, curation, and backbone mod-
els. We annotate data semi-automatically using CVAT and Segment Anything. This
data is then curated using FiftyOne and combined with external datasets. The cu-
rated data is used to fine-tune YOLO and MaskDINO models. Additionally, we employ
NanoSAM to recover segments from YOLO detections.

(YOLO [9]) or instance segmentation (MaskDINO [I4]) models is done on a task
per task basis, targeting only the object classes required in that task. Our base
models are pretrained on large image datasets (COCO, Openlmages), to assure
that the feature extraction layers are performant from the start. In this setup,
fine-tuning a task-specific model on a single RTX 4090 takes between 10 and 30
minutes. In Eindhoven, we used MaskDINO models rather than YOLO because
they proved more robust to the changes in lighting given our training data.

While open-vocabulary detectors are not yet as performant in terms of in-
ference speed and detection metrics as their closed vocabulary counterparts, we
find mmGrounding-DINO [33] to suffice for many household tasks. In this year’s
RoboCup vision strategy, we used this model when there were few relevant ob-
ject classes (Serving Breakfast, Clean the Table). The prompts were manually
designed using our locally captured dataset for evaluation and could be changed
on the fly during the task depending on its state, such as when checking for
chairs, searching for cutlery and tableware or looking for the dishwasher tab in
the Clean the Table task, respectively. Since Grounding-DINO models output
bounding boxes, we use these as prompts in NanoSAM to obtain the instance
segmentations we require for grasping.

3.4 Grasping

For manipulation, the robot is aligned based on the orientation of the object and
a reachability map precomputed using cuRobo [30]. Masking the object in the
depth image yields a partial point cloud, which is completed by registration to
a 3D model if one is available for the corresponding class label. The final point
cloud is then approximated by a 3D oriented bounding box.
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Fig. 5. 3D object perception and grasping. (a) If available, 3D models can be registered
to partial point clouds of all detected objects. (b) The grasp proposals minimizing the
grasping cost function for approaching a bottle of mustard lying on a surface.

Next, potential grasp poses are sampled on a quadrant sphere covering the
side of the object that is facing the robot, their base orientations placing the
gripper opening towards the object CoM with the fingers oriented vertically.
These base poses are augmented by twist angles around the forward axis in the
end effector frame.

In a subsequent filtering step, grasp poses which are in collision with the
environment are identified using a KD-Tree lookup in a composite point cloud
from the RGB-D camera and 3D LiDAR. This check is repeated for the ap-
proach trajectories of the remaining candidate poses. Then, the object 3D ori-
ented bounding box is transformed into the frame of each grasp pose. Poses in
which the object width exceeds the gripper width are removed. From the re-
maining poses, the most affordable one is selected for execution using a heuristic
which considers the availability of similar precomputed pre-grasp poses which
are not in collision with the environment, the distance from obstacles and the
margin between grasp pose and the borders of the robots’ workspace. Figure [5]b
shows example grasp proposals.

3.5 Speech Synthesis and Recognition

The foundation of our audio processing pipeline is the JACK Audio Connection
Kit [6], which provides capabilities for real-time audio processing and interfac-
ing to connected audio hardware. To cope with challenging acoustic conditions
in downstream tasks, the microphone signal is pre-processed using the NVIDIA
Maxine toolkit [I8], which applies denoising and dereverberation to isolate clean
foreground speech from background noise. To retrieve speech commands at spe-
cific times during task execution, we use a voice activity detection model [4] to
determine beginning and end-of-speech boundaries. Speech segments are then
passed directly to a local instance of Faster Whisper [31] for speech recognition,
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implementing Radford et al. [22], which is capable of transcribing 99 different lan-
guages and translating them into English. Thus, our speech recognition pipeline
can be characterized as robust, grammar-free, and multilingual.

For text-to-speech synthesis, we utilize the Coqui.ai library [7], which imple-
ments the end-to-end approach of Jaehyeon et al. [I0]. We embed this model
between custom pre- and post-processing modules for text normalization of nu-
merals and punctuation, as well as loudness normalization between passes and
loudness maximization to cut through loud environmental noises.

3.6 Task Planning using Large Language Models

To allow the robot to understand and act on complex natural language instruc-
tions where naive keyword searching is not sufficient, we use LLMs, i.e. GPT-
40 [19], which is accessed via our 5G router. We aimed for a general solution that
includes both the General Purpose Service Robot (GPSR) and Enhanced General
Purpose Service Robot (EGPSR) tasks provided by non-expert operators.

