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Abstract. The use of a team of humanoid robots to collaborate in com-
pleting a task is an increasingly important field of research. One of the
challenges in achieving collaboration, is mutual identification and track-
ing of the robots. This work presents a real-time vision-based approach
to the detection and tracking of robots of known appearance, based on
the images captured by a stationary robot. A Histogram of Oriented
Gradients descriptor is used to detect the robots and the robot headings
are estimated by a multiclass classifier. The tracked robots report their
own heading estimate from magnetometer readings. For tracking, a cost
function based on position and heading is applied to each of the tracklets,
and a globally optimal labeling of the detected robots is found using the
Hungarian algorithm. The complete identification and tracking system
was tested using two igusr Humanoid Open Platform robots on a soccer
field. We expect that a similar system can be used with other humanoid
robots, such as Nao and DARwIn-OP.

1 Introduction

Multi-target tracking is a well-known problem in computer vision, and has many
applications, including traffic monitoring and automated surveillance. The aim of
multi-target tracking is to automatically find objects of interest, assign a unique
identification number to each, and to follow their movements over time. Multi-
target tracking is fundamentally different to single-target tracking because of the
difference in the state space model used for each. In particular, data association
in situations of multiple detections with closely spaced and/or occluded objects
makes multi-target tracking significantly more difficult. The expected number of
visible targets is often unknown and may vary over time.

This work addresses a problem with an additional level of difficulty—the
identification and tracking of multiple robots of identical appearance. Despite
the lack of visual clues, our system is not only able to track each detected robot,
but also to identify which robots are being tracked. This is done by generating
a cost function for each tracklet, based on a motion model and the differences
between the set of estimated and broadcasted headings of the robots. The output
of the system, which is an estimation of the location and heading of each robot,
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Fig. 1. Overview of our approach. After detection part, the heading of each
robot is estimated based on proper HOG features. Using heading estimation
and low-level tracklets observer finds and broadcasts the position of each robot.

is made available to the robots being observed, so that they may incorporate this
into their own localization estimates, or use it for the generation of cooperative
behaviors. Fig. 1 gives an overview of our system.
The main contributions of this paper include:
1. The introduction of a novel pipeline to identify a set of homogeneous hu-

manoid robots in an image.
2. The development of a high accuracy and low training time humanoid robot

detection algorithm, based on a Histogram of Oriented Gradients descriptor.
3. A robust method for the estimation of the relative heading of a robot.
4. Experimental evidence that the proposed method can cope with long-term

occlusions, despite a lack of visual differences between the tracked targets.
5. Demonstration that it is possible to track, identify and localize a homoge-

neous team of humanoid robots in real-time from another humanoid robot.

2 Related Work
The related work is divided into three categories, multi-target tracking, robot
detection and tracking and visual orientation estimation.
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Multi-target tracking has been studied for many years in the field of com-
puter vision. The tracking of targets in the absence of any category information
is referred to as category free tracking (CFT) [23]. CFT approaches normally
do not require a detector that is trained offline, but rely on manual initializa-
tion. Objects are tracked mainly based on visual appearance, and the system
attempts to track each target by discriminating it from other regions of the im-
age. The visual target model is usually updated online to cope with viewpoint
and illumination changes. Two successful examples of the CFT approach include
the works of Allen et al. [1] and Yang et al. [21]. Although CFT approaches are
computationally inexpensive and easy to implement, they are prone to excessive
drift, after which it is very hard to recover.

Tracking by detection is one of the most popular approaches to multi-target
tracking problems, as objects are naturally reinitialized when they are lost, and
extreme model drifts cannot occur. As such, association based tracking (ABT)
methods, which associate object detections with observed tracks, are proposed
e.g. by Xing et al. [20]. An offline training procedure is generally used for the
detection of objects of interest in each frame, and continuous object detections
over time are linked to form so-called tracklets. Tracklets can then be associ-
ated with each other to form longer tracks. In most works, the probability of
two tracklets being associated with each other is calculated based on a motion
model and other criteria of visual similarity. The global tracklet association of
highest probability is then computed using either the Hungarian algorithm [20],
a Markov chain Monte Carlo method [22], or a Conditional Random Field [14].

