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Abstract. Individual and team capabilities are challenged every year
by rule changes and the increasing performance of the soccer teams at
RoboCup Humanoid League. For RoboCup 2019 in the AdultSize class,
the number of players (2 vs. 2 games) and the field dimensions were
increased, which demanded for team coordination and robust visual per-
ception and localization modules. In this paper, we present the latest
developments that lead team NimbRo to win the soccer tournament,
drop-in games, technical challenges and the Best Humanoid Award of
the RoboCup Humanoid League 2019 in Sydney. These developments
include a deep learning vision system, in-walk kicks, step-based push-
recovery, and team play strategies.

1 Introduction

The Humanoid League contributes to the goal of beating the human soccer
world champion by 2050 by gradually making the game rules more FIFA alike.
Additionally, individual and team skills are also encouraged by a set of tech-
nical challenges. This year, for the AdultSize class, the teams were allowed to

Fig. 1. Humanoid AdultSize team NimbRo at RoboCup 2019 in Sydney.
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be composed by two team players. Correspondingly, the field dimensions were
updated to 14×9m. These modifications pose several challenges in terms of per-
ception (further away balls and goalposts to be detected), locomotion (longer
distances demanding for a faster gait), localization (robust line detection and
state estimation), and team play (coordination between players). This paper
presents our recent developments to address these modifications and shows their
performance in the competition. These developments include in-walk kicks, a
step-based push recovery approach, a vision system based on deep learning and
team play strategies.

Our robots won all AdultSize 2019 competitions, namely the soccer tourna-
ment, the drop-in games and the technical challenges. Additionally, the Nim-
bRo team was given with Best Humanoid award of the Humanoid League. In
RoboCup 2019, we used our fully open-source 3D printed humanoid platform
NimbRo-OP2(X) [1,2], shown in Fig. 1 with our human team members. We
released a video of the 2019 competition highlights 1.

2 Robot Platforms

During the competition three different robots have been used — NimbRo-OP2
(Fig. 1 first from right), NimbRo-OP2X (Fig. 1 first from left) and Copedo
(Fig. 1 second from left). These platforms lead team NimbRo to win all possible
competitions last year in the AdultiSize League of RoboCup 2018 [3]. Despite
the visible differences in the kinematic structure and outer appearance, there is
a fundamental level of similarity between the platforms. The joints of all robots
are actuated with Robotis Dynamixel actuators. These are controlled through a
Robotis CM740 microcontroller board, which also incorporates an IMU with a
3-axis gyroscope and accelerometer. For visual perception, a Logitech C905 USB
camera in combination with a wide-angle lens was used.

NimbRo-OP2(X). NimbRo-OP2 [1] and NimbRo-OP2X [2] are our self-develo-
ped humanoid robots, where both the hardware2 and software3 components are
completely open-source. Although the platforms share a similar design and name,
there is a number of differences between them. With the same height of 1.34 m,
the robots place on the lower end of the AdultSize class requirements. Their 3D
printed plastic structure mainly contributes to the low weights of 17.5 kg (OP2)
and 19 kg (OP2X). Both robots share a similar joint layout with 18 Degrees of
Freedom (DoF), with 5 DoF in a parallel kinematics arrangement per leg, 3 DoF
per arm, and 2 DoF actuating the head. A Shuttle X1 Gaming computer with
an Nvidia GTX 1060 and an Intel Core i7-7700HQ CPU was mounted inside
the hollow trunk of the NimbRo-OP2. For the NimbRo-OP2X we increased the
available space in the trunk to fit a standard Mini-ITX motherboard, with a
1 RoboCup 2019 NimbRo highlights video: https://youtu.be/ITe-seb4PsA
2 NimbRo-OP2X hardware: https://github.com/NimbRo/nimbro-op2
3 NimbRo-OP2X software: https://github.com/AIS-Bonn/humanoid_op_ros

https://youtu.be/ITe-seb4PsA
https://github.com/NimbRo/nimbro-op2
https://github.com/AIS-Bonn/humanoid_op_ros
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i7-8700T CPU and a GTX 1050 Ti GPU. Other significant differences With the
NimbRo-OP2X, a new type of Dynamixel X actuator—the XH540—was used.
Equipped with thicker gears and a fully metal casing, the servomotors are more
durable and reliable, compared to the MX-106 from the NimbRo-OP2. Both
robots use external gearing to produce the required torque in the leg roll and
yaw joints. Initially, they were custom-milled out of brass for the OP2. Due to
weight and procurement factors, the OP2X utilizes 3D-printed double-helical
gears, which are fast to manufacture.

