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Abstract— Robots coexisting with humans in everyday envi-
ronments should be able to interact with them in an intuitive
way. This requires that the robots are able to recognize typical
gestures performed by humans such as pointing gestures, waving,
or head shaking/nodding. We present a system that is able to
spot and recognize complex, parameterized gestures from data
of a monocular camera. To represent people, we locate their
faces and hands using trained classifiers and track them over
time. We use few, expressive features extracted from this compact
representation as input to hidden Markov models (HMMs). First,
we segment the gestures into distinct phases and train HMMs
for each phase separately. Then, we construct composed HMMs,
which consist of the individual phase-HMMs. Once a specific
phase is recognized, we estimate the parameter of a gesture such
as the target of a pointing gesture. As we demonstrate in the
experiments, our system is able to robustly spot and recognize a
variety of complex gestures.

I. INTRODUCTION

Robotic assistants designed to communicate with untrained

users must be able to interact with them in a natural way.

Our humanoid robot (see Fig. 1) is able to generate a variety

of natural arm and head gestures that support its speech [1].

When evaluating questionnaires filled out by people who

interacted with the robot at former public demonstrations, we

discovered that they were confused by the asymmetry between

action generation and perception. The robot’s visual perception

of people was limited to head position and size at that time.

To reduce this asymmetry, it is necessary that the robot also

recognizes gestures performed by humans. This requires robust

and accurate tracking of human body parts as well as the

ability to spot and recognize typical gestures in order to infer

non-verbal signals of attention and intention.

We present a system that is able to spot and recognize

complex gestures from data of a monocular camera. We

consider gestures performed with head and arms, such as head

shaking/nodding or hand waving as well as parameterized

gestures, such as pointing gestures or gestures indicating the

size of objects. Figure 2 shows examples of such typical

gestures performed by humans during an interaction.

The contribution of our work is a robust and fast gesture

recognition method that relies only on data of a monocular

camera (no stereo). In contrast to previous approaches relying

on monocular image sequences (e.g., [7, 4]), our system works

under realistic settings such as varying and difficult lighting

conditions, multiple people, and cluttered background. On a

notebook computer, we achieve a frame rate of 20 fps and are

able to spot gestures as well as to recognize them, i.e., our

Fig. 1. Our humanoid robot interacts with people using multiple modalities
such as speech, facial expressions, eye-gaze, and gestures.
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Fig. 2. Snapshots of typical gestures analyzed in our experiments: (a) waving,
(b) indicating the size of an object, and (c) pointing to an object. Our system
works robustly even with cluttered background and under different lighting
conditions. The bounding boxes highlight detected faces and hands.

system distinguishes between previously learned gestures and

irrelevant or unconscious movements.

Our approach proceeds in three stages. First, we locate faces

and hands in the images and update a probabilistic belief

which tracks detected faces and hands over time. Second, we

extract features from this compact representation of humans.

Finally, these features are used as input to Hidden Markov

Models (HMMs) which are trained for individual phases of the

gestures. Our system recognizes a variety of complex gestures

and can estimate their parameters. Existing techniques for

parameter estimation of gestures either concentrate on pointing

gestures only [3, 5] or rely on the assumption that the whole

gesture can be observed [11]. In contrast to that, our approach

allows for the estimation of parameters for general gestures

once a specific phase is recognized.

II. REPRESENTATION AND TRACKING OF HUMANS

For locating faces and hands in the images, we use the

object detection framework proposed by Viola and Jones [9]

and train reliable and fast classifiers which operate on grey-

scale images. To speed-up the search for hands and to increase

robustness, we use an adaptive skin color model (which is

initially based on the detected face) and constrain the search

to skin-colored regions.



We train two kinds of hand classifiers: a generic classi-

fier that detects hands and rejects non-hands and a specific

classifier that is able to discriminate right hands from left

ones. Our hand detection system proceeds in two stages. First,

the generic hand detector is applied to skin-colored regions.

