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Abstract. Bipedal walking is one of the most essential skills required to
play soccer with humanoid robots. Superior walking speed and stability
often gives teams the winning edge when their robots are the first at
the ball, maintain ball control, and drive the ball towards the opponent
goal with sure feet. In this contribution, we present an implementation
of our Capture Step Framework on a real soccer robot, and show robust
omnidirectional walking. The robot not only manages to locomote on
an even surface, but can also cope with various disturbances, such as
pushes, collisions, and stepping on the feet of an opponent. The actuation
is compliant and the robot walks with stretched knees.

1 Introduction

For the RoboCup initiative, which has the goal of defeating the human world
champions in the game of soccer by the year of 2050, it is of particular interest
to conceive a bipedal walk with human-like capabilities. However, the complexity
of the walking motion, the formulation of sufficiently simple models that account
for balance, and the difficulties that arise from controlling a humanoid body
with a high number of degrees of freedom within a feedback loop, make this
task particularly difficult. While a number of sophisticated approaches exist that
promise some degree of robustness, the RoboCup experience shows that state
of the art algorithms do not find their way into the dynamic world of low-cost
robots competing on the soccer field. One of the reasons for this is simply that
the required sensors, high-precision actuators, and computational power are not
available on custom built prototypes and affordable standard platforms that are
used in robotic soccer games. The amount of expertise required to successfully
integrate a complex algorithm into already complex soccer software in a real
robot environment is also not a negligible factor.

The Capture Step Framework [1] has been designed with the aforementioned
limitations in mind. Using only postural information provided by motor encoders
and an inertial measurement unit (IMU), it can produce a stable omnidirectional
walk with push-recovery capabilities. Zero moment point control, foot placement,
and step timing strategies are utilized simultaneously. The balance computations
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are based on a two-dimensional linear inverted pendulum model, and can interface
with already working open-loop gait pattern generators. The framework can
operate on systems with high sensor noise, high latency, and imprecise actuation.
Furthermore, it does not restrict the center of mass to a plane, or the feet to
remain flat on the ground. In this paper, we demonstrate the capabilities of the
framework on a real soccer robot in combination with compliant actuation and
walking with stretched knees. We outline the theoretical concept of the Capture
Step Framework, provide details about the implementation on a real robot, and
show a video and experimental data as evidence of the most prominent features.

2 Related Work

Zero moment point (ZMP) tracking with preview control [2] is the most popular
approach to bipedal walking to date. A number of footsteps planned ahead are
used to define a future ZMP reference, e.g. by placing the ZMP in the center of the
footsteps and allowing for a smooth transition from one foot to the other during
the double support phase. A continuous center of mass (CoM) trajectory that
minimizes the ZMP tracking error is then generated in a Model Predictive Control
[3] setting. As long as the actual ZMP stays well inside the support polygon,
stable walking is guaranteed. Using ZMP preview control, high quality hardware
[4,5,6] can walk reliably on flat ground. Next generation walking controllers from
the ZMP preview family [7,8,9] also consider foot placement in addition to ZMP
control either by including the footstep locations in the optimization process, or
by using a simplified model to compute a footstep plan online. The approaches
that have matured beyond a theoretical state require either precise physical
modeling, the estimation of an impact force, or the feedback of a measured ZMP
location. All of these requirements are difficult to meet for soccer robots.

Recently, Urata et al.[10] presented an impressive foot placement-based con-
troller on a real robot that is capable of recovering from strong pushes. Instead
of optimizing the CoM trajectory for a single ZMP reference, a fast iterative
method is used to sample a whole set of ZMP/CoM trajectory pairs for three
steps into the future. Triggered by a disturbance, the algorithm selects the best
available footstep plan according to given optimization criteria. Resampling
during execution of the footstep plan is not possible. The robot has to be able
to track a fixed motion trajectory for the duration of the recovery. Specialized
hardware was used for meeting the precision requirements.

Englsberger et al. [11] proposed using a capture point trajectory as reference
input for gait generation instead of the ZMP. As the capture point can easily be
computed from the CoM state, it is more suitable for state feedback than the
ZMP. We incorporated the core ZMP control equation as one of the building
blocks of our framework. The capture point approach is potentially suitable for
soccer robots, but it does not consider adaptive foot placement and step timing.

