
Autonomous Navigation in a Warehouse with a
Cognitive Micro Aerial Vehicle

Marius Beul, Nicola Krombach, Matthias Nieuwenhuisen,
David Droeschel, and Sven Behnke

Autonomous Intelligent Systems Group, University of Bonn,
Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
mbeul@ais.uni-bonn.de, www.ais.uni-bonn.de

Abstract. Micro aerial vehicles (MAVs), such as multirotors, are envi-
sioned for autonomous inventory-taking in large warehouses. Fully au-
tonomous operation of MAVs in such complex 3D environments requires
real-time state estimation, obstacle detection, mapping, and navigation
planning. To this end, we employ a cognitive MAV equipped with multi-
ple sensors including a dual 3D laser scanner, three stereo camera pairs,
an IMU, an RFID reader, and a powerful onboard computer running the
ROS middleware. Tasks with hard real-time requirements such as atti-
tude control and state estimation are processed on a Pixhawk Autopilot,
which communicates with the main computer via the MAVLink protocol.
In this chapter, we describe our integrated system for autonomous MAV-
based inventory in warehouses. We detail the involved components and
evaluate our system with the real autonomous MAV in a realistic sce-
nario. We also report lessons learned during field testing.

Keywords: MAV, Multimodal Sensor Setup, 3D Laser Scanner, Sensor
Fusion, Autonomy

1 Introduction

Micro aerial vehicles (MAVs) are enjoying increasing popularity, both in re-
search and in applications such as aerial photography, inspection, surveillance,
and search and rescue missions. Most MAVs are remotely controlled by a hu-
man operator or follow global navigation satellite system (GNSS) waypoints in
obstacle-free heights. For autonomous navigation in complex 3D environments,
sufficient onboard sensors and computing power are needed in order to perceive
and avoid obstacles, build 3D maps of the environment, and plan flight trajec-
tories.

In this chapter, we present a use case for indoor MAV operation employing
the ROS infrastructure: autonomous warehouse inventory. For this purpose, we
built an MAV with a multimodal omnidirectional sensor setup, a fast onboard
computer, and a robust data link. The sensors include a lightweight dual 3D
laser scanner, three stereo cameras, and a radio-frequency identification (RFID)
reader module. All components are lightweight and hence well suited for MAVs.

www.ais.uni-bonn.de
behnke
Schreibmaschine
Robot Operating System (ROS), The Complete Reference (Volume 2), Springer 2017.



2 Beul, Krombach, Nieuwenhuisen, Droeschel, and Behnke

Fig. 1. Our MAV has been designed for inventory and short-range inspection tasks in
indoor environments. Reliable perception of obstacles in the surrounding is key for safe
operation.

Our MAV can localize itself in indoor environments fusing visual odometry and
3D laser scan registration to a 3D map. It avoids static and dynamic obstacles
perceived with the onboard sensors reliably.

On the MAV, we employ ROS Indigo Igloo as middleware on top of Ubuntu
14.04 to facilitate fast development through a modular software design. This
allows us to transfer technology between multiple MAVs, e.g., built for outdoor
mapping [4], and ground robots, e.g., in a space exploration scenario [30]. Fur-
thermore, ROS allows for an easy and flexible connection with several ground
control stations.

After a discussion of related work in the next section, we will briefly describe
our MAV. Our perception pipeline is explained in Sec. 4, putting special emphasis
on the cameras (Sec. 4.2) and laser scanner (Sec. 4.3). We then outline our
mapping approach in Sec. 5 and describe the localization and state estimation
capabilities in Sec. 6. The navigation pipeline is detailed in Sec. 7. Sec. 8 describes
the user interfaces. The MAV system is experimentally evaluated in Sec. 9. We
conclude the chapter with a discussion of lessons learned in Sec. 10.



Autonomous Navigation with a Cognitive Micro Aerial Vehicle 3

2 Related Work

In recent years, many MAVs with onboard environment sensing and naviga-
tion planning have been developed. Due to the limited payload of MAVs, most
approaches to obstacle avoidance are camera-based [8, 17, 21, 24, 26, 28, 29, 33].
Approaches using monocular cameras to detect obstacles require translational
movement in order to perceive the same surface points from different perspec-
tives. In order to estimate depth of object points instantaneously, stereo cameras
are used on MAVs, e.g., in the works of Schmid et al. [29] and Park and Kim [24].
Tripathi et al. [33] use stereo cameras for reactive collision avoidance. The lim-
ited field of view (FoV) of cameras poses a problem when flying in constrained
spaces where close obstacles can surround the MAV.

To overcome these limitations, some MAVs are equipped with multiple (stereo)
cameras. Schauwecker and Zell [28] use two stereo cameras, one oriented forward,
the other backward. Moore et al. [20] use a ring of small cameras to achieve an
omnidirectional view in the horizontal plane, but rely on optical flow for velocity
control, centering, and heading stabilization only.

Grzonka et al. [11] use a 2D laser scanner to localize the MAV in environments
with structures in flight altitude and to avoid obstacles. This limits obstacle
avoidance to the measurement plane of the laser scanner. Other groups combine
laser scanners and visual obstacle detection [13,14,32]. Still, their perceptual field
is limited to the apex angle of the stereo camera (facing forward), and the mostly
horizontal 2D measurement plane of the scanner. They do not perceive obstacles
above or below this region or behind the vehicle. We allow omnidirectional 4D
movements (3D position and yaw) of our MAV, thus we have to take obstacles
in all directions into account. The proposed MAV extends our own previous
work [4], an MAV with a 3D laser scanner and two wide-angle stereo camera
pairs. Another MAV with a sensor setup that allows omnidirectional obstacle
perception is described by Chambers et al. [3]. We significantly increase field
of view and bandwidth of the onboard cameras, add a second laser scanner
to measure simultaneously in orthogonal directions, and use a faster onboard
computer.

In combination with accurate pose estimation, laser scanners are used to
build 3D maps. Fossel et al. [9], for example, use Hector SLAM [15] for regis-
tering horizontal 2D laser scans and OctoMap [12] to build a three-dimensional
occupancy model of the environment at the measured heights. Morris et al. [22]
follow a similar approach and in addition use visual features to aid state estima-
tion. Still, perceived information about environmental structures is constrained
to lie on the 2D measurement planes of the moved scanner. In contrast, we
use a continuously rotating laser scanner that does not only allow for capturing
3D measurements without moving, but also provides omnidirectional obstacle
sensing at comparably high frame rates (4 Hz in our setup).

To the knowledge of the authors, there exist no scientific works regarding
MAV-based stocktaking. However, it is worth mentioning that the proposed
system was developed for the German BMWi funded Autonomics for Industry



4 Beul, Krombach, Nieuwenhuisen, Droeschel, and Behnke

USB - RS232 

Fl
ig

h
t 

C
o
n
tr

o
l 
/

S
ta

te
 E

st
im

a
ti

o
n

MAV Onboard
Computer

Pixhawk Autopilot

XIMEA MQ013MG-E2
Camera (Stereo 1.1)

USB 2.0
Hub

USB2AX 
Laser

Rotator3
D

 L
a
se

r

Vision System

Hokuyo UST-20LX
2D Laser Scanner

Hokuyo UST-20LX
2D Laser Scanner

ST Micro LSM303D
3-axis 14-bit Accelerometer

and Magnetometer

Invensense MPU 6000
3-axis Accelerometer

and Gyroscope

MEAS MS5611
Barometer

u-blox M8N
GNSS

ST Micro L3GD20
3-axis 16-bit
Gyroscope

R
S

2
3

2

R
S

2
3

2

LAN

LAN

U
S

B
 2

.0

TTL

USB 2.0

XIMEA MQ013MG-E2
Camera (Stereo 1.2)

XIMEA MQ013MG-E2
Camera (Stereo 2.1)

XIMEA MQ013MG-E2
Camera (Stereo 2.2)

XIMEA MQ013MG-E2
Camera (Stereo 3.1)

XIMEA MQ013MG-E2
Camera (Stereo 3.2)

USB 3.0
Hub

USB 3.0

USB 3.0

USB 3.0
Hub

USB 3.0

USB 3.0

USB 3.0
Hub

USB 3.0

USB 3.0

Actuator Sensor Computer Bus Component

U
S

B
 2

.0

GBit Ethernet
Switch

Ground Control
Computer 1

Ground Control Station

Ground Control
Computer 3

Ground Control
Computer 2

Bullet M5 HP
WiFi Bridge

Bullet M5 HP
WiFi Bridge

Ethernet
Switch

Ethernet
Switch

LA
N

LAN

WiFi

MotorMotor MotorMotor MotorMotor

Motor
Controller

Fig. 2. Scheme of the sensors, actuators, computers, and bus systems on our MAV.
We use high-bandwidth USB 3.0 connections for the cameras due to the high data
rates, and lower-bandwidth buses for flight control and RFID reader. The dashed line
indicates a wireless connection.