Our approach is based on encapsulating the robot’s capabilities, such as
communicating with a person, driving to a location, or grasping an object, in a
general way, so that a successful execution of a typical command can be achieved
by calling about 3 to 15 functions. In order for the LLM to keep track of progress
and possibly react to unexpected situations, it is important that these functions
are not only general and robust, but also provide appropriate textual feedback.
The LLM is then used to execute one function after another until the command
is accomplished, using the function calling feature provided by many SOTA
models. The LLM can determine that the command has been accomplished by
calling an appropriate function that advances the state machine of the underlying
task. We have also worked on analyzing the performance of different prompting
methods in a similar context [3]. In addition, we use LLMs to reject commands
that require capabilities that the robot either does not have or that take a long
time to execute, so that moving on to the next task increases the overall score.

4 Competition Results

We briefly present the results of the predefined tasks and the final demonstration
of the RoboCup@Home 2024 competition. For complete task descriptions, we
refer to the rule book [8]. In this year’s competition, the tests were executed
twice in different arenas.

4.1 Stage 1l

Stage 1 consists of the tasks Carry My Luggage, Receptionist, Serve Breakfast,
Storing Groceries and GPSR. The task duration is limited to 5 min for all tasks.
o In Carry My Luggage (Figure[6la), our robot successfully detected the correct
bag to carry, picked it up successfully, memorized the operator and followed the
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(a) Carry My Luggage (b) Receptionist

Fig. 6. Impressions from Stage 1 tests.

operator while passing a crowd, a tiny object and a hard-to-see object (chair).
Our robot lost track of the operator when it was avoiding the hard-to-see object.
o In Receptionist (Figure |§|b), our robot welcomed two guests, identified their
names and favorite drinks via speech, estimated distinguishable attributes by
face- and pose analysis to describe the guests to the other guests and offered free
seats. It was limited in time for offering the second seat.
o A low score in Storing Groceries was caused by a hardware defect which
prevented the robot from utilizing the arms properly.
o For the Serve Breakfast, task our robot successfully grasped a spoon and a bowl,
placed the bowl, and placed the spoon next to it. Finally, it perceived the cereals.
o In GPSR (Figure Elc), our robot received two commands by a naive operator:
"Tell me what the smallest object on the kitchen counter is." and "Navigate
to the office and hand me a pear." The robot successfully executed the first
command and was limited in time for the second command. This performance
yielded the highest score among all sub-leagues in the GPSR task.

After Stage 1, our team was ranked second with a score of 2,128 — behind
Tidyboy-OPL (2,717).

4.2 Stage 2

Stage 2 consists of the tasks Clean the Table, EGPSR, Restaurant and Stickler
for the Rules. The duration for the tasks is 10 min, while the Restaurant task is
limited to 15 min.

o In Clean the Table (Figure ma), our robot successfully grasped and placed a
cutlery item conveniently in the dishwasher and pushed in the rack.

o In Restaurant (Figure [7b), our robot detected waving guests and navigated
through the unknown environment towards them. When reaching customers, the
robot took their orders using speech recognition. If environmental noise proved
too challenging, the robot fell back on a touchscreen interface. Following this
pattern, our robot took orders from two different customers. Communicating
with the barman, the robot then picked up the ordered items and delivered
them to the recipients. In addition, the robot was also able to interact with
detected waving guests who did not want to order anything, returning to the



RoboCup@Home 2024 OPL Winner NimbRo 9

(a) Clean the Table (b) Restaurant

Fig. 7. Impressions from Stage 2 tests.

loop of searching for new customers and handling their orders. We received the
Waitress Captain (Best in Restaurant Test) award as our team scored highest
in the Restaurant task among all sub-leagues.
o In EGPSR (Figure Elc), our robot followed a pre-designed path, scanning for
trash with a closed-vocabulary detector and instructing the judge to dispose
detected objects. Using the wide-angle IDS camera, it identified all waving per-
sons, collected tasks, and executed them sequentially, starting with the closest
non-rejected task, following our Stage 1 GPSR approach. In the first run, we hit
the time limit during the initial task. In the second run, our robot faced issues
receiving a task from a quiet-voiced operator due to nearby robot band noise.
o For the Stickler for the Rules task, we employed open-vocabulary detection
models together with a pre-trained one. The pre-trained model detected known
floor objects. To minimize false positives, training data was collected in all arena
rooms with varying backgrounds. Open-vocabulary models detected shoes, socks,
and drinks — allowing for unknown item detection. Using the same model saved
GPU resources. The robot patrolled the arena, stopping to detect rule offenders,
managed by a custom state machine. In unexpected situations, it returned to
the main patrol cycle.