Copedo. Copedo was built using milled carbon composite and aluminum parts.
These provide the necessary rigidity, while keeping the total weight down. Ini-
tially, Copedo was built (in 2012) as a TeenSize robot. With the introduction of
one vs. one games in the AdultSize class in 2017, we have rebuilt him to have a
weight of 10.1 kg and a height of 131 cm [4]. Dynamixel EX-106+ were chosen to
power the 5 DoF legs. The legs are additionally equipped with tension springs,
which allow for energy storage during locomotion. The 1 DoF arms and 2 DoF
neck use RX-64 servos, due to lower torque and speed requirements for their
joints. A small, light-weight and efficient Intel NUC NUC7I7BNH (i7-7567U
CPU) computer was fitted into Copedo to complete the build.

3 Deep Learning Visual Perception

Our visual perception pipeline improved significantly since RoboCup 2018. Thanks
to our new unified perception convolutional neural network (NimbRoNet2), we
now can reliably perceive the environment in extremely low and very bright light-
ing condition. The visual perception system can recognize soccer-related objects,
including a soccer ball, field boundaries, robots, line segments, and goalposts
through the usage of texture, shape, brightness, and color information.

Our deep-learning-based visual perception system is robust against bright-
ness, viewing angles, and lens distortions. To achieve this, we designed a unified
deep convolutional neural network to perform object detection and pixel-wise
classification with one forward pass. After post-processing, we managed to out-
perform our previous non-deep learning approach to soccer vision [5] as well as
our previous deep-learning-based model [2]. Our perception system is also able
to track [6] and identify our robots [7].

The system has two output heads; one for object detection, and the other for
pixel-wise segmentation. The detection head gives the location of the ball, robots,
and goalposts. The segmentation head is for line and field detection. Our model
uses an encoder-decoder architecture similar to pixel-wise segmentation models
like SegNet [8], and U-Net [9]. Due to computational limitations and the necessity
of real-time perception, we have made several adaptations, e.g., using a shorter
decoder than the encoder. Thus, the number of parameters has been reduced for
the cost of losing fine-grained spatial information which can be alleviated using
sub-pixel post-processing. To minimize annotation efforts, we utilized transfer-
learning. A pre-trained ResNet-18 is chosen as the encoder. Since ResNet was
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originally designed for recognition tasks, we removed the Global Average Pooling
(GAP) and the fully connected layers in the model. Transpose-convolutional
layers are used for up-sampling the representations. To use location-dependent
features, we used newly proposed location-dependent convolutional layer [10]. In
order to limit the number of parameters used, a shared learnable bias between
both output heads is implemented. The proposed visual perception architecture
is illustrated in Fig. 2.

Fig. 2. NimbRoNet2 architecture. Similar to ResNet, each convBlock consists of two
convolutional layers followed by batch-norm and ReLU activations. For simplicity,
residual connections in ResNet are not depicted. Note that instead of a convolutional
layer we used a location-dependent convolution in the last layer.

Different losses were used for different network heads. For detection head,
similar to SweatyNet [11], the mean squared error is employed. The target is
constructed by Gaussian blobs around the ball center and bottom-middle points
of the goalposts and robots. In contrast to last year model, NimbRoNet2 uses
a bigger radius for robots with the intuition that annotating a canonical center
point is more difficult, thus a bigger radius would less penalize the network for
not outputting the exact human labels. In the classification head, we used pixel-
wise Negative Log Likelihood. We also added Total Variation loss to the output
of all result channels except the line segmentation channel. Total Variation loss
encouraged blob response thus helped to have less false positives, especially in
field detection.