4.0 project InventAIRy [7]. Furthermore, the company DroneScan [25] recently
demonstrated first results of MAV-based inventory.

3 System Overview

Our MAV design is a hexarotor with a 1.24 m diameter frame surrounding the ro-
tor plane. The total weight is 5.0 kg. The thrust-to-weight ratio is approximately
1.5. Fig. 1 shows our MAV in an indoor environment. While fragile equipment
like computer and laser scanner lies in the core of the MAV, the frame protects
the rotors and is used for mounting multiple sensors. For sensor data process-
ing and navigation planning, we use an unboxed Gigabyte GB-BXi7-4770R as
the onboard processing system. The small board is equipped with an Intel Core
i7-4770R quadcore CPU, 16 GB DDR3-memory, and a 480 GB SSD.

For state estimation, obstacle detection, localization, and mapping, our MAV
is equipped with a multimodal sensor setup. Fig. 2 gives an overview of the
installed sensors. The vision system of our MAV features a ring of six Ximea
MQ013MG-E2 1.3 M Pixel USB 3.0 cameras, yielding an omnidirectional FoV.
The cameras are used for visual odometry and for the detection of visual features
like AprilTags [23].

We use two rotating Hokuyo UST-20LX laser scanners with orthogonal mea-
surement planes to achieve a comprehensive perception of the MAV surround-



Autonomous Navigation with a Cognitive Micro Aerial Vehicle 5

ings. Each laser scanner provides distance measurements of up to 20 m with 270◦

apex angle. The 3D laser is used for obstacle perception and 6D self-localization
in a 3D map. An RFID reader module allows for the fast detection of passive
RFID tags that identify storage places and warehouse stock.

For high-level navigation tasks, we employ ROS as middleware on the on-
board computer and on ground control stations. For low-level velocity and at-
titude control, the MAV is equipped with a Pixhawk Autopilot flight control
unit [19] that also contains gyroscopes, accelerometers, a compass, a barom-
eter, and an optional GNSS receiver. We modified its firmware to meet our
requirements. In contrast to the original implementation, we control the MAV
by egocentric1 velocity commands calculated by the onboard PC. Hence, we
need a reliable egocentric velocity estimate, independent from allocentric2 mea-
surements, i.e., compass orientation. Our state estimation filter, which estimates
3D positions, 3D velocities, and 3D accelerations, integrates—in addition to
the measurements already considered in the original implementation—external
sources provided by the onboard PC. These include visual odometry velocities
and laser-based localization.

To achieve high camera frame rates at full resolution, we connect the cameras
via three hubs, one per stereo pair, to a dedicated USB 3.0 bus of the onboard
computer. Onboard components with lower bandwidth requirements, i.e. the
flight control unit and the laser scanner rotator, are connected to a second USB
2.0 bus. The Pixhawk Autopilot is connected twice. The first connection via an
USB-to-serial converter provides the telemetry and control connection according
to the MAVLink protocol [18]. The second connection is inactive during flight
and is only used for debugging and firmware updates of the Pixhawk Autopilot
on the ground. Fig. 2 illustrates our onboard USB setup.

While our MAV frame also supports the use of 15” propellers, we use six
MK3644/24 motors (111 g each) with 14” propellers to generate thrust. Turnigy
5S, 10 Ah, 35C batteries power the MAV, including all periphery. The batteries
weight 1.28 kg each and are hot-swappable. Thus, it is not necessary to shut
down the onboard computer while changing batteries.

Real-time debugging and control of onboard functions with our ground con-
trol stations is crucial for the efficient development of algorithms. To ensure
seamless operation, we use two Ubiquity Networks Bullet BM5HP WiFi adapters.
They are configured to work in Wireless Distribution System (WDS) Transparent
Bridge Mode to behave as if a wired connection would be present. Our network
setup is also shown in Fig. 2.

4 Perception

We use the ROS packages tf, robot_state_publisher, and urdf to incorporate
the physical sensors, mounted on the MAV, into our software. The transforma-
tions for the robot model are first estimated from a coarse CAD model (Fig. 3,

1 The egocentric frame lies in the center of the MAV.
2 The allocentric “world” frame is a globally fixed frame in the warehouse.



6 Beul, Krombach, Nieuwenhuisen, Droeschel, and Behnke

(a) Triple stereo configuration (b) Omnidirectional configuration

Fig. 3. Mounting of the cameras in (a) triple stereo and (b) omnidirectional configu-
ration. Configuration (a) facilitates the usage of available standard stereo methods. In
configuration (b) cameras have partial image overlap with both neighboring cameras.
This allows the development of truly omnidirectional vision methods.

Fig. 6), and later calibrated by sensor-specific methods which are described in
the respective subsections. In the following, we detail the sensors used on the
MAV, and describe how they are incorporated into our ROS infrastructure.

4.1 Accelerometers, Gyros, Compass, and Barometer

Low-level sensors like accelerometers, gyros, compass, and barometer are part
of the Pixhawk Autopilot to ensure real-time processing of these—in relation
to, i.e., USB interface latency—comparatively fast sensors. For a fast transient
response, state estimation—detailed in Sec. 6—runs directly on the Pixhawk
Autopilot. Hence, raw data of accelerometers, gyros, compass and barometer
is only fed to the main computer for logging purposes (e.g., sensor_msgs/Imu
ROS message), but processed directly on the flight control unit. The filtered
results are also transferred to the onboard PC with the MAVLink protocol and
published on ROS topics by our ROS-MAVLink communication node which is
based on mavlink_ros3.

4.2 Cameras

We use six Ximea MQ013MG-E2 global-shutter monochrome USB 3.0 cam-
eras (22.5 g each) for visual perception. The camera configuration can be easily
switched from three stereo-pairs (Fig. 3a) to an omnidirectional configuration
including all six cameras (Fig. 3b). While the stereo configuration facilitates the

3 http://github.com/mavlink/mavlink_ros

http://github.com/mavlink/mavlink_ros


Autonomous Navigation with a Cognitive Micro Aerial Vehicle 7

Fig. 4. To cope with unavoidable vibrations during flights, our camera mounts are
equipped with vibration dampers. The left mount is for stereo configuration, the right
mount for omnidirectional camera configuration.

usage of available standard stereo methods, the latter allows the deployment
of truly omnidirectional vision methods that have not been addressed by many
researchers yet. The mountings are detailed in Fig. 4. We use vibration dampers
to isolate the cameras from high frequency oscillations caused by the imbalance
of the propellers. Each mounting—including dampers—weights 11.5 g.

In combination with Lensagon BF2M2020S23 fisheye lenses with 195◦ apex
angle (25 g each), an omnidirectional FoV can be obtained. The use of multiple
camera pairs not only facilitates omnidirectional obstacle perception, but also
provides redundancy. So if, e.g., the MAV points one camera-pair towards fea-
tureless surfaces or the sky, the others are still able to perceive the environment.

Communication and control With every pair of stereo cameras sharing a
passive USB 3.0 HUB, we achieve frame rates of up to 55 fps, depending on
exposure timings. All cameras are synchronized by hardware triggering. When
data from all cameras has been received, the next frame is triggered. This enables
us to achieve adaptive high frame rates which results in data rates of up to
200 MB/s. Fig. 5 shows an image obtained during flight.

The communication with all six cameras is performed by a single driver node
that processes all images. The node acts as a wrapper for the Ximea xiAPI4 API.
Missing on-camera functionalities, e.g., gamma correction and rectification, are
performed directly in this node and the enhanced fisheye and rectified images are
published on ROS topics, accordingly. We use the dynamic_reconfigure ROS
package to set the camera and acquisition parameters, e.g. exposure time, gain,
frequency, and auto-exposure, dynamically during runtime. Additionally, the
user has the choice to employ different image enhancement techniques, as listed
in Tab. 1. The image correction and rectification is performed on the original
10-bit images during readout, using a pre-generated look-up table. By using the
dynamic_reconfigure server, the look-up table can be recalculated if the cor-
rection parameters are changed by the user. The processed images are published

4 https://www.ximea.com/support/wiki/apis/XiAPI

https://www.ximea.com/support/wiki/apis/XiAPI


8 Beul, Krombach, Nieuwenhuisen, Droeschel, and Behnke

Fig. 5. Fisheye camera image of one of the onboard cameras. Due to the large FoV,
the frame is slightly visible in the stereo configuration. We address this issue by either
masking or by rectification which removes these artifacts.

as sensor_msgs/Image messages, together with downsampled rectified images
and corresponding sensor_msgs/CameraInfo info messages. For efficiency rea-
sons, the driver can write camera Bag files directly to the disk, bypassing the
ROS communication infrastructure.