Robot detection and tracking was done by Marchant et al. [13] using both
visual perception and sonar data which was targeted for soccer environment.
However, anthropomorphic design requirements in the Humanoid League pro-
hibit teams from using sonar sensors. Many object detection approaches cannot
be used for robot detection tasks due to the limitation in the onboard computer.
Arenas et al. [3] detected Aibo robot and humanoid robots using the cascade of
boosted classifiers, which is suitable for real-time applications. In another work
Ruiz-Del-Solar et al. [15] proposed nested cascades of boosted classifiers for de-
tecting legged robots. In addition to robot detection, gaze-direction of the robot
is estimated based on Scale Invariant Feature Transform (SIFT) descriptor by
Ruiz-Del-Solar et al. [16].

Visual orientation estimation of an object is often done by comparing
projections of an accurate 3D model of the object to what is observed in the
image, and finding the orientation that best matches the detected features [7].
These approaches work best only on simple backgrounds. Since the background
in our application can be quite cluttered, and we do not wish to rely on the
existence of an accurate 3D model of the detected robot, the most suitable
approach for orientation estimation is through the use of image descriptors.
Lin et al. [11] proposed an orientation recognition system based on a SIFT
descriptor [12], and a Support Vector Machine (SVM) classifier [5]. Shaikh et
al. [18] proposed a template-based orientation estimation method for images of
cars, based on the comparison of shape signatures.



4 H. Farazi and S. Behnke

3 Multi-Target Tracking Formulation

We assume to have a collection of N humanoid robots of identical appearance
that need to be identified and tracked by a further standing robot, or a stationary
camera. In each camera frame, each of the robots can either be fully visible,
partially visible, or not visible at all, and may be performing soccer actions such
as walking, kicking and getting up. As such, the durations of partial or total lack
of visibility may either be short or long. Each robot is equipped with a 9-axis
inertial measurement unit (IMU), and the estimated absolute heading of the
robot is broadcasted over Wi-Fi. The Wi-Fi communication between the robots
is assumed to have delays, data loss, and even potentially connection loss for up
to a few seconds. We use NimbRo network library [17] for Wi-Fi communication.
Our objective is to detect, track and identify the N robots based solely on the
captured images and the broadcasted heading information. Two igusrHumanoid
Open Platform robots were used for the verification of the approach in this paper.

4 Vision System

4.1 Robot Detection

Although a number of pre-trained person detectors are available online, there
is no detector for humanoid robots that can work out of the box. As such,
we have designed, implemented and tested a robot detector that can robustly
detect the igusr Humanoid Open Platform, although we expect the detector to
work for other humanoid robot model as well, with the appropriate retuning and
retraining. We evaluated five different methods for their suitability in our target
domain before selecting and refining the most promising one. The methods were
based, respectively, on color segmentation [8], adaptive object labeling [19], Haar
wavelets [10], Local Binary Patterns [9], and Histograms of Oriented Gradients
(HOG) [24]. The last of the five, a HOG feature descriptor used in the form
of a cascade classifier was chosen based on criteria such as detection rate and
training time. Although many RoboCup teams use a simple color segmentation
approach to robot and obstacle detection, this approach is not safe in our case
because we want to be able to distinguish the igusr Humanoid Open Platform
from other objects on the field, such as the referee. Adaptive object labeling
produced a relatively high rate of false positives, and it was nearly impossible
to find a suitable threshold to work at all distances and in all situations. The
method was also not able to deal well with occlusions. The Local Binary Pattern-
based feature classifier also produced relatively poor results. However, the overall
detection rates for the Haar wavelet and HOG cascading methods were found
to be relatively good, and quite similar, but the former required a significantly
longer time to train, so the latter was chosen.

