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Abstract. Over the past few years, the Humanoid League rules have
changed towards more realistic and challenging game environments, which
encourage teams to advance their robot soccer performances. In this pa-
per, we present the software and hardware designs that led our team
NimbRo to win the competitions in the AdultSize league — including
the soccer tournament, the drop-in games, and the technical challenges at
RoboCup 2018 in Montréal. Altogether, this resulted in NimbRo winning
the Best Humanoid Award. In particular, we describe our deep-learning
approaches for visual perception and our new fully 3D printed robot
NimbRo-OP2X.

1 Introduction

The goal of the RoboCup Humanoid League is to develop a team of humanoid
robots that can compete against the human World Soccer Champion in 2050.
In recent years, there were many rule changes introduced to the league in order
to bring the level of complexity closer to human soccer. In the RoboCup 2018
competitions, drop-in games were introduced to the AdultSize class, in which
two teams consisting of two robots competed with each other, and several teams
performed very well.

Fig. 1. Left: NimbRo AdultSize Robots: Copedo, NimbRo-OP2 and NimbRo-OP2X.
Right: The NimbRo team at RoboCup 2018 in Motnréal.
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For RoboCup 2018, we used two open-source 3D printed robots and an up-
graded version of one of our classic robots. Each of our 3D printed robots is
equipped with a fast onboard computer and a GPU to perform parallel compu-
tations. We extended our open-source software with a deeplearning-based per-
ception system and gait parameter optimization. All of the AdultSize robots are
shown in Fig. 1, along with the human members of our team NimbRo.

2 Robot Hardware

One of the main contributions to our team’s performance at RoboCup 2018
was the hardware capabilities of our design. At the competition in Montréal, we
participated with three robots: Copedo, NimbRo-OP2, and NimbRo-OP2X (See
Fig. 1). Copedo [1] has a light weight of 10.1kg, and spring-loaded legs with
parallel kinematics make it a dynamically capable robot, which we utilize in,
e.g., the jumping technical challenge.

In contrast to the aluminum and carbon-based build of Copedo, the structure
of our newest NimbRo-OP2X [2] robot is completely 3D-printed and is a sub-
stantial upgrade to the NimbRo-OP2 [3]. The core design principles that made
the NimbRo-OP2 a reliable and capable platform remained the same [3]. Both
robots share the same kinematic structure, external gearing for increased torque,
multiple master-slave actuation pairs and minimal complexity in assembly, di-
agnostics, and maintenance. Although their appearance may seem similar, the
NimbRo-OP2X is a complete redesign that introduces multiple upgrades over
the NimbRo-OP2. The main component of the redesign process was the use of
a new type of actuator — the Robotis Dynamixel XM-540 — which has a heat
dissipating metal casing and outputs more torque than the previously used MX-
106. This design choice led to the implementation of other features. With a single
knee housing eight actuators, a substantial amount of heat is produced during
operation. To reduce the possibility of thermal malfunctioning and overheating,
we have installed cooling fans, which helped to reduce the temperature in the
knee by approximately 20 °C. We have also reduced the weight of the 3D-printed
parts by making them slightly narrower, rounder and have added dedicated ca-
ble pathways, all of which contributed to an increased rigidity. The external
gearing necessary to exert enough torque in the ankle and hip roll joints was a
bottleneck in the production process of the NimbRo-OP2. We have mitigated

Fig. 2. Comparison of various hardware design features. a) foot and back side of the
knee: OP2X(CAD), OP2X, OP2. b) Finished hip joint along with the CAD model
showing the 3D-printed gears on the NimbRo-OP2X.
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this issue by designing low-friction and low-backlash double helical gears, which
can be quickly 3D-printed [2]. The SLS (Selective Laser Sintering) printing tech-
nology was essential to the robustness of our robots, as no part ever broke, even
after several collisions with twice as heavy robots that had a metal exoskeleton
with sharp edges. The features mentioned above, along with their comparison
between the NimbRo-OP2 and NimbRo-OP2X can be observed in Fig. 2.