One other difficulty of this year of RoboCup was very thin goalposts which
were hard to detect. However, with many training samples, the network finally
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managed to learn it very robustly. After sufficient training, goal posts were de-
tected even when they were hard to recognize by a human. This might be ex-
plained by inferring their presence from other features of the pitch like field
boundary and lines. One detected hard-to-recognize goal post is shown in the
last row of Fig. 3.

Fig. 3. Object detection results. Upper row: captured images by our robots. Middle
row: the output of the network with balls (cyan), goal posts (magenta), and robots
(yellow). Bottom row: the output of the segmentation branch with lines (white), field
(gray), and background (black).

Despite using Adam optimizer, which has an adaptable per-parameter learn-
ing rate, finding a suitable learning rate is still a challenging prerequisite for
training. To determine an optimal learning rate, we followed the approach pre-
sented by Smith et. al. [12]. Each batch contained only some samples for one
of the output heads. We used progressive image resizing that uses small pic-
tures at the beginning of training, and step by step increase the dimensions as
training progresses, a method inspired by Brock et. al. [13] and by Yosinski et.
al. [14]. In early iterations, the inaccurate randomly initialized model will make
fast progress by learning from large batches of small pictures. Within the initial
fifty epochs, we used downsampled training images, whereas the weights on the
encoder part are frozen. Throughout the following fifty epochs, all parts of the
models are jointly trained. In the last fifty epochs, full-sized pictures are used
to learn fine-grained details. A lower learning rate is employed for the encoder
part, with the intuition that the pre-trained model needs less training time to
converge. With the described method, the entire training process with around
9k samples takes less than three hours on a single Titan X GPU with 12 GB of
memory. Examples from the test set are pictured in Fig. 3. To annotate more
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Fig. 4. Object detection under various lighting conditions. Left column: captured im-
ages by our robots. Middle column: output of the network indicating balls (cyan), goal
posts (magenta), and robots (yellow). Right column: output of the segmentation branch
showing lines (white), field (gray), and background (black).

data as quickly as possible, we designed an annotation tool which automatically
annotates the input based on the previously trained model. The user then only
had to correct those samples which were wrongly classified. This semi-automatic
annotation tool was crucial for us to gather as many samples as possible from
the RoboCup 2019 environment.

The output of the network is of lower resolution and has less spatial infor-
mation than the input image. To account for this effect in the detection part, we
calculate sub-pixel level coordinates based on the center of mass of a detected
contour. There was no need to account for lower resolution output in the field
and line segmentation.

After detecting soccer-related objects, we filter them and project each object
location into egocentric world coordinates. Using NimbRoNet2, we can detect
objects which are up to 10 meters away. The complete perception pipeline, in-
cluding a forward-pass of the network, takes approximately 36 ms on the robot
hardware. Using a unified network helped both detection and segmentation. The
network learned to exclude the balls which were outside of the field, hence reduc-
ing false detection rate. Outside field object removal was previously done only
after post-processing. In addition, the robot was able to play soccer in pitch
black, and the perception was robust in different lighting conditions, including
direct sunlight and without ambient light (Fig. 4). Unfortunately, this year, all
AdultSize games were played with artificial light, thus we could not test our new
development for lighting conditions during the competition.
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Table 1. Results of the detection branch of our visual perception network.

Type F1 Accuracy Recall Precision FDR

Ball (NimbRoNet2) 0.998 0.996 0.996 1.0 0.0
Ball (NimbRoNet) 0.997 0.994 1.0 0.994 0.005
Ball (SweatyNet-1 [11]) 0.985 0.973 0.988 0.983 0.016

Goal (NimbRoNet2) 0.981 0.971 0.973 0.988 0.011
Goal (NimbRoNet) 0.977 0.967 0.988 0.966 0.033
Goal (SweatyNet-1 [11]) 0.963 0.946 0.966 0.960 0.039

Robot (NimbRoNet2) 0.979 0.973 0.963 0.995 0.004
Robot (NimbRoNet) 0.974 0.971 0.957 0.992 0.007
Robot (SweatyNet-1 [11]) 0.940 0.932 0.957 0.924 0.075

Total (NimbRoNet2) 0.986 0.986 0.977 0.994 0.005
Total (NimbRoNet) 0.983 0.977 0.982 0.984 0.015
Total (SweatyNet-1 [11]) 0.963 0.950 0.970 0.956 0.043

Table 2. Results of the semantic segmentation of our visual perception network.