In case it succeeds, the specific hand classifier is applied.

In contrast to other approaches [2, 6], our system is able

to robustly locate and track hands with a large number of

substantially different shapes and to furthermore determine

whether a hand is a left or right one.

We maintain a probabilistic belief about the existence of

people and the positions of their faces and hands over time.

Using this belief, our system improves robustness, can deal

with false detections, and is not restricted to a single person.

Additionally, we track the 3D head pose of people. We use

an appearance-based approach [8] which locates distinctive

facial features. The positions of the features within the face

bounding box serve as input to a neural network which

computes the three Euler angles of rotation around the neck.

III. LEARNING AND RECOGNIZING COMPLEX GESTURES

In our work, we focus on typical gestures performed by hu-

mans during an interaction. We currently consider six different

types of gestures:

1) Waving: One-handed gesture.

2) Pointing: Parametric one-handed gesture.

3) Thisbig: This parametric two-handed gesture is carried

out to indicate the size of an object.

4) Dunno: This two-handed gesture is used to express

ignorance (informal short for don’t know).

5) Head shaking.

6) Head nodding.

A. Gesture Modeling

To model the complex arm gestures Waving, Pointing, and

Thisbig, we use three phases: the preparation phase which

is an initial movement before the main gesture, the hold

phase which characterizes the gesture, and the retraction phase

in which the hand moves back to a resting position. Our

motivation behind this segmentation is that once the hold

phase is recognized, the parameters of Pointing and Thisbig

can be estimated. Furthermore, this segmentation supports

the modeling of Waving during which similar movements

are repeated several times. The less complex gestures Dunno

and Head shaking/nodding are modeled monolithically. We

train individual HMMs for each phase of a gesture separately.

Accordingly, we train an overall number of 12 HMMs for the

gestures/gesture phases.

In our experiments, continuous left-right HMMs with 3-

5 (non-skip) states and a mixture of two Gaussians as output

distribution performed best to learn the gestures. We use

Viterbi training and the Baum-Welch algorithm to estimate

for an HMM λ the transition probabilities aλij between states i

and j and the observation probabilities bλj (o) for a state j given

an observation o.

To be able to identify movements not corresponding to any

learned gesture, we train an additional model. Here, we follow

the approach presented by Yang et al. [12] and build a HMM

by copying all states from all trained models and arrange them

in a fully connected HMM with smoothed output probabilities.

B. Gesture Recognition via Composed HMMs

The gesture phases appear in a specific order which has to

be considered during recognition. Fig. 3 illustrates the HMM

topology for one- and two-handed gestures as well as for

head gestures. As indicated by the arrow, the hold phase can

occur several times or last differently long. To identify the

most likely gesture given a composed HMM, we apply the

Viterbi algorithm [10]. The Viterbi algorithm computes the

state sequence with maximum likelihood given an observation

sequence O1:T = o1, . . . , oT . For the HMM λ, the likelihood

of the best state sequence of length t ending in state j is

recursively defined as

δt(j) = max
1≤i≤Nλ

δt−1(i)a
λ
ijb

λ
j (ot), δ1(j) = πλj b

λ
j (o1).(1)

Here, aλ and bλ are the parameters of λ, Nλ is the number of

states, and πλj specifies the initial state distribution. The algo-

rithm terminates with the computation of the most likely path

x∗T (which is found via backtracking) and its probability P ∗

P ∗ = max
1≤i≤Nλ

δT (i). (2)

In theory, it would be possible to model one- and two-

handed gestures in one large HMM. However, to reduce the

amount of necessary training data and to improve recognition

accuracy, we use separate HMMs for one- and two-handed

gestures. Since the HMMs with differently dimensional input

features cannot be compared directly, we consider the two-

handed HMM if and only if the HMMs for the right and left

hand report the same most-likely gesture. This heuristics is

applicable since all our two-handed gestures are symmetric.