Calibration and rectification Each stereo camera pair is calibrated intrinsi-
cally and extrinsically, using the epipolar equidistant model [1] especially devel-
oped for fisheye camera calibration. It uses a 3D calibration target with point
markers on three orthogonal planes (see Fig. 6b), which is observed from dif-
ferent distances and angles during calibration. The approximate positions of
the 3D point markers have to be known. In an offline calibration run, the in-
trinsic and extrinsic calibration parameters are estimated together with the 3D
coordinates of the calibration target by bundle adjustment, formulated as least
squares problem. The user can select different applicable projection and distor-
tion models in the calibration toolbox. For modeling the projection of our fisheye
cameras, we employ the epipolar equidistant model, that describes the projection



Autonomous Navigation with a Cognitive Micro Aerial Vehicle 9

Table 1. Available pixel-wise operations for image I.

Image transformation Operation

Gamma Iout = c · I
1
γ

in

Logarithmic Iout = c · log(1 + Iin)

Contrast-stretching Iout = 1

1+
(
m
Iin

)E
10-to-8-bit conversion Iout = Iin � 2

None Iout = Iin

The parameters, including gamma γ, scaling constant c, mid-line m, and
slope control E, can be changed during runtime using, e.g., rqt_reconfigure.

Table 2. Rectification runtime.

Target image resolution Time per image

1280 × 1024 4 ms

640 × 512 1 ms

320 × 256 0.7 ms

of a spherical image onto a plane as shown in Fig. 6a. The lens distortion is de-
scribed using a third-order Chebyshev polynomial. For image rectification with
horizontal epipolar lines, we pregenerate look-up tables to allow for fast online
processing during flight. Furthermore, to improve computational efficiency, the
images are downsampled to half the resolution during rectification. The overall
time needed for the rectification of one image is approximately 1 ms. Timings
for different resolutions are listed in Tab. 2. Overall, we obtain a reprojection
error of 0.75 pixels and estimate a baseline of 53.362 cm.

4.3 Laser Scanner

Our custom-built 3D laser perceives the environment around the MAV at a fre-
quency of 2 Hz. The sensor combines two Hokuyo UST-20LX laser range finders
mounted on a link. A Robotis Dynamixel MX-28 servo actuator rotates the link
around the vertical axis with one revolution per second, yielding an spherical
FoV. The servo actuator measures the angular position of the laser range finders
with 0.088◦ resolution. Fig. 6 depicts the scanner arrangement, showing that one
scanning plane is parallel to the axis of rotation while the other is twisted by 45◦

to obtain denser measurements in a ±45◦ vertical × 360◦ horizontal FoV. This
arrangement results in a small upward pointing cylindrical blind spot of the first
scanner and conical, upward and downward pointing blinds spot for the twisted
scanner. Hence, this setup maximizes the FoV and obtains many measurements
in flight height. Since the blind spot is closed by copter attitude changes, it does



10 Beul, Krombach, Nieuwenhuisen, Droeschel, and Behnke

(a) Fisheye camera model (b) 3D point target

(c) Raw image (d) Rectified image

not degrade mapping or obstacle detection in our scenario. Furthermore, due to
the large FoV of 270◦ within the scan planes, a half rotation of the link produces
a 3D scan in almost all directions.

Each 2D laser range finder has a scanning frequency of 40 Hz with 1,080
measurements per scan plane resulting in 43,200 measurements per second. Fig. 7
shows resulting point clouds of the environment perceived by each laser and the
combined point cloud. Each scanner weights 143 g (without cables). The whole
sensor assembly weights 420 g including motor, a network switch, and a slip ring
allowing for continuous rotation. For communication with the two individual
laser scanners, we employ the driver provided by the ROS urg_node package.

The wide FoV of the laser scanner inherently leads to many measurements
on the MAV itself. Considering the complex structure of the MAV, with moving
parts like propellers, we remove measurements that belong to the robot’s body.
This so-called self filter approximates the model of the MAV by a cylinder with
the diameter and height of the MAV. Furthermore, we use a modified shadow
filter—based on the ROS laser_filters package—to remove not only incorrect
measurements at the edges of the geometry, but also erroneous measurements
caused by the fast rotating propellers. Filtering results are shown in Fig. 8.



Autonomous Navigation with a Cognitive Micro Aerial Vehicle 11

(a) Laserscanners Photo (b) Laserscanners CAD

Fig. 6. Photo and CAD drawing of our 3D laser scanner with the FoV of the individual
2D laser scanners (blue). (a) Scanner 1 (right), and scanner 2 (left) have different FoVs.
The Hokuyo 2D laser scanners are mounted on a bearing and rotated around the red
axis. (b) Scanner 1 is rotated to the back of the image plane to show the 270◦ opening
angle of the scanner. Scanner 2 is in the front, showing the twisted scan plane.

The absolute position of the laser relative to base_link is calibrated manu-
ally. The length of the link, the 2D laser scanners are mounted on, is crucial for
scan consistency. Since it is only approximately known, we iteratively tune this
parameter. By visualizing all single scanlines of a whole 3D scan in RViz, the
parameter can be adjusted, until walls and ceilings have low variance.

We construct an MAV-centric multiresolution grid map that is used to accu-
mulate sensor measurements [5]. We first register newly acquired 3D scans with
the so far accumulated map and then update the map with the registered 3D
scan. The map is utilized by our path planning and obstacle avoidance algorithms
described in subsequent sections.

3D Scan Assembly When assembling 3D scans from raw laser scans, we ac-
count for the rotation of the scanner w.r.t. the MAV and for the motion of the
MAV during acquisition. Thus, scan assembling mainly consists of two steps.

First, measurements of individual scan lines are undistorted with regards to
the rotation of the 2D laser scanner around the servo rotation axis (red axis
in Fig. 6). Here, the rotation between the acquisition of two scan lines is dis-
tributed over the measurements by using spherical linear interpolation provided
by laser_geometry/LaserProjection.

Second, we compensate for the motion of the MAV during acquisition of a
full 3D scan. To this end, we incorporate a motion estimate from the low-level
filters running on the Pixhawk incorporating inertial measurement unit (IMU)
and visual odometry measurements. The 6D motion estimate is used to assemble
the individual 2D scan lines of each half rotation to a 3D scan.



12 Beul, Krombach, Nieuwenhuisen, Droeschel, and Behnke

(a) Laser scanner 1 (b) Laser scanner 2 (c) Combined scans

Fig. 7. Point clouds from the rotating 3D laser scanner. While the individual scanners
show substantial blind spots, nearly no occlusions occur in the combined scan. (b)
Especially laser scanner 2 shows a large blind spot above the MAV caused by the
limited opening angle and the twisted mounting position. See also Fig. 6. The axes
represent the pose of the MAV. Color encodes height.

Local Multiresolution Map The assembled 3D scans are aggregated in a
local multiresolution grid map [5]. Local multiresolution maps have a high res-
olution close to the robot and a lower resolution farther away. Each grid cell
represents both occupancy information and the most recent individual distance
measurements. The measurements of each cell are summarized in a surface ele-
ment (surfel) by the sample mean covariance (cf. Fig. 9). Compared to uniform
grid-based maps, multiresolution leads to the use of fewer grid cells—without
losing relevant information—and consequently results in lower computational
costs. Fig. 9 shows an example of our local multiresolution grid-based map.

Registration Approach We register each newly acquired 3D scan with the
local multiresolution map of the environment with our surfel-based registration
method [5]. Instead of considering each point individually, we represent the 3D
scan as local multiresolution grid and match surfels. A newly acquired scan
(scene) is aligned to the local multiresolution map (model) by finding a rigid 6
degree-of-freedom (DoF) transformation T (θ) that best aligns the scene surfels
to the model surfels.

Compared to dense RGB-D images [31] or high-resolution static 3D laser
scans used in our previous work [27], 3D scans obtained from our laser scanner
are much sparser. We cope with this sparsity through probabilistic assignments of
surfels during the registration process. Observations are described by a mixture
model, avoiding hard associations between surfels. The transformation T (θ) is
recovered by expectation maximization (EM), where the E-Step finds new surfel
assignments based on the last estimation of θ and the M-step optimizes θ based
on the last assignments. This optimization is efficiently performed using the
Levenberg-Marquardt (LM) method as in [31]. By summarizing measurements
in surfels, and therefore considering significantly less elements for registration, we



Autonomous Navigation with a Cognitive Micro Aerial Vehicle 13

(a) Unfiltered (b) Self filter (c) Self and shadow filter

Fig. 8. Demonstration of the employed scan filters. A 3D scan assembled from one half
rotation of the 3D laser scanner is shown from a top-view. Color encodes height. The
MAV (depicted by the axes) passes the obstacle on the left. The red points close to the
MAV are spurious measurements caused by the MAV itself and the occluded transition
between the obstacle and the MAV. (a) Unfiltered 3D scan. (b) Filtered 3D scan using
the self filter only. Spurious measurements remain. (c) Filtered 3D scan using self filter
and modified shadowing filter. Spurious measurements are removed.

gain efficiency. When matching surfels, we choose the finest common resolution
available between both maps to achieve accuracy.