3 Software Design

Our open-source software based on the ROS middleware [4] has become a well-
established framework in the research and RoboCup community since the initial
release. Many soccer teams have used our code and ideas in RoboCup [5][6][7].
We continue to further develop the repository, with the hope that other research
groups can benefit from it.

3.1 Visual Perception

Each of our robots perceives the environment using a Logitech C905 camera
which is equipped with a wide-angle lens. We supersede our previous approach
to vision [8] by utilizing a deep convolutional neural network followed by post-
processing. The presented perception system can work with different bright-
nesses, viewing angles, and even lens distortions. Using a recurrent deep neural
network, we also are able to track and identify our robots [9].

We developed an encoder-decoder architecture similar to recently proposed
pixel-wise segmentation models like SegNet [10], and U-Net [11]. Due to compu-
tational limitations, we utilized a shorter decoder than encoder part. Although
this design choice minimizes the number of parameters and helps us achieve
real-time perception, some fine-grained spatial information is lost. We allevi-
ate this spatial information loss by using a subpixel centroid-finding method in
the post-processing steps. To minimize the effort of data annotation, we used
transfer-learning in our encoder part, by utilizing a pre-trained ResNet-18 model.
Since our task is different from the classification task, we removed the GAP and
the fully connected layers in the ResNet-18 model. In the decoder part, we used
four transpose-convolutional layers. We followed the U-Net model and added
lateral connections between the encoder and decoder parts with the intention
to preserve spatial information in the decoder part. The proposed visual per-
ception architecture, which in total has 23 convolutional layers, is illustrated in
Fig. 3. The following object classes were detected using the network: goal posts,
ball, and robots. For our soccer behavior, we only need to perceive predefined
center locations of the interesting objects. Similar to SweatyNet [12], instead of
full segmentation loss, we used mean squared error. The desired output consists
of Gaussian blobs around the ball center and bottom-middle points of the goal
posts and robots.

Although we use Adam optimizer, which has an adaptable per-parameter
scale, finding a good learning rate is a challenging prerequisite to training. To
find an optimal learning rate, we followed the approach presented by Smith et
al. [13].
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Fig. 3. Visual perception architecture. Similar to origngl ResNet architecture, each
convBlock consists of two convolutional layers followed by batch-norm and ReLU ac-
tivations. Note that for simplicity, residual connections in ResNet are not depicted.
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Fig. 4. Object detection results. Left column: A captured image from one of our robots.
Middle column: The output of the network with balls (cyan), goal posts (magenta),
and robots (yellow) annotated. Right column: Ground truth.

We used progressive image resizing that uses small images at the start of
training, and gradually increase the size as training progresses, a technique in-
spired by Brock et al. [14] and by Yosinski et al. [15]. In early iterations, the
inaccurate randomly initialized model can make rapid progress by learning from
large batches of small images. In the first 50 epochs, we used downsampled
training images while freezing the weights on the encoder part. During the next
50 epochs, all parts of the models are jointly trained. In the last 50 epochs,
to learn fine-grained details, full-sized images are used. With the intuition that
the pre-trained model needs less training, a lower learning rate is used for the
encoder part. By using the aforementioned methods, the whole training process
with around 3000 samples takes less than 40 minutes on a single Titan Black
GPU with 6 GB memory. Two samples from the test set are depicted in Fig. 4.
Some portion of the used dataset were taken from the ImageTagger library [16],
which have annotated samples from different angles, cameras, and brightness.
We extract the object coordinates by post-processing the blob-shaped network
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outputs. We apply morphological erosion and dilation to eliminate negligible
responses on the thresholded output channels. Finally, we compute the object
center coordinates. The output of the network is of lower resolution and has less
spatial information than the input image. To account for this effect, we calculate
sub-pixel level coordinates based on the center of mass of a detected contour.
To find the contours, we use connected component analysis [17] on each of the
output channels.

We filter detected objects and project each object location into egocentric
world coordinates. To minimize projection errors due to the differences between
the designed model and real hardware, we calibrate the camera extrinsic param-
eters, using the Nelder-Mead [18] Simplex method.