C. Input Features

As input to the HMMs, we use few, expressive features

extracted from the trajectories of head and hands. First, we

transform the position of the hands into coordinates relative

to the head position and normalize the coordinates with respect

to the size of the face bounding box. For one-handed gestures,

we use polar coordinates in the image with the head as origin

and the velocity. Accordingly, the feature vector fone is defined

as

fone = (r, φ, v). (3)

Here, r is the distance of the hand to the head, φ is the angle,

and v is the velocity.

Since the two-handed gestures we consider are symmet-

ric, we measure the difference in x/y-direction of their left

and right hand coordinates (x
l/r
t , y

l/r
t ) at time t in the fea-

tures dx = |xlt| − |xrt | and dy = ylt − yrt . Furthermore,

we record the sum of the y-coordinates of the hands in the



Fig. 3. Composed HMM consisting of the individual phase-HMMs. The first two for one- and two-handed gestures, and the right one for head gestures.

feature ylr = ylt + yrt and consider the change of the hand

coordinates in x-direction

∆xlxr = |xlt| − |xlt−1|+ |xrt | − |xrt−1|. (4)

As a final feature, we consider the velocities of the hands vlr =
vlt + vrt . Thus, the feature vector ftwo is defined as

ftwo = (dx, dy, y
lr ,∆xlxr, vlr ). (5)

The head gestures nodding and shaking are described by a

feature vector fhead which consists of the three Euler angles

of rotation roll, pitch, and yaw as well as their velocities

fhead = (θ
r , θp , θy , vθr , vθp , vθy ). (6)

D. Estimating Parameters of Gestures

Currently, we consider two parameterized gestures: Thisbig

and Pointing. The corresponding parameters are estimated dur-

ing the hold phase of the respective gesture. For Thisbig, the

estimation is done straightforwardly using a learned mapping

to estimate the distance of the person to the camera given the

bounding box size of the face.

For the estimation of pointing targets, we use of the three

rotation angles of the head pose. We assume that people are

looking to the object of interest they want to draw the attention

to and that the head pose coincides with the gaze direction.

Furthermore, we assume the 3D positions of potential pointing

targets to be known. First, we estimate the 3D position of the

head using the above mentioned mapping from bounding box

size to distance. Starting from that position, we construct a

straight line in direction of the roll, pitch, and yaw angle of

the head pose. Finally, we determine the object which has the

closest distance to that line.

IV. EXPERIMENTS

We performed a series of experiments in order to evaluate

our approach. To collect training data, we asked five dif-

ferent people to perform gestures in a distance of 1.5-2.5m

to the camera. We chose two different locations, different

lighting conditions, and different backgrounds (see Fig. 2).

We recorded and processed the videos with a rate of 20fps

and used a resolution of 640× 480 pixel. We had a database

consisting of 75 samples per gesture which we manually

labeled, i.e., we marked the start and the end of each gesture

as well as the beginning and end of the hold phase.

A. Gesture Recognition

After training the phase-HMMs for the hand gestures, we

tested their ability in distinguishing the individual gesture

phases (preparation (p), hold (h), and retraction (r) phase). We

used the Viterbi path and counted the number of correctly rec-

ognized gesture phases from the number of all test sequences.

Tab. I shows the percentage of correctly recognized segments

for one-handed gestures. As can be seen, using the extracted

features, the individual phases of one-handed gestures can

correctly be recognized. Only one error occurs for a segment

containing a retr point phase which is classified as retr wave.

This can be explained by the fact that both retraction phases

contain similar movements in the end. When considering a

whole observation sequence consisting of all three phases,

this error does not occur since the preparation and hold phase

are correctly recognized. For the recognition of two-handed

gestures shown in Tab. II, it can be seen that in a single test

sequence, the phases of Thisbig are classified as Dunno. When

sequences in which persons are not performing any gesture are

included into the test set, we achieve an overall recognition

rate of 90% for one- as well as for two-handed gestures. The

largest part of this error results from the fact that it sometimes

happens that no gesture phases are classified as the preparation

phase of a gesture.