Type Accuracy IOU

Field 0.986 0.975
Lines 0.881 0.784
Background 0.993 0.981

Total 0.953 0.913

Our visual perception pipeline is compared on different soccer-related ob-
jects against SweatyNet [11] and our previous model NimbRoNet [2] (Table. 1).
We also evaluated our segmentation head (Table. 2). We have outperformed
SweatyNet and NimbRoNet, whose results were one of the best-reported in
terms of detecting soccer objects. This achievement was also accompanied by
being approximately two times faster than SweatyNet in training phase. The
reduced training time can be attributed to the progressive image resizing and
transfer learning techniques.

4 Robust Omnidirectional Gait with In-walk Kick

Team NimbRo has developed a motion and a gait control framework capable
of absorbing pushes from any direction at any time during the gait cycle. This
year, for the first time, our NimbRo-OP2(X) adult-sized platforms incorporated
step-based push recovery capabilities and in-walk kicks.

Compliant Actuation. Motions performed by the robot are sensitive to the
tracking capabilities of the control system. We developed a feed-forward control
scheme which modifies the joint trajectories based on the commanded position
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and inverse dynamics [15]. The model incorporates factors such as battery volt-
age, joint frictions, and body inertias.

Open-loop Walking. The walking gait is based on an open-loop central pat-
tern generator calculated from a gait phase angle proportional to the desired gait
frequency. To formulate this open-loop gait, we use three different spaces: joint
space, Cartesian space and abstract space [16]. The open-loop gait is further
extended by the integration of an explicit double support phase, modification
of the leg extension profiles, and velocity and acceleration-based leaning strate-
gies [17]. These extensions resulted in passive damping of oscillations and smooth
transition between swing and support phases.

Feedback Mechanisms. Several basic feedback mechanisms, namely arm an-
gle, hip angle, continuous foot angle, support foot angle, CoM shifting, and
virtual slope, have been built around the open-loop gait core to stabilize the
walking [17]. These PID-like feedback mechanisms derive from the state esti-
mation and add corrective action components to the central pattern generated
waveforms.

Capture Steps Gait. We use the Capture Step Framework [18,19] to make our
robots recover balance. The Capture Step Framework is a composition of central
pattern-generated open-loop step motions and a linear inverted pendulummodel-
based balance controller. In each iteration of the motion control loop, timing and
location of the next footstep are computed using the linearized equations of the
inverted pendulum model such that the Center of Mass (CoM) would return to a
stable limit cycle while also following a commanded walking velocity. Our robots
showed stable walking throughout the competition, including balance-restoring
capture steps after collisions in games and excelled in the technical challenge.

4.1 In-walk Kick

Our in-walk kick approach integrates the kick directly into the gait to avoid
unnecessary stops (Fig. 5), which were required in our previous kicking motions.

Fig. 5. In-walk kick performed during a soccer match.
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Fig. 6. A schematic visualization of the kick phase xK and the sagittal leg angle ϕ̄.
The upper part shows the augmented leg angle ϕ̄ in sagittal direction during a kick,
where the vertical dashed lines symbolize the start and the end of the kicking motion.
The lower part displays the timing parameters used to calculate xK , where the red line
resembles the support coefficient of the kicking leg and the blue line of the supporting
leg respectively. The timing parameter λ can be used to move the motion of length L
inside the legal execution window of size ∆T .

Thus, a significantly boosting of the overall pace of the game on the larger field
has been achieved.