In the competition, the robots were able to perceive the AdultSize ball up to

a distance of 7m with an accuracy of 99% and less than 1% of false detection
rates. White goal posts are detected up to 8 m with 98% accuracy and with 3%
false detections. Opponent robots are detected up to 7m with a success rate
of 90% and a false detection rate of 8%. We are still using non-deep learning
approaches for field and line detections [8]. In the future, we will add two more
channels to the network output and use a single unified network for all detections.
The complete perception pipeline including a forward-pass of the network takes
approximately 20 ms on the robot hardware.
Localization and Breaking the Symmetry: Our localization method relies
on having a source of global yaw rotation of the robot [19]. Instead of a compass,
we use integrated gyroscope measurements as the source of yaw orientation. Gy-
roscope integration is a reliable source of orientation tracking, but it needs a
global reference. In order to set the initial heading, we could either use manual
initialization or automatic initial orientation estimation. Manual heading ini-
tialization can fail during the match since sometimes restarting the operating
system of the robot is unavoidable, which will force a reinitialization of the head-
ing. Hence, we reformulated the global heading initialization as a classification
task [1]. There are four predefined distinct positions and orientations that the
robot can start in or enter the game from. In two of these spots, the robot should
start facing the opponent goal, which the location is either near the center cir-
cle or the goal area. The other two sets of locations are beside the sideline in
the robot’s respective half, while facing the field. To choose from these prede-
fined locations and orientations, we employ a multi-hypothesis version of our
localization module, which is initialized with four different hypotheses. In the
beginning, the robot attempts to discern the most likely hypothesis among all
running instances. This process terminates when either the method times out
or the robot finds the clearly most probable hypothesis. Ultimately, the vision
module keeps the valid instance and rejects the rest. To verify the decision, we
double check the result based on the recognized landmarks like the center circle
and the goalposts.

3.2 Soccer Behaviors

Over the past 2—-3 years, we have refined our soccer behaviors to become more
robust, flexible, and easier to tune [20,1]. The behaviors are implemented as a
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highly modularised multi-layer hierarchical state machine and packaged into a
ROS module that communicates with other parts of the software, like the vision
node and gait motion module, via ROS topics. In this paper, we describe the
current state of this architecture which was originally described in [21].

The flow of information and control starts with the ROS topics for which
the behavior node is the subscriber, covering predominantly the game state per-
ception, localization and game controller information coming from other nodes.
This is captured and read by a ROS interface layer, which abstracts away all
ROS-specific knowledge and code. The information is then distilled down into a
standardized SensorVars structure, that at the beginning of each cycle is updated
and recalculated with the latest direct and derived information about the state
of the robot and soccer game. The so-called sensor variables are then used by
the upper main layer of the state machine, referred to as the ‘Game FSM’. This
includes a range of behaviors that determine the soccer gameplay, including ball
handling, goalie and positioning skills, which are all required at different times
of the game. A standardized set of outputs are provided by the game behav-
iors that specify parameters like walking targets, ball targets (where to kick or
dribble to), whether kicking and/or dribbling should be allowed in the current
situation, and so on. These outputs are in turn the inputs to the lower main layer
of the state machine, referred to as the ‘Behavior FSM’. In this layer, low-level
skills are implemented, such as searching for the ball, walking to the ball, kicking
and/or dribbling it, and diving for the ball (enabled only for goalkeepers). The
Behavior FSM then, in turn, provides a standardized set of outputs that deter-
mine where the robot should look, whether the robot should walk or not, and if
so, with which velocity in what direction, as well as whether the robot should
dive or kick, and if so, which direction of dive or type of kick. This information is
then passed back to the ROS interface layer, which ensures that the other nodes
are notified of the required actions of the robot.