Focusing on the methods that are applied by leading teams of the Humanoid
League, it is notable that the preferred algorithms are simple and light-weight.
Most of them are open-loop [12,13], sometimes with limited state feedback
for posture control. Perhaps the most advanced closed-loop walk so far was
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presented for the Nao standard platform by Graf and Röfer [14], who proposed
the online-adjustment of step parameters based on the solution of a system of
linear pendulum equations. In the KidSize class, the DARwIn robot comes with
a fast and reliable open-loop walk (Yi et. al. [15]). Parameterized ZMP and CoM
trajectories are generated analytically using simple linear inverted pendulum
model equations. Zhao et. al. [16] suggested an elegant open-loop gait generation
technique inspired by passive walking down a shallow slope. This approach creates
a virtual downwards slope by shortening the swing leg before support exchange
and recharging energy by extending the leg again during the support phase.

The most closely related works published by the authors themselves are the
Capture Step balance controller [1] and the open-loop central pattern generator
[12] that were combined in this framework, and implemented on a real robot.

3 The Capture Step Framework
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Fig. 1. Conceptual structure of our gait
control architecture.

The Capture Step Framework is an
omnidirectional bipedal gait genera-
tor with separable conceptual modules.
The main software components are the
state estimation, reference trajectory
generation, balance control, and mo-
tion generation. The layout of the com-
ponents is shown in Fig. 1. The frame-
work simplifies the full-body dynamics
of the robot to the trajectory of a sin-
gle point mass, which is assumed to
move like a linear inverted pendulum.
In strong contrast to classic ZMP pre-
view algorithms, motion trajectories
are expressed directly for the center of mass and adaptive footstep locations arise
as the output of the trajectory generation process. In each iteration of the main
control loop, an ideal CoM reference trajectory is computed that depends only on
the desired walking velocity. The state estimation component maps the current
pose of the robot to the position and velocity of a point mass. Then, the balance
control module computes a zero moment point offset and an estimated time
for the next support exchange to steer the current state towards the reference
trajectory while preserving balance with an adequate step size. The timing and
the step location encode a step motion that is generated on a lower level without
further concern for balance.

3.1 Reference Trajectory Generation

It is common practice to compose a pendulum motion by superposing two
uncoupled one-dimensional linear inverted pendulum models. One model describes
the lateral motion of a point mass and the other the sagittal motion. The two
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models are synchronized at a shared moment of support exchange, where each
model is reset to a post-step state. Fig. 2 shows schematic trajectories for the
lateral and the sagittal dimensions. There is an interesting conceptual difference
between the two projections. In the sagittal dimension, the point mass crosses the
pivot point in every step cycle. In the lateral dimension, however, the point mass
oscillates between two supports and never crosses the pendulum pivot point.

We identify four parameters that characterize the walking motion. The lateral
distance between the pivot point and the apex of the point mass trajectory is
denoted as α. It is evident that the lateral component of the center of mass
velocity equals zero in this point. As long as the apex distance is greater than zero,
the point mass will return and is guaranteed to reach a support exchange location
in a range bounded by δ and ω. When walking in place, we assume the support
exchange to occur at the minimal distance δ. When walking with a nonzero lateral
velocity, the walker first takes a long step with the leading leg and the support
exchange occurs at a distance up to an upper bound ω, depending on the desired
lateral walking velocity. The large leading step is followed by a small trailing
step with a support exchange at δ. In the sagittal direction only one parameter is
needed. σ defines an upper bound for the pass-through velocity of the point mass
right above the pivot point. When walking in place, the pass-through velocity
is zero, and it increases up to σ depending on the desired speed of locomotion.
The chosen time for the support exchange is the moment when the CoM reaches
its designated support exchange location between δ and ω. We assume that the
support exchange happens instantaneously, and do not include a double support
phase in our model. Finally, as the linear inverted pendulum is driven by the
simple dynamic equation ẍ = C2x, we regard C as a parameter that defines the
gravitational effect on the point mass trajectory. We estimate the introduced
parameters from our robot by having it walk in open-loop mode and averaging
the trajectory apexes, the support exchange points, and the sagittal pass-through
velocity.
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Fig. 2. The two-dimensional physical model is composed of a lateral motion
(left) and a sagittal motion (right). The reference trajectory is described by four
configuration parameters that define the lateral distance at the step apex (α), the
minimal and maximal support exchange locations (δ and ω), and the maximum
sagittal velocity at the step apex (σ).
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We use this parameterized pendulum model to generate ideal reference trajec-
tories for a permitted range of walking velocities. Since the reference trajectory
follows the laws of the linear inverted pendulum model, a single end-of-step state
s is sufficient to represent the entire trajectory. It defines a target state that
the balance controller attempts to reach at the end of the step. The input into
the gait control framework is a desired walking velocity vector V = (Vx, Vy, Vθ),