The following experiment is designed to evaluate the perfor-

mance of our system on sequences containing whole gestures.

We computed the Viterbi path in the composed HMMs at each

time step and counted how often the most likely hypothesis

corresponds to the true gesture. Fig. 4 shows the results for

all six gestures. As can be seen, the gestures can be reliably

recognized after processing only few frames. Nodding seems

to be most difficult to recognize because sometimes people

barely move their head. And, again, we made the observation

that Thisbig sometimes tends to be classified as Dunno.

To better evaluate the ability of our HMMs to distinguish

arm gestures, we performed experiments in which we com-

puted for a given observation sequence the Viterbi path and

its likelihood for all individual gesture HMMs consisting of

the corresponding phase-HMMs (i.e., we did not use the

composed HMMs here). We then computed the joint probabil-

ity P (gl, gr) of the gesture gl of the left and the gesture gr of

the right hand. Fig. 5 plots the evolution of the probabilities

of the gestures over time for a sequence in which a person

waved with the left hand. In the beginning, the person was not

performing any meaningful gesture and, thus, the no gesture

model had the highest probability. Afterwards, the probability

of the correct gesture increased.



TABLE I

RECOGNITION OF ONE-HANDED GESTURE PHASES.

p wave h wave r wave p point h point r point rec. rate

p wave 25 0 0 0 0 0 100%
h wave 0 25 0 0 0 0 100%
r wave 0 0 25 0 0 0 100%
p point 0 0 0 25 0 0 100%
h point 0 0 0 0 25 0 100%
r point 0 0 1 0 0 24 96%

TABLE II

RECOGNITION OF TWO-HANDED GESTURE PHASES.

dunno p thisbig h thisbig r thisbig rec. rate

dunno 25 0 0 0 100%
p thisbig 1 24 0 0 96%
h thisbig 1 0 24 0 96%
r thisbig 1 0 0 24 96%

B. Parameter Estimation

Finally, we asked people to point to predefined targets.

We positioned eight different targets within a range of 1.5m

to the camera and at different heights. The hold phase of

all 66 pointing gestures was identified and the correct target

was estimated in 80% of all cases.

Second, we asked people to indicate the size of objects. We

told them to indicate the sizes 25cm, 50cm, 100cm, and 150cm

and estimated the parameter in the hold phase. We performed

32 experiments and counted the nearest neighbor class of each

estimate. Our system was able to determine the correct class

in 94% of all cases.

C. Videos

Illustrating videos can be found at our web page1. The

videos show the robustness of our approach to recognize

complex gestures performed by different people. As the ex-

periments demonstrate, gestures can reliably be recognized

even under varying lighting conditions and with cluttered

background.

V. CONCLUSIONS

We presented an approach to robustly recognize gestures

from data of a monocular camera. We consider typical gestures

performed by humans during an interaction such as nodding

or pointing. To represent people, we locate and track their

heads and hands. We use few, expressive features extracted

from this compact representation as input to HMMs. We

segment complex gestures into three phases and train HMMs

for each phase separately. We then construct HMMs composed

of the individual phase-HMMs. Using the distinction between

different phases, we are able to estimate parameters of gestures

as soon as a certain phase is recognized.

Our approach has been implemented and evaluated on a

humanoid robot. As the experimental results show, our system

is able to reliably spot and recognize gestures, i.e., it distin-

guishes between previously learned gestures and irrelevant or

unconscious movements.

1http://www.informatik.uni-freiburg.de/˜maren/animations-gestures.html

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50

co
rr

ec
t 

h
y
p
o
th

es
is

 [
%

]

frame no.

waving
pointing

thisbig
dunno

head nodding
head shaking
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