In contrast to what is suggested for pedestrian detection [6], we do not feed
the output of a multi-scale sliding window to a support vector machine (SVM)
classifier. Instead, to save on computation time we use a cascade of rejectors
with the AdaBoost technique to choose which features to evaluate in each stage,
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Fig. 2. Robot detection results under various conditions.

similar to what is suggested by Zhu et al. [24]. By using HOG features, we obtain
a description of the visual appearance of the robot that is invariant to changes
in illumination, position, orientation and background. As HOG is not rotation-
scale invariant however, we artificially expand the number of positive images used
for training by applying a number of transformations, also in part to minimize
the required user effort in gathering the samples. These transformations include
random rotations up to ±15°, mirroring, and the cutting of some parts of the
sample image, in particular at the bottom, left and right, to emulate partial
occlusion. Note that larger rotations of the images are not applied to allow the
classifier to learn the shadow under the robot. This also has the positive effect
of not detecting sitting or fallen robots, so that this discrete difference can be
used in the identification phase to discern the robots. In our training of the igusr
Humanoid Open Platform, we used a set of about 500 positive samples, 1000
negative samples, and a cascade classifier with 20 stages. The training time for
the classifier was about 12 h on a standard PC.

As demonstrated in Fig. 2, this approach can detect the robot under various
conditions, including while walking and kicking. The best detection results on
the RoboCup field are at distances between 1m and 5m when the observer is
not moving. After some post-processing, mainly related to non-maximum sup-
pression, a bounding box for each detection is computed.

4.2 Heading Estimation

Given that all robots being detected in our application have the same visual
appearance, estimation of the robot heading relative to the observer forms a
primary cue to identify the robots, especially after long occlusions. To visually
estimate the robot heading, we analyze the bounding boxes reported by the
robot detector. We formulate the heading estimation problem as a multiclass
classification problem by partitioning the full heading range into ten classes of
size 36°, and use an SVM multiclass classifier with an RBF kernel.

The estimation is performed based on the output of a dense HOG descriptor
on the upper half of the bounding box, the center position of the bounding box,
and potential color features. The dense HOG features are used in the heading
estimation to represent the visual features of each rotation class in the grayscale
channel. Visual features of the robot are different depending on the position of
the robot in the image. To address this issue, we pass the normalized position
of the detected robot to our classifier. Many robots, including ours, have color
features that can be used to help classify the robot heading. Hence, dense HOG
features are also computed on the H channel, and the resulting feature vector is
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Fig. 3. Two non-green binary images for the detected robots in the left image.

forwarded to the SVM classifier. To acquire the best possible results from the
classifier, implemented using the LIBSVM library [4], all feature data is linearly
scaled to the unit interval, and k-fold cross-validation and grid searching was
used to find the best parameter set.

4.3 Foot Detection

Once a robot has been detected, it is desirable to be able to project the position
of the robot to the egocentric world coordinates of the observing robot. For
this to be reliable, a good estimate of the lowest part of the detected robot
is required. Due to the non-maximum suppression in use, the bounding box
often may not include all pixels of the robot feet. Due to the high sensitivity
of the projection operation, especially when the robot is far from the observer,
this causes significant errors in the estimated robot distance. To overcome this
problem, we make the assumption that the robot is located on a surface of a
mostly uniform known color. Starting from an appropriate region of interest,
and using erosion, dilation and color segmentation techniques, we construct a
segmented binary image such as the one in Fig. 3. A horizontal scan line scheme
is then applied to improve the estimate of the bottom pixel of the robot. In
more complicated cases, outside of the context of RoboCup, in which it is not
possible to rely on a single predefined field color, one could use a background-
foreground classification approach similar to the one proposed in [14]. After
building a probability image, where each pixel contains the probability that it
belongs to the background, our proposed method can be applied.

5 Tracking and Identification System

Many previous works in the area of tracking and identification are not suitable
for our application, because they either work offline or are too computationally
expensive. In this work, we propose a real-time two-step tracking system that first
constructs low-level tracklets through data association, and then merges them
into tracks that are labeled with a robot ID based on tracklet angle differences
and the reported robot heading information. For the low-level tracking, we use
greedy initialization, albeit with the assumption that the new tracklet should not
be in the vicinity of another existing tracklet, in which case lazy initialization
ensures that the detection is a robot and not a false positive. We use lazy deletion
to cope with occlusion and false negatives.
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5.1 Kalman Filter