V ∈ [−V̂x, V̂x]× [−V̂y, V̂y]× [−V̂θ, V̂θ], with bounded components for the sagittal,

lateral, and rotational directions. Let V̄ = (Vx
V̂x
,
Vy

V̂y
, Vθ
V̂θ

) be the componentwise

normalized input velocity. Given the configuration parameters α, δ, ω, σ, and C,
we compute the nominal support exchange state s = (sx, ṡx, sy, ṡy):

sx = V̄x
σ

C
sinh (Cτ), (1)

ṡx = V̄xσ cosh (Cτ), (2)

sy =

{
λξ, if λ = sgn(Vy)

λδ, else
, (3)

ṡy = λC
√
s2
y − α2, (4)

ξ = δ + |V̄y|(ω − δ), (5)

τ =
1

C
ln

(
ξ

α
+

√
ξ2

α2
− 1

)
, (6)

where λ ∈ {−1, 1} denotes the sign of the support leg. The nominal state s is
expressed in coordinates relative to the current support foot. Please note that ξ
and τ express meaningful quantities. ξ is the lateral support exchange location
for the leading step, interpolated between the minimal support exchange location
δ and the maximal support exchange location ω. τ is the “half step time” that
the CoM travels, starting at the lateral apex α with a velocity of zero to the
support exchange location ξ.

3.2 State Estimation

The state estimation module aggregates measurements from the physical robot to
estimate the current pendulum state c = (cx, ċx, cy, ċy) expressed in coordinates
relative to the current support foot, and the sign λ ∈ {−1, 1} of the support leg.
More precisely, the joint angle information obtained from the motor encoders is
used to update a kinematic model using a forward kinematics algorithm. Then,
the entire model is rotated around the center of the current support foot such that
the torso inclination matches the angle measured by the IMU. When the vertical
coordinate of the swing foot has a lower value than the vertical coordinate of the
support foot, the roles of the feet are switched, and a footstep frame is set to the
ground projection of the new support foot preserving the global orientation that
the new support had in this moment. The footstep frame remains fixed until the
next support exchange occurs. With respect to the footstep frame, we measure
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the coordinates of the ground projection of the point in the center between the
hip joints and present them to a Kalman filter to obtain a smoothed pendulum
state c. The relocation of the footstep frame at the support exchange introduces
an unavoidable discontinuity in the pendulum state trajectory. To compensate
for undesired effects on the Kalman filter, we reinitialize the filter with the first
coordinates measured after the support exchange and a velocity vector that is
rotated into the new support frame, such that the continuity of the velocity in
the global reference frame is preserved.

By tracking a fixed point on the robot frame instead of the true center of
mass, we not only avoid having to provide masses and inertias to construct a
physical model, but we also exclude noise due to moving body parts. We abstain
from using quantities that are difficult to measure, such as torques, forces, and
accelerations. Environmental disturbances and the dynamic influences of body
parts that are strong enough to change the trajectory of this fixed point will still
result in an immediate reaction of the balance controller. There is no need to
estimate an impact force, or any other magnitude of a disturbance.

Without attempting to be overly precise, we used the same general humanoid
kinematic model that we used previously in simulation [1], and adjusted the
lengths of the body segments to the measured lengths from the real robot. In
this general humanoid model, all degrees of freedom in each joint intersect at a
point as a simplification. This is clearly not the case with the real hardware.

3.3 Balance Control

c

z
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F

x
y

c '

Fig. 3. Balance control computes a zero
moment point offset Z that steers the cen-
ter of mass c towards the nominal support
exchange state s. The location of the next
step F is computed with respect to the
predicted achievable end-of-step state c′.