4.4 Radio-frequency Identification

We inventory stock either by visually perceiving and mapping attached April
Tags (Sec. 6.3) or by locating attached RFID Tags. To read RFID tags placed on
shelves or inventory, our MAV is equipped with a ThingMagic M6e RFID module
and an unboxed SkyeTek SP-AN-04-UF-BB6LP directional antenna (Fig. 10).
The module can detect RFID tags at distances up to several meters, depend-
ing on transmit power. A ROS node, based on the ThingMagic Mercury API5,
decodes the RFID readings and converts them to ROS messages containing a
header, the detected ID as string, and a signal strength indicator. Together with
the MAV pose, these messages could be sent to a warehouse management system
(WMS). To this end, we project received RFID detections into the allocentric
warehouse map by means of a simple sensor model for visualization purposes.

5 Mapping

For fast estimation of the MAV motion, we incorporate IMU and visual odometry
measurements into velocity and pose estimates. While these estimates allow us
to control the MAV and to track its pose over a short period of time, they
are prone to drift and thus are not suitable for localization on the time scale

5 http://www.thingmagic.com/index.php/mercuryapi

 http://www.thingmagic.com/index.php/mercuryapi


14 Beul, Krombach, Nieuwenhuisen, Droeschel, and Behnke

(a) 3D scan (b) Multiresolution grid

(c) Surfel (d) Aggregated 3D points

Fig. 9. Local multiresolution grid map. (a) The 3D scan acquired with our continuously
rotating laser scanner, ceiling removed for better visibility. (b) The multiresolution grid
structure of the map. Cell size (indicated by color) increases with the distance from
the robot. (c) For every grid cell a surfel summarizes the 3D points in the cell. Color
encodes the orientation of the surfel. (d) 3D points stored in the local multiresolution
map. Color encodes height from ground.

of a mission. Furthermore, they do not provide a fixed allocentric frame for
the definition of mission-relevant poses independent from the MAV. Thus, we
build an allocentric map by means of laser-based simultaneous localization and
mapping (SLAM) before mission execution and employ laser-based pose tracking
w.r.t. this map during autonomous operation.

This allocentric map is built by aligning multiple local multiresolution maps,
acquired from different view poses [6]. We model the different view poses as
nodes in a graph G = (V, E) that are connected by edges. A node consists of the
local multiresolution map from the corresponding view pose. Each edge in the
graph models a spatial constraint between two nodes.

After adding a new 3D scan to the local multiresolution map as described
in Sec. 4.3, the local map is registered towards the previous node in the graph



Autonomous Navigation with a Cognitive Micro Aerial Vehicle 15

Fig. 10. RFID sensor. The MAV is equipped with a lightweight RFID antenna (left)
and a small RFID reader module (right), connected to the onboard PC via USB. The
RFID system is used to map positions of RFID tags in the allocentric map attached
to shelves or inventory.

using the multiresolution surfel registration with probabilistic assignments [5]. A
new node is generated for the current local map, if the MAV moved sufficiently
far. The registration result xji between a new node vi and the previous node vj
is a spatial constraint that we maintain as values of edges eij ∈ E . In addition to
edges between the previous node and the current node, we add spatial constraints
between close-by view poses that are not in temporal sequence.

On each scan update, we check for one new constraint between the current
reference vref and other nodes vcmp. We determine a probability

pchk(vcmp) = N
(
d(xref, xcmp); 0, σ2

d

)
that depends on the linear distance d(xref, xcmp) between the view poses xref
and xcmp. According to pchk(v), we choose a node v from the graph and determine
a spatial constraint between the nodes using our surfel registration method.

From the graph of spatial constraints, we infer the probability of the trajec-
tory estimate given all relative pose observations

p(V | E) ∝
∏

eij∈E
p(xji | xi, xj).

Each spatial constraint is a normally distributed estimate with mean and co-
variance determined by our probabilistic registration method. This pose graph
optimization is efficiently solved using the libg2o ROS package by Kuemmerle
et al. [16], yielding maximum likelihood estimates of the view poses xi.

After the MAV has traversed the environment, the allocentric map is built
from the optimized pose graph by merging all local surfel maps. Here, we use
surfels with uniform resolution. Fig. 11 shows an example map acquired from
a flight through a warehouse aisle. Our mapping pipeline is available as open-
source ROS-based package6.

6 https://github.com/AIS-Bonn/mrs_laser_map

https://github.com/AIS-Bonn/mrs_laser_map


16 Beul, Krombach, Nieuwenhuisen, Droeschel, and Behnke

Fig. 11. SLAM point cloud. Left: Resulting point cloud after pose graph optimization
acquired by a manual flight along a warehouse aisle (color depicts height). Right: Photo
of the mapped aisle.

6 Localization and State Estimation

In order to navigate in indoor and outdoor environments, robust localization
and state estimation, especially in GNSS-denied environments, is crucial. Our
multimodal localization and state estimation pipeline exploits the specific char-
acteristics of all sensors in terms of, e.g., accuracy and speed.

6.1 Triple Stereo Visual Odometry

Our visual odometry estimation is based on the ROS viso2 package that wraps
the visual odometry library LIBVISO2 [10], a fast feature-based method for
monocular and stereo cameras. The approach does not require a motion model.
The only prerequisites are that the input images are rectified and the extrinsic
camera calibration is known.

We rectify the fisheye images with the method epipolar image rectification
on a plane with an equidistant model as proposed by Abraham and Förstner [1].
The resolution of the rectified images is 640×512. The rectified image pairs are
fed into three instances of viso2 running in parallel—one for each stereo camera
pair—to obtain three velocity estimates.

Similar to other feature-based methods, viso2 extracts and matches features
over subsequent stereo frames and estimates the camera motion by minimizing
the reprojection error. Four types of features (corners and blobs of two polarities)
are detected using 5×5 filters and non-maximum suppression. Feature similarity
is computed by sparse horizontal and vertical Sobel filters. As shown in Fig. 12,
feature associations are searched in small prediction windows between frames
and along epipolar lines between the stereo pairs and matches are only accepted
if a circular match across two adjacent frames and the two cameras can be estab-
lished. Based on all found circle matches, Geiger et al. [10] estimate the camera
motion by minimizing the reprojection error using Gauss-Newton optimization
in combination with RANSAC for outlier removal.



Autonomous Navigation with a Cognitive Micro Aerial Vehicle 17

Left Image Right Image

Time

Fig. 12. Circular matching of feature points by viso2 [10]: starting from a feature
detected in the current left image (lower left), a windowed correspondence search (blue
box) is performed on the previous left image (upper left). If a match has been found,
it is matched along the epipolar line to the previous right image and from there to the
current right image. The best match for this feature is searched along the epipolar line
in the current left image. The match is accepted only if the loop is closed.

The estimated 3D velocities from the three stereo pairs are utilized in the
state estimation pipeline. We weight each velocity estimate according to the
number of correspondences that are tracked. When the number of features falls
below a threshold, e.g. due to featureless or overexposed scenes, the weight is
set to zero. In this way, we obtain visual odometry even if two cameras fail at
the same time. Moreover, especially at fast forward motions where the feature
correspondence search with the frontal camera is challenging, the estimates of
the lateral cameras allow for proper motion estimation, as shown in Fig. 13.

The independent odometry estimates are published in the base_link coor-
dinate frame. As the transformation from the camera coordinate systems to the
base_link is static, it is looked up once at the beginning by using the Trans-
formListener of the ROS tf package.

6.2 Laser-based Pose Tracking

In order to localize the robot in GNSS-denied environments, e.g., indoor environ-
ments, in an allocentric frame, we register local multiresolution maps to a global
map employing multiresolution surfel registration (MRSR) [5]. In small environ-
ments, suitable maps can be built from the takeoff position before a mission. In
larger environments, we perform laser-based SLAM (cf. Sec. 5).

Since the laser scanner acquires 3D scans with a relatively low rate of 2 Hz, we
incorporate the egomotion estimate from the visual odometry and measurements



18 Beul, Krombach, Nieuwenhuisen, Droeschel, and Behnke

(a) Front stereo pair (b) Back-left stereo pair (c) Back-right stereo pair

Fig. 13. Triple stereo visual odometry. While the forward facing camera tracks few fea-
tures due to fast forward motion, the remaining stereo pairs can still estimate reliable
feature correspondences. Correspondences within one stereo pair are colored blue. Fea-
ture correspondences tracked by viso2. RANSAC is used for outlier detection. Inliers
are colored green, outliers are colored red.

from the IMU to track the pose of the MAV. The egomotion estimate is used as
a prior for the motion between two consecutive 3D scans. In detail, we track the
pose hypothesis by alternating the prediction of the MAV movement given the
filter result and alignment of the current local multiresolution map towards the
allocentric map of the environment.