Ball Approach: Walking to the ball, or more specifically, behind the ball while
orienting to the correct direction for the ball target, is a Behavior FSM-level skill.
It is performed by calculating an orientation-specific halo around the ball and
constructing a path plan out of linear and circular arc segments that avoids
entering the halo. Further away from the ball, the priority is to turn and walk
directly in the direction that the robot needs to go, as forward walking is the
fastest and most reliable, but as the robot approaches the ball, it smoothly
transitions towards using more omnidirectional walking to approach the desired
final position, while also starting to turn to face the direction that the robot
wishes to kick or dribble the ball. The ball is aligned with the foot that is closest
to the required position for the required action.

Kicking and Dribbling: If during the ball approach the ball is detected to be
in a suitable region relative to the robot for a suitable amount of time, the kicking
and/or dribbling skill behavior is activated. Kicking can only be activated when
the robot is standing close to the ball in a suitable position and orientation to
kick, but dribbling can sometimes activate up to 2m away from the ball, so that
the robot can follow a dribble approach trajectory and walk right through the ball
at speed, leading to smoother, faster and more effective dribbling performance.
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Obstacle Avoidance: It was a greatly simplifying design choice to implement
obstacle avoidance in a completely generic manner, independent of what behavior
skill is currently active. The output gait velocity of the Behavior FSM is a
combination of a 2D walking vector with a rotational velocity. In the presence
of an obstacle within a relevant distance of the robot, the walking vector of
the robot is rotated away from the obstacle in a way that limits the maximum
radial inwards walking velocity towards the obstacle. Further away from the
obstacle (for example 1m) the limit radial velocity is high, so there is little
change to the robot’s walking intent, but when very close to the obstacle the
limit radial velocity even becomes negative to ensure that the robot will distance
itself from the obstacle. A turning component is also proportionally added to the
commanded rotational velocity to make the robot turn away from the obstacle,
helping it to for example walk past the obstacle if it is blocking the way.

Obstacle Ball Handling: The obstacle ball handling was similarly imple-
mented in a completely generic way, but one layer higher in the Game FSM.
Given the situation that there is a ball and a ball target, i.e. where the ball
should be kicked or dribbled to, then if there is an obstacle that is blocking this
possibility, the ball-target is rotated out to avoid the obstacle, more so for closer
and more relevant obstacles, and less so for further out obstacles. This enables
the robot to identify and kick past a goalkeeper to score a goal. If the obstacle is
too close to the robot, or the ball-target has to be rotated more than the amount
for example by which a goal can still be safely scored, then kicking is disabled
and dribbling is forced to try to take the ball off the opponent, which ideally
makes space to then kick the ball towards its intended target.

3.3 Bayesian Gait Optimization

The gait is based on an open-loop Central Pattern Generator which calculates a
nominal state for the joints using the gait phase angle. The phase angle is pro-
portional to the step frequency [22] and controls the movement of the arms and
legs. This approach has been improved by the use of fused angle feedback mech-
anisms, which introduce corrective actions to counteract disturbances [23,24].
These fused angle feedback controllers establish new parameters, which need to
be tuned. To ensure a high standard of performance, robot-specific parameters
have to be tuned for each robot. Moreover, since the robot wears off during ex-
tensive use, parameters will become suboptimal, for instance over the course of
a RoboCup competition.

As walking is one of the most crucial skills of a humanoid robot, it has
to be robust and reliable at all times. To achieve this goal, we optimize the
parametrization of the aforementioned fused angle feedback controller autonomously.
Using Bayesian optimization, we rely not only on real-world experiments but
also on simulated experiments to gain useful information, without wearing off
the hardware of the robot. This approach has already been successfully applied
to the igus® Humanoid Open Platform [25] and the NimbRo-OP2X [2].