Kalman filters are a state estimation technique for linear systems, with the
general assumption that process and observation noise are Gaussian. Many re-
searchers utilize Kalman filters as part of their object tracking pipeline, mainly
due to its simplicity and robustness. Kalman filtering involves two main steps:
Prediction and correction. In each cycle, a new location of the target is predicted
using the process model of the filter, and in every frame where we detect a target,
we update the corresponding Kalman filter with the position of the detection
to correct the prediction. Using this approach, the target can still be tracked
even if it is not detected or occluded. We use the constant acceleration model to
derive the predictions in our model, in the one-dimensional case:

pk+1 = pk + ṗk∆T + 1
2 p̈k∆T

2,

ṗk+1 = ṗk + p̈k∆T,

p̈k+1 = p̈k,

(1)

where pk, ṗk and p̈k are the position, velocity and acceleration respectively at
time step k. So, in our two-dimensional case the state vector becomes

xk =
[
hk vk ḣk v̇k ḧk v̈k

]T
, (2)

where (hk, vk) is the position of the center of the robot in the image at time step
k. The system model is then given by

xk+1 = Φxk +wk, (3)

where wk ∼ N (0,Qk) is zero mean Gaussian process noise with covariance Qk

and Φ is the state transition matrix, derived from (1):

Φ =


1 0 ∆T 0 1

2∆T
2 0

0 1 0 ∆T 0 1
2∆T

2

0 0 1 0 ∆T 0
0 0 0 1 0 ∆T
0 0 0 0 1 0
0 0 0 0 0 1

. (4)

∆T is the nominal time difference between two successive frames. In every frame
where the robot is detected, the Kalman filter is updated using the coordinates of
the center of the detected robot bounding box zk = (ĥk, v̂k). The measurement
model is given by

zk =Hxk + ϑk, (5)
where ϑk ∼ N (0,Rk) is zero mean Gaussian measurement noise with covariance
Rk and H is the measurement matrix

H =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
. (6)

Given this system model, measurement model, and some initial conditions, the
Kalman filter can estimate the state vector xk at each time step together with
its covariance Σk.
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5.2 Data Association

In multi-target tracking, the problem of finding the optimal assignment between
new target detections and existing tracklets, in such a way that each detection is
assigned to at most one tracklet, is referred to as the data association problem.
Assume that in the current frame we have n existing tracklets, and m new
detections, where m is not necessarily equal to n. Let pi denote the predicted
position of the ith tracklet, and dj denote the position of the jth detection. We
construct the n×m cost matrix C, with entries given by

Cij =

{
‖pi − dj‖ if ‖pi − dj‖ < Dmax,

Cmax otherwise,
(7)

where i = 1, . . . , n and j = 1, . . . ,m, Dmax is a distance threshold, and Cmax is
the length of the diagonal of the image in units of pixels. Using the cost matrix
C, the optimal data association is calculated using the Hungarian algorithm.

5.3 Robot Identification

We modeled the problem of identifying the robots as a high-level data associ-
ation problem. In each time step, we have n tracklets and r robots, where r is
determined by the observer as the number of robots that are broadcasting their
heading information over Wi-Fi. Each tracklet, in addition to a buffer Tpos of
(x, y) pixel position values, incorporates a buffer of detected robot headings Trot.
Buffers Rrot of received absolute headings from the robots are also maintained.
The previously calculated robot positions are also kept in a buffer Rpos of pixel
position values. We wish to optimally assign each tracklet to at most one robot,
based on the detected and received heading information Fig. 4. The core idea is
to find the best tracklet assignments based on the average of the differences be-
tween the detected tracklet heading buffers and the broadcasted headings from
the individual robots over a limited time range. We construct the n × r cost
matrix G, with entries Gij that relate to the cost of associating the ith tracklet
with the jth robot:

γ =

{
r
2π min

{∣∣Rarot[1]−Rbrot[1]∣∣ : a < b, a, b ∈ 1, . . . , r
}

if r ≥ 2,

0.5 otherwise,
(8)