Given the current pendulum state c
and the desired end-of-step state s,
the balance control module computes
a time T for the support exchange, a
zero moment point offset Z, and the
footstep location F where the swing
foot is expected to touch down. The
concept of the balance module is il-
lustrated in Fig. 3. The zero moment
point offset Z is expressed relative to
the ankle joint. It steers the center
of mass towards the target state s
during the current step. However, as
the zero moment point is physically
bounded to remain inside the support polygon, the effect of the zero moment
point is limited and the target state is not guaranteed to be reached. Based on
the estimated support exchange time T and the zero moment point offset Z, we
predict the achievable end-of-step state c′ and use it to compute the step coordi-
nates F expressed with respect to the predicted state c′. For the computation of
all of these parameters, analytic formulae are derived from the linear inverted



Balanced Walking with Capture Steps 7

pendulum model in closed form. We compute the lateral ZMP offset

Zy =
sy2CeCŤ − cyC(1 + e2CŤ ) + ċy(1− e2CŤ )

C(e2CŤ − 2eCŤ + 1)
(7)

in a way that it attempts to reach the lateral support exchange location sy (3)
at the nominal step time Ť of an ideal step and helps to maintain a desired step
frequency. Zy has to be bounded to a reasonable range, for example the width of
the foot, and thus a fixed frequency cannot be guaranteed. We set Ť = 2τ (6)
whenever a support exchange occurs and decrement it by the iteration time of
the main control loop (in our case 12 ms) with every iteration. Please note that
Ť can have a negative value if the nominal step time is exceeded.

Due to an observed sensitivity of the lateral oscillation to disturbances [17],
we attribute the computation of the predicted step time T entirely to the lateral
direction. We want the support exchange to occur when the CoM reaches the
nominal lateral support exchange location sy. Taking the bounded lateral ZMP
offset into account, T is given by

T =
1

C
ln

 sy − Zy
cy − Zy +

ċy
C

+

√√√√ (sy − Zy)
2

(cy − Zy +
ċy
C )2

−
cy − Zy − ċy

C

cy − Zy +
ċy
C

. (8)

However, there are two cases where the step time cannot be clearly determined.
When after a strong disturbance the CoM is moving towards the pivot point in
the lateral direction and is in danger of crossing it, the lateral orbital energy
Ey = 1

2 (ċ2y − C2c2y) is positive. In this case, we use a large constant time, e.g. 2
seconds, to “freeze” the robot and hope that it will return after all. The other
case is when the support exchange location has already been crossed in the past,
or will never be crossed due to a large disturbance. In this case it is advisable to
step as soon as possible and the step time should be derived from the maximum
allowed step frequency that the robot can handle. For the computation of the
sagittal ZMP offset

Zx =
sx + ṡx

C − e
CT (cx + ċx

C )

1− eCT
, (9)

we use the capture point based formula proposed by Englsberger et al. in [11].
It computes the sagittal ZMP such that if the CoM continues to move along an
optimal linear inverted pendulum trajectory, the ZMP stays constant for the
remainder of the step and the capture point of the CoM will match the capture
point of the target state s by the time T of the support exchange. Since it is
not possible to fulfill three constraints: the location, the velocity, and the time,
with one constant ZMP offset per step, we opt for the simplicity of this good
approximation. Finally, the sagittal ZMP offset also has to be bounded to a
reasonable range.

Please note that both dimensions of the ZMP offset have been calculated
without direct feedback of a measured zero moment point location. Only the
position and the velocity of the center of mass have been used, which are easy



8 M. Missura and S. Behnke

to obtain. Given the bounded ZMP offset Z and the step time T , we can now
compute the estimated achievable end-of-step state c′

c′x = (cx − Zx) cosh(CT ) +
ċx
C

sinh(CT ), (10)

ċ′x = (cx − Zx)C sinh(CT ) + ċx cosh(CT ), (11)

c′y = (cy − Zy) cosh(CT ) +
ċy
C

sinh(CT ), (12)

ċ′y = (cy − Zy)C sinh(CT ) + ċy cosh(CT ). (13)

The footstep location is then given by

F = (
ċ′x
C

tanh(Cτ), λ

√
ċ′2y
C2

+ α2). (14)

In the sagittal direction we compute the nominal step size that would result in
the same end-of-step CoM velocity as the predicted one. In the lateral direction,
the footstep location is computed with an extended capture point formula so that
the CoM will pass the apex of the next step at distance α with a velocity of zero.
Note that the footstep location F is expressed with respect to the future CoM
state c′. It can be trivially converted to a foot-to-foot step size S = F + (c′x, c

′
y).