To align the current local map with the allocentric map, we also use the surfel-
based registration described in Sec. 4.3. The allocentric localization is triggered
after a new 3D scan has been registered with and added to the local multireso-
lution map. We update the allocentric robot pose with the resulting registration
transform. To achieve real-time performance of the localization module, we only
track one pose hypothesis. We assume that the initial pose of the MAV is known,
either by starting from a predefined pose, or by means of manually setting the
pose. Fig. 14 shows the registration of a 3D scan to the map and an estimated
6D trajectory.

The resulting robot pose estimate is used as a measurement update in a
lower-level state estimation filter. We propagate this allocentric pose over time
with visual odometry and IMU to obtain allocentrically consistent pose and
velocity estimates at a sufficiently high rate for planning and control.

6.3 AprilTag Detection

In order to improve the indoor localization of our MAV in environments with
repetitive structures, e.g., warehouses, and to localize tagged objects, we aug-
ment the environment with AprilTags. These tags can be robustly detected in
real time with the wide-angle cameras. Fig. 15 shows the detection of AprilTags
with 164 mm edge length. The algorithm is able to detect and locate tags in
distances of 0.5 m to 5.0 m. The computation time is 10 ms per image. We build
maps of AprilTags in an allocentric frame by mapping with known poses based



Autonomous Navigation with a Cognitive Micro Aerial Vehicle 19

Fig. 14. Laser-based localization. A laser scan aggregated over 500 ms (red) is matched
to an allocentric map (green) to track the MAV pose (black). The yellow dots depict
the tracked MAV trajectory.

on laser-based localization. Fig. 15 also shows the resulting map after an example
flight based on the observations from all six cameras.

6.4 State Estimation Filter

We use two filters for state estimation: A low-level extended Kalman filter (EKF)
fuses measurements from accelerometers, gyros, and compass to one 6D attitude
and acceleration estimate. The second, higher-level, filter fuses linear accelera-
tion, velocity, and position information to a state estimate that includes 3D posi-
tion. The low-level filter is supplied with the Pixhawk Autopilot. The higher-level
filter extends the original Pixhawk Autopilot position estimator by incorporating
all the sensors present on the MAV into one state.

Here, we predict the state:

x =

px py pzvx vy vz
ax ay az

 ,

consisting of 3D position p, 3D velocity v, and 3D acceleration a under the
assumption of uniform acceleration

pk = pk−1 + vk−1 · dt+
1

2
ak · dt2,

vk = vk−1 + ak · dt,
ak = ak−1.



20 Beul, Krombach, Nieuwenhuisen, Droeschel, and Behnke

Fig. 15. AprilTag detections. Left: Detected AprilTags in the rectified camera image
with corresponding ID. Right: Poses of the tag detections projected into the allocentric
map with the MAV pose estimate before filtering. The colors correspond to the tag
IDs. Black arrows depict mission view poses.

Table 3. Information sources for the state filter.

Information Update Frame Weighting

Source Type Dim. Rate (Hz) Factor

Attitude EKF Lin. Acceleration 3D 250 egocentric 20

Visual Odometry Velocity 3D 15 egocentric 0-2

GNSS Velocity 3D 10 allocentric 2

Barometer Position 1D 250 allocentric 0.5

Laser Pose Tracking Position 3D 2 allocentric 2

GNSS Position 3D 10 allocentric 1

If sensor measurements are available, the state is corrected accordingly. For
1D velocity estimates vk,sens, coming from, e.g., visual odometry, the state cor-
rection is

vk = vk−1 + (vk,sens − vk−1) · w · dt,
ak = ak−1 + (vk,sens − vk−1) · w2 · dt2.

Here, w is a weighting factor that indicates the reliability of the inputs. Table 3
shows the measurements that contribute to the filter result. Egocentric measure-
ments are first transformed into the allocentric frame by the attitude estimate.
We determined the weighting factors by iterative tuning.
This predictor/corrector design offers the following advantages. It
– delivers fast transient responses,
– works in GNSS-denied environments, and



Autonomous Navigation with a Cognitive Micro Aerial Vehicle 21

Semantic Map

Allocentric SLAM Map

Egocentric Map

Local Obstacle Map

MAV Sensors

Laser scans

Registered scans

Egocentric
MRS maps

Mission Planning

Allocentric Path Planning

Egocentric Path Planning

Reactive Obstacle Avoidance

MAV Controller

< 0.02 Hz Allocentric goal

0.2 Hz
Excerpt of allo-
centric path

2 Hz
Intermediate goal
on egocentric path

20 Hz Velocity setpoints

Perception and Mapping Navigation and Control

A
ll
o
c
e
n
tr
ic

E
g
o
c
e
n
tr
ic

Fig. 16. Our navigation pipeline consist of five hierarchy levels. From top to bottom,
the planning frequency increases, whereas the level of abstraction decreases.

– does not accumulate drift.
As can be seen in Fig. 2, we use a USB-to-serial converter to communicate

with the Pixhawk Autopilot. We use the maximum rate of 921,600 baud to
achieve a measurement frequency of up to 250 Hz for attitude, velocity, and
position updates.

7 Navigation

To facilitate efficient and safe operations without or with only small human in-
teraction, we employ the multilayered navigation approach illustrated in Fig. 16.
Each layer operates in a frequency suitable for the specific task and on a cor-
respondingly updated and accurate environment representation. From top to
bottom these layers are: Mission planning, allocentric path planning, egocentric
path planning, reactive collision avoidance, and low-level control. The planning
frequency increases from top to bottom, whereas the level of abstraction de-
creases.

7.1 Mission Planning

The layout of large warehouses follows often a very structured pattern. Large
shop floors are filled with shelves, containing standardized storage units, e.g.,
capable to store exactly one EUR-pallet of size 80×120 cm. Thus, on the topmost
layer, we describe equal parts of a warehouse by number of shelves, unit height,
and the numbers of units in horizontal and vertical direction. If the storage unit
IDs are assigned in a systematic way, we can derive a mapping between storage
unit coordinates, scan positions, and IDs automatically. Fig. 17 depicts such a



22 Beul, Krombach, Nieuwenhuisen, Droeschel, and Behnke

Fig. 17. Mission planning in semantic map. Based on warehouse parameters like shelf
and storage unit dimensions, aisle width, etc., a semantic map of the shelves is gen-
erated. Dark red dots depict storage units. Left: An operator can command coverage
tours to scan complete shelves (red path in left aisle), flights to specific storage loca-
tions (black path to right aisle), or a combination as part of a more complex flight
plan. Right: To aid initial mission and path planning, we derive an OctoMap from the
semantic map (color encodes height).

model. We derive an initial OctoMap from the model for navigation planning. For
development and debugging, flight plans containing flights to individual storage
units and coverage paths for whole shelves can be assembled using an RViz-based
interface. In real-world applications, IDs of shelves or units to inspect will be
provided by a warehouse management system (WMS).

Coverage paths to inventory shelves are generated from a user-defined dis-
tance to the shelf and the sensor apex angles. A 10 % overlap between scans
allows detecting visual tags that could be cropped otherwise and mitigates the
effects of small deviations from the flight altitude.

For missions involving flights to multiple individual storage units, we for-
mulate the mission as traveling salesman problem (TSP). After calculating all
pair-wise edge weights, the cost-optimal sequence of view poses is determined
by means of Concorde [2], a fast TSP solver.

In order to define missions independent from a strictly structured ware-
house model, an operator can define arbitrary 4D view poses in RViz using
interactive_markers. A context menu at every marker allows to set a marker
to the current MAV pose—this is especially useful to teach-in missions during
manual flight—and to modify, add, or remove view poses.

7.2 Path Planning

The next layer when descending the planning hierarchy is a global path plan-
ner. This layer plans globally consistent plans, based on I) the SLAM-based
environment model (as OctoMap), discretized to grid cells with 0.5 m edge
length, II) the current pose estimate of the MAV as nav_msgs/Odometry, and



Autonomous Navigation with a Cognitive Micro Aerial Vehicle 23

III) the next mission waypoint, including 3D position and yaw represented as
geometry_msgs/PoseStamped. Planning frequency is 0.2 Hz and we use the A*
algorithm to find cost-optimal paths.

In our application domain, most obstacles not represented in the allocentric
map can be avoided locally, without the need for global replanning. Hence, it
is sufficient to replan globally every five seconds to keep the local deviations
of the planner synchronized to the global plan and to prevent the MAV from
getting stuck in a local minimum that the local planner cannot escape due to its
restricted view of the environment.