A general schematic of the approach can be seen in Fig. 6. In our approach,
an allowed time window ∆T is defined for the kick. Generally, a kick can be
performed between the end tE of the previous support transition phase and the
start tS of the next transition phase respectively. Nevertheless, for T0, TN >
0, it is advantageous to prohibit kicks in boundary intervals [ts, ts + T0] and
[tE − TN , tE ] to prevent unwanted foot contact with the ground during the kick
execution. In this manner, we define

∆T = tE − tS − T0 − TN (1)

as the length of the interval where we can safely perform a kick. In addition,
given a motion duration L < ∆T , it is possible to perform the kick inside an
arbitrary location of the allowed interval. This enables us to define a timing
parameter 0 ≤ λ ≤ 1 resulting in a delay interval

Tλ = λ (∆T − L) , (2)

controlling the starting time of motion execution inside the allowed time window.
This is particularly important for the soccer behaviors, since it allows for exact
control of the location of the foot at the start and apex of the kick. Altogether,
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this results in the actual starting time of the kick

tK = tS + T0 + Tλ . (3)

Consequently, a kick phase xK is defined, which linearly interpolates from
−1 to 1 between the nominal start and end of the kicking motion:

xK (t) = 2
t− (tS + T0 + Tλ)

L
− 1. (4)

In the end, the kick phase is used to compute the augmented sagittal leg angle:

ϕ̄ (t) =

ϕ−A exp

(
− 1

2

(
xK(t)
σ

)2)
, if t ∈ [tK , tK + L]

ϕ, otherwise
(5)

by subtracting a Gaussian curve of the sagittal leg motion, where A defines the
amplitude and σ controls the width of the Gaussian, achieving a smooth but
distinct forward motion of the leg. The Gaussian term is set to zero beyond the
interval boundaries [tK , tK + L]. Thus, σ has to be small enough such that the
activation of the Gaussian can be neglected at the borders, ensuring that the
transition to the kick is smooth.

5 Soccer Behaviors

We refer to soccer behaviors to the decision process required to play football.
These decisions include, for example, to search for the ball if this is not detected,
to go for the ball if we are far from it, or to activate the kick if all the conditions
for kicking are granted. The decision process is modeled as a hierarchical Finite
State Machine (FSM) with two main layers [20]. The state of the upper layer is
established by the state of the game defined in part by the game controller and
the role of the player (goalie, striker or defender). The states of the lower FSM
represent individual skills of the players such as: move, stop, kick, dribble, dive,
among others. Collision avoidance, i.e., avoidance of other robots—either from
the opponent team or our team—is part of the lower state machine.

Team Play Strategies. In general, the function of the team play is to safely
assign the game roles to each of the players. In this manner, for example, having
two strikers simultaneously is not desired in order to avoid collisions between
robots of the same team when they are going for the ball. The task assignment
is implemented as a server/client architecture where the striker is the server and
it is the only one allowed to accept task renegotiation requests. The other players,
i.e., defenders and goalies, are allowed to make requests if they find themselves
in a better position than the striker, e.g., being closer to the ball. During drop-in
games, no task renegotiation was allowed, mainly due to the lack of game roles of
other teams. Thus, our players were assigned to fixed roles from the beginning of
the match. However, team capabilities were still exhibited during drop-in games,
e.g., by our goalkeepers clearing out balls and returning to their corresponding
goal. For a deeper discussion about the team play strategies, please refer to [20].
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6 Technical Challenges

Technical challenges is a separate competition, where robots have to perform
isolated independent tasks during a limited time period. Since the time period
for executing all tasks is limited to only 25 minutes, robustness and reliability
have the highest importance when designing a solution for each challenge. At
RoboCup 2019 there were four technical challenges: push recovery, high jump,
high kick and goal kick from moving ball.

6.1 Push Recovery

In this Push Recovery challenge, a robot has to withstand three pushes in a
row while walking on spot. The pushes are performed by releasing a previously
retracted pendulum which then hits the robot at the height of the CoM. The
pushes are performed randomly from the front and from the back. The weight of
the pendulum is 5 kg and the robots are ranked by the distance of pendulum re-
traction for the series of three successful attempts. The Capture Step Framework
allowed our robot to withstand very strong pushes, making a series of capture
steps to regain balance (Fig. 7), and to finish first in this challenge.

Fig. 7. Technical Challenge: Push Recovery. Several capture steps allow the robot to
regain balance after a very strong push of a 5 kg pendulum.