3.4 Motion Generator

The hierarchical layout of the Capture Step Framework allows us to interface
with virtually any walking motion generator that can exhibit control of stepping
motions using step size and timing parameters. In this work, we use a central
pattern generated gait (CPG) [12] that has been used in competition games
with repeated success. The CPG can be combined with compliant actuation
and provides a certain amount of open-loop stability out of the box. Instead of
relying on inverse kinematics and end-effector trajectories in Cartesian space,
the CPG operates in an abstract actuation space that makes it easy to produce
stretched-knee walking.

For the integration of the motion generator, the output of the balance control
module has to be transformed to gait control parameters in order to produce the
desired step sizes and timings on the physical robot. The CPG expects a walking
velocity control vector V ∈ [−1, 1]3 with parameters for the sagittal, lateral, and
rotational directions. Essentially, the velocity input parameters result in step
amplitudes on the real robot. To map the output step size of the balance controller
to the velocity input space of the CPG, we use the CPG in open-loop mode to
generate data that describe the velocity control to step size mapping as measured
by the sensors of the real robot and approximate it with a linear function. Then,
we convert the balance control output step size S to a CPG velocity input V
using the inverse of the linear approximation. The rotational component of the
vector is ignored by the balance control layer. We simply pass the normalized
rotational velocity input V̄θ through to the motion generator. To map the step
time T to the motion phase of the CPG, we compute a phase increment such
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that the gait phase induces a support exchange at time T in the future. As T
approaches zero when the support exchange is imminent, the computation of
the phase increment becomes increasingly unstable. It is advisable to inhibit the
timing adaptation near the support exchange and gait frequency bounds must be
used to filter numerically unstable cases. The most significant innovation of the
CPG integration is the fact that we did not link the inverted pendulum modeled
CoM motion directly with the pelvis of the physical robot. This is typically done
using inverse kinematics in conventional plane-restricted ZMP-preview walkers.
This simplification was not only found to increase stability, but also allows for a
non-level CoM motion simply by not forbidding it. Consequently, the ZMP offset
is not explicitely transformed to a motion component, but since it is responsible
for the step size variation, the physical system still reflects the commanded ZMP
by increasing or decreasing the step size accordingly.

4 Real Robot Implementation

txlmxrx

1

Fig. 4. A predictive
noise filter is used
to smooth the CoM
state estimation and to
predict a future state at
the latency horizon.

When dealing with real hardware, sensor noise and
control loop latency are quite significant compared to
simulation. An integral component of the real robot
implementation is a predictive noise filter illustrated
in Fig. 4. The filter smoothes the CoM trajectory
using model-based assumptions, and predicts a short-
term future state to overcome the latency. The first
building block, denoted “rx”, is the output of the state
estimation, as it was described in Section 3.2. The
second building block, denoted “mx”, is the model
state. In every iteration, the model state is forwarded
by one time frame using the laws of the linear inverted pendulum model. The
forwarded model is then linearly interpolated with the rx state using a blending
factor b ∈ [0, 1]. The result is written into the new mx state, and forwarded in time
by the latency l to compute a “tx” state at the latency horizon. The tx state is then
presented to the balance controller for further processing. We have determined a
latency l = 65 ms on our real hardware. This is quite significant considering that
one step is approximately 420 ms long. The unfortunate implication is that the
support exchange has to be induced, and the first portion of the motion signal
for “the other leg” has to be sent out, well before the change of the leg sign λ is
detected by the kinematic model. This is achieved by forcing the tx model to
step if the latency l exceeds the estimated step time T . Stepping is performed by
setting the position of the tx state to −F and resetting the step time to T = 2τ .
When the step time T reaches a negative value, the mx model itself is stepped,
whether the real support exchange has been detected or not. This means that
at times near the support exchange, the rx state and the mx state may assume
different support leg signs and cannot be blended. In this case we set b = 0
and essentially switch to open-loop mode, where the mx model state does not
receive any sensor feedback for a while and computes a linear inverted pendulum
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Fig. 5. Demonstration of the effects of the predictive filter.