As via-points that are not mission critical can be blocked by locally perceived
obstacles, it is not sufficient to send the next waypoint of the global path to the
local planning layers. Instead, the input to the local planner is the complete
global plan, which allows for skipping blocked via-points. The global path is
cost-optimal with respect to the allocentric map. Hence, the path costs of the
global path are a lower bound to path costs for plans refined based on newly
acquired sensor information—mostly dynamic and static previously unknown
obstacles. Locally shorter plans on lower layers with a local view on the map are
not taken as they may yield globally suboptimal paths. Also, mission goals are
not skipped as the local planner has to reach these exactly. If this is not possible,
the mission planning has to resolve this failure condition.

7.3 Local Multiresolution Path Planning

On the local path planning layer, we employ a 3D local multiresolution path
planner. This layer plans based on the allocentric path from the global path
planner and local distance measurements which have been aggregated in a 3D
local multiresolution map. It refines the global path according to the actual
situation. The resulting more detailed trajectory is fed to the potential field-
based reactive obstacle avoidance layer on the next level.

To resemble the relative accuracy of onboard sensors—i.e., they measure the
vicinity of the robot more accurate and with higher density than distant space—
we plan with a higher resolution close to the robot and with coarser resolutions
with increasing distance.

Local multiresolution for path planning is also motivated by map dynamics.
Since the parts of the plan that are farther away from the MAV are more likely
to change, e.g., due to newly acquired sensor measurements, it is reasonable
to spend more effort on a more detailed plan in the close vicinity of the robot.
Compared to uniform resolution, our approach reduces planning time and makes
frequent replanning feasible.

Our planner operates on grid-based robot-centric obstacle maps with higher
resolution in the center and decreasing resolution in the distance. We embed an
undirected graph into this grid and perform A* search from the center of the
MAV-centered grid to the goal. The edge costs are given by the base obstacle
costs of the cells it is connecting and its length given by the Euclidean distance
between the cell centers.



24 Beul, Krombach, Nieuwenhuisen, Droeschel, and Behnke

Fig. 18. The local plan (red) is coupled with the allocentric plan (black) by a cost term
that penalizes deviations from the allocentric plan. The blue lines depict the deviation
vectors at example points, the star is the planner’s goal. The green circular obstacle
is in the allocentric map, the gray rectangular obstacle has to be surrounded based on
the local map.

An obstacle is modeled as a core with maximum costs, determined by obstacle
radius rF that is enlarged by the approximate robot radius rR, and a distance-
dependent part rD that models the uncertainty of farther-away perceptions and
motions with high costs. Added is a part with linearly decreasing costs with
increasing distance to the obstacle rS that the MAV shall avoid if possible. The
integral of the obstacle stays constant by reducing its maximum costs hmax with
increasing radius. For a distance d between a grid cell center and the obstacle
center, the obstacle costs hc are given by

hc(d) =


hmax if d ≤ (rF + rD)

hmax
1−d−(rF+rD)
2∗(rF+rD) if (rF + rD) < d < 3 ∗ (rF + rD)

0 otherwise

.

The local planner is coupled to the solution of the allocentric path planner
by a cost term ha, which is the shortest distance between a grid cell and any
segment of the allocentric plan (see Fig. 18). The total cost h for traversing a
grid cell is h = w1 · hc(d) + w2 · ha.

The output of the local navigation layer is the next waypoint along the
planned path as geometry_msgs/PoseStamped in a robot-centric frame. This
is further processed by a PID-controller to generate egocentric 4D velocity com-
mands (vx, vy, vz, vyaw) published as geometry_msgs/TwistStamped. These com-
mands are the input to the reactive obstacle avoidance layer.

7.4 Reactive Local Obstacle Avoidance

For safe navigation in complex environments, fast reliable obstacle avoidance
is key. We developed a frequently updated local multiresolution obstacle map
and a local reactive potential field-based collision avoidance layer to cope with
dynamic and static obstacles. We transferred our previous work on obstacle



Autonomous Navigation with a Cognitive Micro Aerial Vehicle 25

Fig. 19. The MAV is pushed away from an approaching person and the ground by
potential field-based obstacle avoidance. Red lines in the left figure depict forces induced
by the local obstacle map (cyan and yellow boxes, the yellow boxes depict the person)
on the MAV.

perception and collision avoidance from our outdoor mapping MAV [4] to the
system presented in this work.

To quickly react on obstacle perceptions, we use a version of the local mul-
tiresolution obstacle map (cf. Sec. 4.3) that is updated at the laser scanner
frequency of 40 Hz. Obstacles represented in the map induce artificial repulsive
forces to parts of the MAV, pushing it into free space. Fig. 19 shows an ex-
ample, where the MAV avoids an approaching person and the ground. To take
the MAV shape into account, we discretize it into 32 cells and apply the force
to each cell. The resulting force vector and the velocity control vector from a
higher navigation layer yield a velocity command that avoids obstacles, inde-
pendent of localization. The obstacle avoidance layer runs at 20 Hz, equal to
the frequency target velocities are sent to the low-level control layer. Velocity
setpoints are published as geometry_msgs/PoseStamped and received from our
ROS-MAVLink bridge node. The commands are sent to the Pixhawk Autopilot
via the MAVLink protocol over a serial bus.

7.5 Velocity Control

Low-level velocity control is executed on the Pixhawk Autopilot, which receives
4D velocity setpoints via the MAVLink protocol. For linear velocity control, we
use a modified Pixhawk Autopilot position control node. The node implements
a PID-controller which calculates a 3D thrust vector based on the 3D linear
velocity error. This leads to a 3D attitude and total thrust setpoint which is
then used by lower-level controllers.



26 Beul, Krombach, Nieuwenhuisen, Droeschel, and Behnke

Fig. 20. Flight operator view. The RViz-based operator command and control interface
depicts in the main window the allocentric obstacle map, the MAV pose (red shape),
future mission waypoints (black arrows), obstacle-induced forces (not visible here since
the MAV is sufficiently far away from obstacles), and 3D coordinates of detected April-
Tags (clustered colored dots). Furthermore, approximate positions of RFID tags can
be shown (not shown here). Other windows show visual AprilTag detections with cor-
responding ID in a rectified image (center-right) and the fisheye view from one front
camera (bottom-right). An operator can choose between manual, velocity controlled,
and fully autonomous operation. Quick commands—that have been identified as being
especially useful during testing—include hovering at the current pose and skipping a
waypoint.

We control the yaw Ψ of the MAV by a proportional controller Ψsetp =
Ψ +Kp · vyaw with Kp = 1. Although the controller does not integrate the yaw
rate vyaw and thus shows a steady-state error when used open loop, it is well
behaved in terms of steps in the resulting yaw setpoint Ψsetp. Since we close the
loop regarding yaw on a higher level, the described controller shows sufficient
performance.

By limiting the maximum velocity setpoint received from the onboard com-
puter to 2 m

s in horizontal direction, 1 m
s in vertical direction, and 0.2 rad

s about
yaw, even critical errors in ROS subsystems do not lead to severe effects at lower
control layers on the MAV. We found these values to balance well between ef-
ficiency and safety in our application. Especially low yaw rates allow the safety
pilot to intervene before the MAV rotates into an undesirable pose.

8 User Interfaces

8.1 Flight Operator Interfaces

Operating a complex robotic system in the field—especially for debugging and
testing—requires a visualization of the system state easily monitored in real time



Autonomous Navigation with a Cognitive Micro Aerial Vehicle 27

and the possibility to quickly send the most important commands to the system.
These include, but are not limited to, switching between “manual”, “velocity
controlled”, and “fully autonomous” operation. Furthermore, the operator has
the ability to command the MAV to “fly to specific point” determined by an
interactive marker, and “stay at current pose”. The core visualization tool
during flight is RViz, extended with several application-specific views/plugins.
Typical views, possibly shown in parallel distributed to several computers, are:
– Allocentric view, showing mission and allocentric path planning, OctoMap,

and localization (similar to Fig. 20),
– Egocentric view, showing local obstacle map, local path planning, and reac-

tive obstacle avoidance (similar to Fig. 19 left),
– Localization view, showing SLAM-map, 3D laser scans, and visual odometry

trajectories (similar to Fig. 14),
– Planning view, showing allocentric and egocentric path planning, and an

overlay of allocentric and egocentric maps (similar to Fig. 17), and
– Vision view, showing camera images, tracked features, tracked AprilTags and

visual odometry trajectories (similar to Fig. 21).
Whereas the allocentric and egocentric views are mainly used in field-testing

and actual mission execution, the localization and planning views are more
subsystem-specific and used during development and debugging. The vision view
might be employed in both scenarios on demand.

Most nodes can be configured on-the-fly employing the dynamic_reconfigure
framework. This is particularly important to parameterize lower-level systems,
like the reactive obstacle avoidance and the camera system, but does also help
to activate and deactivate features in high-level components.