After Stage 2, we led the competition with a score of 4,918, followed by
SocRob@Home (4,247) and Tidyboy-OPL (4,213).

4.3 Final Demonstration

This year’s theme for the final demonstration was "The robot helps a person
in preparing dinner". We aimed to showcase approaches and tasks that had not
been shown in the predefined stages of the competition. Due to the limited time
of 10 minutes available in the final demonstrations, we employed two robots in
a time-splitting manner. The first robot was used to scan the environment to
find out which objects are present in the kitchen. Next to a 2D map and marked
locations, no further input was provided. This part of our final demonstration
should showcase how open-vocabulary vision approaches can be practically em-
ployed in domestic service robots to gather information about the environment
and utilize this information for task planning based on user input. The second
robot was used to pour an egg into a pan. This part should story-wise be after
the scan of the environment to showcase that open-vocabulary approaches can
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(a) Egg pouring (b) Apartment scanning (¢c) Human interaction

Fig. 8. Impressions from the final demonstration.

be utilized to grasp non-labeled objects and allow achieving complex tasks like
pouring an egg into a pan. Impressions of our final demonstration are shown in
Figure [8] For the final, our team received the highest scores from both the in-
ternal and the external jury members (1,783 + 2,152), followed by Tidyboy-OPL
(1,545 4+ 1,738) and SocRob@Home (1,185 + 1,469).

5 Lessons Learned

Closed-set object detection approaches lack generalization in domestic service
robotics. Open-vocabulary instance segmentation proved valuable in this com-
petition. In the final demo, we used multimodal foundation models with open-
vocabulary segmentation, enabling the robot to gather semantic scene informa-
tion and grasp unseen objects. Capturing object relevance and attributes sur-
passes generic class label limitations. We successfully used a hybrid approach,
combining closed-set detectors with open-vocabulary models for challenging cat-
egories like drinks, shoes, and garbage. For future tasks, we aim to reduce re-
liance on custom closed-set models and enhance open-vocabulary segmentation
integration with LLM agents for arbitrary task planning in unseen environments.

Robustness and generalization are key for successful RoboCup@Home par-
ticipation. We used hybrid Wi-Fi and 5G for connectivity, sensor watchdogs
for reliability, and promptable object perception models for quick adaptation.
Non-successful grasps were detected by reading the gripper’s encoder states to
reattempt the grasp. After too many failures, we triggered a handover procedure.

From last year’s participation, we learned to prioritize natural interaction,
emphasizing speech support and visual feedback on a touch screen interface.
If speech commands are unclear, a graphical user interface allows users to se-
lect options or cancel phases. We also displayed object perception results for
transparency and debugging.

6 Conclusion

In this paper, we summarized our hardware, approaches, and performance of
the NimbRo@Home team at the RoboCup@Home 2024 competition in the Open
Platform League. For this year’s participation, we successfully employed open-
vocabulary approaches for object segmentation and LLMs for task planning and
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execution. We successfully demonstrated that open-vocabulary approaches can
be utilized to grasp non-labeled objects. During the competition, we scored in
all tasks of Stage 1 and Stage 2. In the final demonstration, we showcased how
open-vocabulary object perception approaches can be practically employed in
domestic service robots to gather information about the environment and utilize
this information for task planning based on user input and finally execute com-
plex tasks like pouring an egg into a pan. Our team NimbRo@Home won the
overall competition in the Open Platform League, followed by team Tidyboy-
OPL (South Korea) and SocRob (Portugal). Further, we received a Waitress
Captain (Best in Restaurant Test) award. We believe that robustness and gen-
eralization are key for successful RoboCup@Home participation.

Acknowledgments. This work has been funded by the German Ministry of Education
and Research, grant 165V8683: Transferzentrum Roboter im Alltag (RimA).
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