Gij =

 γ
πDi

Di∑
k=1

∣∣T irot[k]−Rjrot[k]∣∣+ 1−γ
Cmax

∥∥T ipos[1]−Rjpos[1]∥∥ if Di ≥ τ ,

2.0 otherwise,
(9)

where τ is a minimum buffer size threshold, Di is the number of elements in
the buffers of the ith tracklet, and for example T irot[k] is the kth element of the
Trot buffer for the ith tracklet, where k = 1 corresponds to the most recently
added value, and k = Di corresponds to the oldest value still in the buffer.
Similarly, Rjpos[1] is the most recent (x, y) coordinate in the Rpos buffer for the jth
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robot. The interpolation factor γ determines, based on the minimum separation
of the broadcasted robot headings, how much we should rely on differences in
heading to associate the robots, and how much we should rely on differences in
detected position. Once the cost matrixG has been constructed as described, the
Hungarian algorithm is used to find the optimal robot-to-tracklet association.
With that association, all information that is required to compute the egocentric
world coordinates of the detected robots relative to the observer is available.
Some low-pass filtering is performed on the final world coordinates to reduce the
effects of noise, and produce more stable outputs.
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Fig. 4. Robot identification overview. We associate low-level tracklets with
robots using comparison of heading and position.

6 Experimental Results

In our experiments, we used two igusrHumanoid Open Platform robots [2]. Each
of them is equipped with a dual-core i7-4500U 2.4GHz processor and a 720p
Logitech C905 USB camera. On this hardware, the whole detection, tracking
and identification pipeline takes around 50ms, making it suitable for real-time
applications. We performed four different tests to evaluate the proposed system.
All tests were conducted on a RoboCup artificial grass field, and the results were
manually evaluated for a subset of the frames by the user. The data that was
used in the evaluation included varying lighting conditions, and partial, short
term and long term occlusions. In the first experiment, we examined the output
of the robot detection module by counting the number of successful detections
and false positives. The second experiment tested the success rate of the foot
detection. A detected position was declared successful if it was within a maximum
of 8 pixels from the true bottom pixel of the robot. The third experiment tested
the success rate and average error of the visual heading estimation, as compared
to the ground truth heading output broadcasted by the corresponding robot.
A success was declared if the angular deviation was under 18°, half the size of
the heading classes. In the final experiment, the robot identification output was
verified by counting the proportion of frames in which the robot labels were
correctly assigned. The results are summarized in Table 1. Note that in some of
the experiments, we used a camera attached to a laptop, and in other experiments
we used a further igusr Humanoid Open Platform. Fig. 5 shows example results
of detecting, tracking, identifying, and localizing two robots on the soccer field.
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frame 603 frame 721

frame 758 frame 1073

frame 1291 frame 1354

Fig. 5. Detection, tracking, and identification results obtained by our system.

As an extension of the results, we conducted two further experiments where
the final robot locations were broadcasted by the observer, and the robots used
solely this localization information to walk to a predefined location on the field
Fig. 6. A video of the expriment is available at our website1 The cameras of the
robots were covered to demonstrate that they were not using their own visual
perception.
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Fig. 6. Positioning experiment with blindfolded robots.

1 Video link: https://www.ais.uni-bonn.de/videos/RoboCup_Symposium.2016

https://www.ais.uni-bonn.de/videos/RoboCup_Symposium.2016
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Table 1. Robot detection, heading estimation, and identification results.

Test Success rate False positives Average error Frames
Robot detection 88% 7 – 1000
Foot detection 89% – – 932
Heading estimation 74% – 17° 845
Robot identification 90% – – 932

7 Conclusions

In this paper we proposed a real-time vision pipeline for detecting, tracking, and
identifying a set of homogeneous humanoid robots, and gained promising results
in experimental verification thereof. Unlike many other works, we could not use
any visual robot differences to cope with partial or complete occlusions, so we
exploited a heading estimator to identify and track each robot. The result can
be used in many RoboCup and real-world scenarios, such as for example shared
localization on a soccer field, external robot control, and the monitoring of a
group of humanoid robots using a standard camera. As future work, we would
like to extend the robot identification to use additional data association cues,
such as for example if a robot has fallen down or left the field. Additionally, we
would like the observed robots to use their resulting tracked location to improve
their own localization.
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