simulation from the last known state until the blending gate can be opened again.
Independently of this, we utilize two additional mechanisms to adjust the value
of the blending factor, and to control the behavior of the predictive filter. Firstly,
we inhibit adaptation shortly before and after the support exchange by smoothly
decreasing b when the step time T approaches zero and allowing it to increase
again after the support exchange. And secondly, we decrease the value of b when
the Euclidean distance between the rx and the mx model is small. This way we
avoid jitter when the model state matches the measured input well, but do not
sacrifice system response when the model state deviates significantly from the
measured state. Fig. 5 shows the lateral pendulum position and velocity recorded
during an experiment. While the robot was walking on the spot, it was pushed
from the side shortly after the time 11:0. The smoothing effect of the predictive
filter can best be seen by comparing the rx and mx velocity data. The filter
discards the high velocity peaks at the support exchange that differ strongly from
the pendulum model and lead to bad predictions. The blending factor shows its
highest peaks right after the support exchanges and after the push. The model
adapts nicely to the new pendulum trajectory caused by the push, but eliminates
the jittery noise shortly before the time 12:0. At the first step after the push, the
rx and mx signals are slightly out of synchronization. The mx model steps earlier
than the robot, but synchronization is quickly restored.

5 Experimental Results

We have implemented the Capture Step Framework on a bipedal robot with
a weight of 7.5 kg and a height of 107 cm. TeenSize soccer robot Dynaped has
demonstrated improved walking capabilities during a technology demonstration
at the GermanOpen in Magdeburg in April 2014, as can be seen in the video
[18], Fig. 7. Dynaped is equipped with a low cost, two-axis inertial measurement
unit and Dynamixel EX-106 servo motors that we operate in a compliant mode.
This makes the walk elastic and smooth, but also imprecise. We run the gait
generation process with an update frequency of 83.3 Hz. Each iteration requires
a computation time of 0.12 ms on a 1.3 GHz single core CPU. Fig. 6 shows
experimental data from the Dynaped robot. The experiment started with the



Balanced Walking with Capture Steps 11

-0.5

 0

 0.5

9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0

Time [s]

CoM z
tx leg extension
rx leg extension

tx leg angle
rx leg angle

Fig. 6. CoM height, leg extension and leg angle during walking.

robot walking in place. Then the robot accelerated and walked forward with its
maximum velocity for approximately four seconds. When the robot came to a
stop, it was immediately pushed from the back. The plot displays the CoM height
on the top, and demonstrates the non-planar motion of the CoM. The data stream
in the center shows the actuation signal (tx) for the leg extension as well as the
signal received back from the robot (rx). The compliant actuation can be seen in
the moments of the floor contact, where the swing leg automatically absorbs the
impact force and the received signal deviates strongly from the actuation signal.
The data stream in the bottom shows the motion signal of the leg angle. There
is an evident delay between the activation signal and the received signal.

6 Conclusions

We have contributed a robust omnidirectional gait generation method that is
composed of an open-loop central pattern generator and a linear inverted pendu-
lum based balance controller. Even though the balance controller is simplified to
a point mass model, the controller is able to recover from disturbances that are
strong enough to tilt the robot into an oblique pose using analytically computed
step timing and foot placement adaptation. The direction or the magnitude of a
disturbance does not need to be sensed. Our method can operate in a high latency
environment with imprecise actuation using no more than an attitude sensor,
joint position feedback and an inaccurate kinematic model. At the same time,
common restrictions are lifted, such as bent knees, planar center of mass motion,
and ground-aligned feet. We demonstrated the capabilities of our approach in a

Fig. 7. Dynaped regaining balance after a push from the back by stepping
forward [18].
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public presentation on a real robot. Its low requirements and robustness make
the Capture Step Framework an ideal candidate to be implemented on humanoid
soccer robots. In future work, we are planning to incorporate additional control
laws into our balance controller to cope with the effects of angular momentum.
Furthermore, we are investigating the possibility of applying machine learning
algorithms to improve the efficiency of the capture steps.
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