The capabilities of ROS are not only used during a mission, but also during
preparation and follow-up. As described in Sec. 5, we create an initial map
by manually flying the MAV. During the manual flight, the MAV builds an
allocentric map of the environment which is later used for localization and for
defining a mission. An operator monitors the allocentric map using RViz to assure
map coverage of the environment. We use an editing tool for post-processing the
map7. The point cloud can be moved and rotated. Furthermore, specific points
can be deleted and the whole point cloud can be aligned to a plane, e.g., the
ground plane. We use this tool to align the origin of the map with the ground
level and to orient the map north—an important prerequisite to maintain a
common frame between laser pose tracking, IMU, and compass measurements.

In preparation of a mission, we can define missions by either creating a job
list containing storage units and shelves to cover using an RViz plugin, shown in
Fig. 17, or by manually defining 4D view poses employing interactive_markers.
Furthermore, we use an interactive marker to set the initial pose of the MAV
before takeoff for pose tracking.

Repeatability of experiments is important for efficient debugging and testing.
Thus, we save user-defined missions (ordered set of 4D-waypoints) and can load

7 Point cloud editor can be downloaded from
http://www.ais.uni-bonn.de/videos/ROS_book_2016

http://www.ais.uni-bonn.de/videos/ROS_book_2016


28 Beul, Krombach, Nieuwenhuisen, Droeschel, and Behnke

them for consecutive experiments. Loading and editing those stored missions
have turned out to significantly reduce the operator workload when testing the
system, reducing the idle time of the system and resulting in a much higher
possible test frequency.

We experienced that the time needed for preparation of a mission and/or
adjusting parameters and fixing bugs, often exceeds the actual time needed for
the flight itself. Furthermore, consecutive short flights with short landings in
between are often possible without restarting onboard systems. Thus, to mini-
mize the time for maintenance on ground, we do not restart the logging to Bag
files. After successful mission execution, we use the ROS tool MAV_bag_filter
to cut out Bag file segments containing individual flights and discard segments
where the MAV status indicates that it is not flying. In this way, we are able to
(a) significantly reduce the size of the Bag files and (b) minimize the amount of
time needed for reviewing the data.

8.2 Safety Pilot Interfaces

While the flight operators monitor higher-level states of the MAV like proper
initialization of the SLAM system and correct mission planning, we rely on a
safety pilot to keep the MAV in a safe state during the whole mission. The safety
pilot is able to monitor all status information that is vital for safe operation of
the MAV in real time. This includes battery level, velocity setpoints, flight state,
and many more. Incoming MAVLink packages from the Pixhawk Autopilot are
encapsulated in a ROS message and sent to the ground control station over the
wireless link. Here, the messages are extracted and streamed to the local network
via UDP. For real-time visualization of the data streams, we employ the soft-
ware QGroundcontrol8. Since this communication pipeline works bidirectionally,
the safety pilot is also able to adjust flight parameters like, e.g., the maximum
allowed vertical velocity during flight.

When an error occurs on a higher level or a subsystem fails, the safety pilot
can always switch off the control authority of the onboard computer and recover
the MAV. This can happen either with QGroundcontrol as well as with the
manual remote control. We use this feature also during manual start and landing
of the MAV. We manually start and land since we consider it to be safer than
fully autonomous operation near the ground. By switching the control authority
from manual mode to the onboard computer, we can totally eliminate the pilot
in the loop. On the other hand, since we are able to completely switch off the
autonomy, we can even deal with situations where the autonomy fails completely
(e.g., if it should send velocity setpoints of NAN).

9 Experiments and Evaluation

We evaluated the individual components of our MAV in simulation and flight ex-
periments in our lab. Furthermore, the integrated system was tested and demon-

8 http://qgroundcontrol.com

http://qgroundcontrol.com


Autonomous Navigation with a Cognitive Micro Aerial Vehicle 29

Table 4. Camera frame rate is limited by exposure time.

Exposure time (ms) Frame rate (Hz)

40 17

23 25

17 30

3 50

(a) Front stereo pair (b) Back-left stereo pair (c) Back-right stereo pair

Fig. 21. Visualization of the correspondences in the three stereo camera pairs. Corre-
spondences between one stereo pair are colored blue. Feature correspondences tracked
by viso2 are colored green (inliers) and red (outliers).

strated in a warehouse of a logistics company to achieve a realistic test environ-
ment. In addition to the evaluation results, we report lessons learned during
development and testing of the system.

9.1 Data Acquisition

Fig. 7 shows point clouds recorded with the 3D laser scanner. Due to the differ-
ent angular mounting of the 2D laser scanners (cf. Fig. 6), we minimize the blind
spots in the vicinity of the MAV. Occlusions, e.g., caused by the frame or pro-
pellers occur in different directions and can be compensated by measurements
from different poses. This results in an omnidirectional FoV with a minimal blind
spot.

We estimated the accuracy of the Hokuyo UST-20LX and compared it to
the Hokuyo UTM-30LX-EW used in our previous work [4]. Indoors, both laser
scanners show the same accuracy of ∼ ±10 mm when measuring a 0.5 m distant
object. Outdoors, the accuracy of the UTM-30LX-EW stays the same, but the
accuracy of the Hokuyo UST-20LX degrades to ∼ ±35 mm.

We evaluated the data acquisition speed of the synchronized cameras. Al-
though the maximum frame rate is up to 55 fps, it is limited by the exposure
time of the cameras. Tab. 4 reports the resulting frame rates.

Fig. 21 shows a typical image set, captured during flight. It can be seen that
the visual odometry finds most correspondences correctly, but some false cor-



30 Beul, Krombach, Nieuwenhuisen, Droeschel, and Behnke

Fig. 22. Egocentric velocity estimate from visual odometry in forward direction and
filter result.

respondences are produced due to repetitive environment structures and strong
illumination differences. Nevertheless, due to the redundant structure and the
correspondence-dependent weighting, the visual odometry does not lose track,
even if one instance finds no correspondence at all. The computation time for
visual odometry including image rectification is 30 ms per stereo camera image
pair.

In order to evaluate the robustness of the filter, we measured the visual odom-
etry velocity while flying a sinusoidal trajectory. Only accelerometer, gyroscopes,
and one visual odometry estimate are used to correct the filter. Fig. 22 shows the
visual odometry input and the filter result. Although the visual odometry loses
track (at t = 19 s and t = 28 s), the filter is able to bridge this information gap.
In normal operation, this gap would also be filled by other velocity estimates.

9.2 RFID Detection

RFID tags are detected and mapped in the allocentric map. Instead of using
an elaborated sensor model, we approximate the tag positions by a predefined
offset from the RFID antenna. This is sufficient to match tag readings to storage
places. For our specific case, we found an offset of 0.5 m to be appropriate.
Fig. 23 displays the detected tags, mounted on individual storage places during
a mission in the warehouse depicted in Fig. 11. It can be seen that the achievable
accuracy lies within the dimensions of one storage unit, capable of storing one
EUR-pallet of size 80×120 cm. Therefore our system is capable of performing a
per-storage-unit attribution of EUR-pallets.

9.3 Flight Time

We evaluated our system in flight experiments. When manually flying the MAV
indoors, we measured a flight time between 6 min to 8 min, depending on the



Autonomous Navigation with a Cognitive Micro Aerial Vehicle 31

Fig. 23. RFID detections in a warehouse aisle. We map RFID tags during flight with
the current MAV pose and a predefined scanning distance. Left: Photo of the scene.
Each storage unit (red circle) and every stock (green circle) is marked with RFID Tags.
Right: Representation of the scene in RViz. The detections are depicted as blue spheres.

Table 5. MAV components emitting and/or receiving radio waves.

Component Frequency (GHz)

GPS L1 1.57542

GPS L2 1.2276

GLONASS L1 1.6

Computer CPU 0.8 – 3.2

Computer memory 1.6

WiFi 5.15 – 5.725

Remote Control 2.4

RFID UHF 0.865 – 0.869

0.902 – 0.928

flight dynamics. This is sufficient for typical indoor inspection tasks (described
in detail in Sec. 9.6) and to scan one typical warehouse aisle with ∼50 m length
and ∼5 m height with an average horizontal velocity of ∼0.5 m

s . Furthermore,
the ability to hot-swap batteries compensates for the relatively short flight time.

9.4 Electromagnetic Compatibility

Several components on the MAV emit radio waves. We evaluated the influence of
these components on each other by identifying the relevant frequencies in a series
of tests. Tab. 5 gives an overview on the components and frequencies. Although
it does not show the exact emission spectrum, it provides initial information
which frequency ranges are prone to interference for further investigation.