Our approach is able to optimize the parameter set in a sample-efficient man-
ner, trading off exploration and exploitation efficiently. This trade-off depends
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on a kernel function k and the parametrization of the underlying Gaussian Pro-
cess (GP). The latter encodes problem-specific values like signal noise and can
be measured by a series of initial experiments [25]. The proposed kernel, on
the other hand, is composed of two components, where the first term kg, en-
codes simulation performance and the second term k. functions as an error-term
resembling the difference between simulation and the real-world performance:

k(ai, a5) = kim (xi,%;) + ks (05, 05) ke (%1, x3), (1)
where a; = (xj, ;) is an augmented parameter vector and 9§ is a flag signal-
izing whether an evaluation has been performed in the simulator or on the real
system. If, and only if both experiments have been performed in the real world,
ks is defined to be 1, resulting in a high correlation. Due to the error term k.,
it is possible to model complex, non-linear mappings between the simulator and
real-world evaluations [26]. For both terms of the composite kernel, we chose the
Rational Quadratic kernel, since it has been proven to be appropriate in previ-
ous work [25]. This composite kernel is then used to perform Gaussian Process
regression on the data points.

Since real-world experiments are expensive, we utilize Entropy as a measure
of information content to sample data points efficiently. In this manner, the
next point of evaluation is chosen with respect to the maximal change of en-
tropy, weighted by a factor that trades off the cost of simulated and real-world
evaluations [27].

The cost function is a combination of aggregated fused angle feedback, as a
stability measure, and a logistic function v which penalizes parameters of large
magnitude. Furthermore, we consider the sagittal («) and lateral (8) planes
separately to reduce the complexity of the cost function. This results in the final

cost functions:
T

T
Ja(X)Z/O lepa(x)[[1dt + v (%), Jﬁ(x):/o leps(®)[ldt +v(x) (2

which depend on the parameters x of the fused angle feedback controller. To
reduce the impact of simulation noise, we average the cost of N = 4 evaluations.
Each evaluation is a predefined sequence of movements into forward, sideways
and backward directions. In the presented example, we optimize P and D gains
of the arm angle corrective actions in the sagittal direction, but the method can
be similarly applied on different controllers. We limit the number of real-world
evaluations to 15. This limit was reached after evaluating 146 simulations, thus
resulting in a total number of 161 iterations. The resulting optimized parameters
were validated by comparison with the performance of the old gait parameters
over five gait sequence evaluations each. The optimized parameters not only
reduce the fused angle feedback deviation by about 18%, but also lead to a
qualitatively more convincing gait [2].

The resulting Gaussian Process posterior is depicted in Fig. 5. Note that
simulations are important especially in early iterations, even though their impact
might not be directly visible in the final posterior [25]. This is proven by the fact
that the robot did not fall during optimization, thus confirming that the model
is able to utilize information of the simulator effectively.
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Fig. 5. The Gaussian Process poste-
rior of the arm angle optimization. The
red dots resemble real-world evaluations,
whereas the blue dots indicate the results
of simulations. The green mesh shows the
predicted cost and the black dot indi-
cates its minimum. The corresponding
standard deviation is displayed as the
grey mesh. The upper standard deviation
has been removed for visibility.

Gaussian Process Posterior

Cost

4 Performance

In RoboCup 2018, AdultSize robots autonomously competed in one vs. one soc-
cer games, two vs. two drop-in games, and four technical challenges that tested
different abilities. The soccer games were performed on a 6 x 9m artificial grass
field, which made locomotion challenging. Due to the dynamic lighting condi-
tions, perceiving the environment and localization were also challenging. Our
robots performed outstandingly by winning all of the four possible awards, in-
cluding the Best Humanoid Award. In the main tournament, our robots played a
total of six games, including the quarter-finals, semi-finals, and finals. Additional
five drop-in games were played, where two vs. two mixed teams were formed and
robots collaborated during the game. Our robots officially played 220 minutes
with a total score of 66:5.

4.1 Technical Challenges

In the following sections, we discuss four technical challenges at RoboCup 2018:
Push Recovery, High Jump, High Kick, and Goal Kick from Moving Ball.

Push Recovery: The goal of this challenge is to withstand a strong push which
is applied to the robot on the level of the CoM by a pendulum. To define the
impulse, a 3 kg weight is retracted by a distance d from the point of contact with
the robot. The push is applied both from the front and from the back while the
robot is walking on the spot. NimbRo-OP2X was able to successfully withstand
a push from the front and the back with d = 90 cm.