6.2 High Jump

The goal of the High Jump is to remain airborne during a vertical jump as long as
possible and upon landing remain in a stable sitting or standing posture. For this
challenge, motions were pre-designed using key-frames and a simple geometry-
based mass distribution principle [21]. By lowering and rapidly lifting the CoM,
the accumulated linear momentum at full CoM height propels the robot into
the air. After the leap is performed, there is a possibility to decrease the CoM
height, which results in folding the legs. This would increase the time in the
air by postponing the contact with the ground plane even with a weaker jump
upwards. However, we observed that this rapid leg movement caused the robot
to often lose balance upon landing. Due to the bent knees, the force upon impact
was also damaging to the gears in the knee actuators. In our experience, we have
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found that landing on extended legs increased the durability of the actuators and
made the landing more reliable. This was largely due to the integrated tension
springs in the legs. They provide passive compliance during landing and also
contributed greatly to the strength of the jump. Our robot remained airborne
for 0.262s and came in second with a difference of 13ms to the first.

6.3 High Kick

In the High Kick challenge, the robot has to score a goal over an obstacle which
is positioned on the goal line. The ball is initially positioned at the penalty
mark. The goal is only valid if the ball surpassed the obstacle without touching
it. The height of the obstacle can be adjusted and the teams are ranked by the
height of the successfully over-kicked obstacle. Since it is allowed to touch the
ball multiple times, we first move the ball close to the goal line by executing a
pre-designed kicking motion. Having the ball close to the obstacle, we execute
a pre-designed high kick motion. During this motion the tip of the foot makes
first contact with the ball as close to the ground plane as possible. From that
point, the foot moves forward and upwards. In order to improve the efficiency of
this motion, we use a modified foot with a "scoop" shape. It ensures a prolonged
contact with the ball during the high kick motion and—hence—transfer of more
energy to the ball, which allows to kick over higher obstacles. Our team came in
second in this challenge, successfully kicking over an obstacle of 26 cm height.

6.4 Goal Kick from Moving Ball

The goal of this challenge is to score a goal by kicking a moving ball. The robot
is placed at the penalty mark. The ball is positioned at the corner of the field
and is passed to the robot either by a human or by another robot. The teams are
ranked by the number of successful goals out of three consecutive attempts. In
order to know when the robot has to kick, we predicted the time-of-travel of the
ball to get in front of the robot foot by estimating its velocity and acceleration
from a series of consecutive ball detections, separated in time by a time interval
ε = 0.1 s. Our robot performing this challenge is shown in Fig. 8. Our team took
the first place in this challenge, successfully scoring the goal from the moving
ball three out of three times.

Fig. 8. Technical Challenge: Goal Kick from Moving Ball.
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7 Game Performance

During the AdultSize 2 vs. 2 Soccer competition of RoboCup 2019, our robots
scored 48 goals while receiving none. The robots have shown outstanding perfor-
mance during the whole tournament including winning the final game 8:0. While
2 vs. 2 competition games have shown individual and team capabilities, drop-in
games demonstrated individual skills of each single robot. In the Drop-in tour-
nament, our robots scored 31:7 goals in 6 drop-in games—resulting in winning
57 points with a margin of 33 points to the second best team. Compared to the
soccer tournament, we received goals during drop-in games mainly due to the
lack of a second field player (our partner teams normally placed goalkeepers),
and due to the lack of diving motions when our robots were goalkeepers. The ca-
pabilities of our robots were once more demonstrated by winning the AdultSize
Technical Challenges. Consequently, NimbRo received the 2019 Best Humanoid
Award of the Humanoid League.

8 Conclusions

In this paper, we presented the approaches that lead us to win all possible
competitions in the AdultSize class for the RoboCup 2019 Humanoids League
in Sydney: soccer tournament, drop-in games and technical challenges. Special
emphasis was put on the deep learning based computer vision system that lead
our robots to be robust against different lighting conditions and to detect reliably
balls up to 10m. Part of our success in the games was explained by the novel
in-walk kick, making our games very dynamic and hard to counteract by the
opponents. We also presented a step-based push recovery approach that was
demonstrated during the competition with impressive performance. Finally, the
decision making process and team play strategies were presented, which are
responsible for integrating and making use of all individual components.
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