High Jump: The goal of the high jump is to remain airborne as long as possible
during an upward jump. In order to successfully complete the challenge, the robot
has to reach a stable standing or sitting posture upon landing. The challenge
was performed using a predesigned jump motion, which was constructed with
our keyframe editor. Copedo has successfully completed the challenge, remaining
airborne for 0.147s.

High Kick: This challenge poses the task of scoring a goal over an obstacle
positioned on the goal line. The ranking for this challenge is based on the height
of the kick. The ball starts at the penalty mark, and multiple kicks are allowed
during one trial. We utilized the following strategy: first move the ball closer to
the obstacle by a kick of reduced power and then perform a specially designed
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kick to overcome the obstacle. The kick was manually designed in a way that
the foot hits the ball significantly lower on its COM and then moves upwards,
which allows to kick the ball into the air instead of rolling it on the ground. We
managed to perform a high kick over an obstacle of 21.5cm. The whole trial
took 14.4s. NimbRo-OP2 performing the challenge is shown in Fig. 6.

Fig.6. High Kick challenge. a) Initial setup. The ball is positioned on the penalty
mark. b) Ball was kicked to reach the goal area. ¢) High kick motion is performed.
Note that the foot supports the ball in the air, adding more energy and directing it
upwards. d) Ball passed the obstacle with a large margin. Goal is scored.

Goal Kick from Moving Ball: The task of this challenge is to score a goal
by kicking a moving ball into the goal. The robot is standing at the penalty
mark. At RoboCup 2017 a special ramp was used to direct the ball towards the
robot. In contrast, at RoboCup 2018 a human player was giving a pass to the
robot from a corner, symbolizing a situation from the real soccer game. Our
approach for solving this task was as follows: once positioned at the penalty
mark, the robot lifts its foot to be ready for kicking and is standing on the other
foot, human player kicks the ball towards the robot; using ball detection and its
pose estimation we estimate the velocity of the ball and its approximate time of
arrival to the area of a potentially successful kick; given this time, we execute
the kicking motion when necessary. Since the robot is initially standing on one
foot, with the other lifted upwards, the kick can be performed quickly, which
allows for higher speed of the pass and, hence, faster scoring of the goal, which
was the primary criterion in team rankings. Standing on one foot, which is also
performed by many other teams during this challenge, has two major drawbacks:
the robot is not stable in that posture, and it cannot adjust if the pass is not
accurate enough. In the future we will work on a more general approach to
perform this challenge. NimbRo-OP2X was able to score a goal in 2.78 s after a
human player touched the ball (see Fig. 7).

)

Fig. 7. Goal Kick from Moving Ball challenge. a) Initial setup. The human player
passes the ball to the robot. b) Ball is approaching. Note that the right foot is already
moving towards ball’s predicted pose in order to kick it. ¢) Ball is successfully kicked.
d) Goal is scored, stable posture of the robot is recovered.

The recorded parameters describing our performance at technical challenges
are summarized in Table 1.
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Table 1. Parameters recorded for the technical challenges

Parameter Value Challenge
Pendulum weight [kg] 3
Pendulum swing [cm] 90
Obstacle height [cm| 21.5

Time for completion [s] 14.4
Time airborne [s] 0.147 High Jump
Time for completion [s] 2.78 Kick from Moving Ball

Push Recovery

High Kick

5 Conclusions

In this paper, we presented hardware and software design that lead us to win all
possible competitions in the AdultSize class for the RoboCup 2018 Humanoid
League in Montréal: the soccer tournament, the drop-in games, the technical
challenges, and the Best Humanoid Award. We presented individual skills re-
garding the perception, the bipedal gait tuning, and behavior as well as their
application in the technical challenges. A video showing the competition high-
lights is available online!. The hardware of the NimbRo-OP2 generation? as well
as our software® were released open-source to GitHub with the hope that other
teams and research groups benefit from our work.
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https://github.com/AIS-Bonn/humanoid_op_ros
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