Although our system is primarily built to work in GNSS-denied environ-
ments, our MAV is equipped with an optional GNSS antenna for use in external
stock. It can be seen that the computer memory is working at the same clock
frequency as the GNSS sources. We found that it emits interference radiation
preventing a stable GNSS reception. Since we experienced strong interference
especially with GPS, the GNSS antenna was placed as far as possible from the



32 Beul, Krombach, Nieuwenhuisen, Droeschel, and Behnke

Fig. 24. Localization result. The MAV trajectory (red arrows) is tracked by means of
laser scan registration, combined with visual odometry and IMU measurements. This
yields 6D pose estimates. Shown is a flight through a warehouse aisle. In the side-view
(left), the relation to the accurately mapped storage units can be seen. In the top-down
view (right), it can be seen that the pose is tracked despite considerable self-similarity
of the shelves. Map color encodes height.

jamming source to reduce noise, which yielded sufficient reception of the GPS
signal. We did not experience other noteworthy interferences.

Benchmarking the WiFi network gives a real throughput of 7.5 MB/s. La-
tency analysis gives an average ping of 1.22 ms ± 0.11 ms. We aim for a fully
autonomous system, so no data has to be exchanged between the ground control
stations and the MAV in normal operation modes, except for a mission specifi-
cation before takeoff and data transfer to the ground station after landing. This
benchmark shows that the communication infrastructure enables the operators
to visualize point clouds or even view live video feeds with ∼ 2 Hz for debugging
purposes.

9.5 Mapping and Pose Tracking

We performed experiments with the integrated system. Fig. 24 shows the re-
sulting trajectory of our indoor localization experiment. We build a map with
the onboard laser sensors before mission start. During a mission, the 3D laser
scans—aggregated over 500 ms—are registered to the map yielding a 6D pose
estimate at 2 Hz. The resulting trajectory is globally consistent.

In order to assess the performance of our global registration and allocentric
mapping approach, we tested our method on a dataset of the parking garage9.
Without pose graph optimization, the trajectory aggregates drift which results
in inconsistencies, indicated by a misalignment of the walls. Our registration
method with graph optimization yields accurate results. Fig. 25 shows details of

9 Datasets recorded in-flight with an MAV are available at: http://www.ais.

uni-bonn.de/mav_mapping.

http://www.ais.uni-bonn.de/mav_mapping
http://www.ais.uni-bonn.de/mav_mapping


Autonomous Navigation with a Cognitive Micro Aerial Vehicle 33

Fig. 25. Impressions of the quality of the built 3D map. Environmental structures are
consistently mapped. Even details such as the narrow pipe structure and a cable canal
(circled) are accurately modeled. Color encodes the distance to the view-point.

a map of a garage environment. Here, even narrow structures like pipes can be
identified in the globally aligned 3D scans. For a detailed comparison with other
registration methods see [4].

9.6 Navigation

We evaluated the autonomous navigation by flying missions in a warehouse.
The MAV visits several manually defined observation poses on different heights
along a shelf based on an allocentric map created with our SLAM approach.
Fig. 20 shows one example mission. The MAV successfully accomplished multiple
missions with a duration between ∼2 min to 5 min and a total trajectory length
of ∼40 m to 80 m each.

To evaluate the local obstacle avoidance, we control the MAV with egocentric
velocity commands, i.e., a zero velocity setpoint for movements in the plane and
rotations, and a small descent velocity to keep the MAV close to the ground.
The obstacle avoidance keeps the MAV at a safe distance to the ground. Fig. 19
shows an experiment where a person approaches the MAV. The MAV avoided
all static and dynamic obstacles based on the 3D laser scans.

A video showing autonomous mission execution and reactive obstacle avoid-
ance can be found on our website10.

10 Lessons Learned

The use of ROS was extremely valuable for development and evaluation of the
described MAV system. We experienced the MAV to be a very complex mecha-
tronic system consisting of many individual hard- and software subsystems. Most

10 http://www.ais.uni-bonn.de/videos/ROS_book_2016

http://www.ais.uni-bonn.de/videos/ROS_book_2016


34 Beul, Krombach, Nieuwenhuisen, Droeschel, and Behnke

subsystems offer no redundancy and show a Single Point of Failure (SPOF) char-
acteristic.

Due to the modular and transparent ROS framework, development and er-
ror treatment was greatly simplified. Since the publish–subscribe pattern offers
transparency, the effort for error analysis was reduced to a minimum. Logging
of data to Bag files further simplifies error analysis.

The modular design and abstraction to ROS nodes facilitates the fast de-
velopment of software and allowed us to transfer technology between multiple
MAVs and even ground robots. Since the MAV is connected to several external
hard- and software components, the loose coupling via ROS messages massively
simplifies the integration effort. Furthermore, we use standard message formats
shipped with ROS and relied on third-party modules whenever possible. This
facilitates both replacing submodules of the system with modules developed for
other robots or even in other research groups with often low adaptation effort
and the maximum use of already available ROS debugging and visualization
tools.

Since ROS handles the transportation of messages, effortful data routing be-
tween the MAV and ground stations as described in Sec. 8 is not required. Nev-
ertheless, since ROS is not real-time capable, we advice to use the tcpNoDelay

transport hint for nodes that are crucial for real-time control. We use the no delay
transport hint, e.g., regarding all communication with the Pixhawk autopilot.

Real-time visualization of data streams, especially camera images, laser scans,
and planned trajectories with, e.g., RViz, and rqt_plot, made it possible to de-
velop such a complex system. Real-time adjustment of crucial parameters like,
e.g., camera exposure time, using dynamic_reconfigure sped up the develop-
ment phase and also helped during evaluation.

During development of inherently unstable SPOF systems we made extensive
use of simulation technology like, e.g., Gazebo, where failures are permitted.

Development of sophisticated software modules for, e.g., state estimation
or action planning, was facilitated by the extensive software library which is
already shipped with ROS. We rely on many standard components like drivers
(e.g., urg_node for the laser scanners) that otherwise would be costly to develop.

Representing a complex mechatronic system in software benefited from tools
like tf and robot_state_publisher. The kinematic tree represents not only
statically calibrated nodes like base_link ⇔ camera_1..6, but also dynamic
relations like base_link ⇔ laser_scanner or base_link ⇔ map_origin. By
using the above mentioned ROS packages, we avert the cumbersome and error
prone manual track keeping of a variety of multidimensional transformations.
We want to advice here that although tf offers a transparent way to main-
tain transformations, to always check the tf tree for consistency with tools like
view_frames.

We make extensive use of screen when operating the MAV. It proved to be
very useful to start the roscore and, when working with multiple operators, all
additional components in a respective screen session. Thus, if the WiFi connec-



Autonomous Navigation with a Cognitive Micro Aerial Vehicle 35

tion drops, all components are easily recoverable and screens can be exchanged
between operators.

When operating a complex robotic system in the field, it is inevitable to
have well-organized processes and a tested hardware setup to not waste valuable
testing time on site. In particular, clear responsibilities are important, e.g., who
starts which subsystems and is responsible for their configurations—including
parameter checking before takeoff and monitoring during flight. Furthermore,
sufficient attention must be given to important infrastructure, like reliable net-
working and WiFi connections, standardized software setups on workstations,
wiring of all operator station components, and if applicable, a directly available
contact person on site to organize important prerequisites as power or network-
ing and solve problems in a timely manner. The above mentioned precautions
facilitate efficient usage of testing time and maximize the benefits of operations
in the field.

11 Conclusions

In this chapter, we presented a cognitive MAV that is capable of semantically
perceiving its environment and planning inventory missions.

We approached this challenge by employing a multimodal omnidirectional
sensor setup to achieve situation awareness. The sensors have a high data rate for
tracking the MAV motion and for quick detection of changes in its environment.

Our ROS-based mapping and navigation pipeline allows for fully autonomous
flight even in GNSS-denied environments.

Ample onboard processing power in combination with a high bandwidth
ground connection leads to a system that is suitable to deploy and debug custom
algorithms and for conducting further research. The ability to hot-swap batteries
and/or ground power supply makes developing and testing highly efficient.

We showed the system robustness in multiple indoor experiments where the
only manual interactions were the starting and landing phases. Thus, the system
is able to inspect areas in a fully autonomous mission.

Author’s Biographies

Marius Beul received his M.Sc. degree in Electrical Engineering in 2013 from
Cologne University of Applied Sciences. Since October 2013, he works as a mem-
ber of the scientific staff in the Autonomous Intelligent Systems Group at the
University of Bonn. His research interests include Aerial Robotics, State Esti-
mation, Path Planning and Control.

Nicola Krombach obtained her M.Sc. degree in Computer Science from Rheinis-
che Friedrich-Wilhelms Universität Bonn in 2016. Since March 2016, she is a
researcher in the Autonomous Intelligent Systems Group at the University of
Bonn. Her research interests include image processing and visual SLAM.



36 Beul, Krombach, Nieuwenhuisen, Droeschel, and Behnke

Matthias Nieuwenhuisen received his Diploma in Computer Science from
Rheinische Friedrich-Wilhelms Universität Bonn in 2009. Since May 2009, he is
a researcher in the Autonomous Intelligent Systems Group at the University of
Bonn. His current research interests include path and motion planning for MAVs.

David Droeschel received a M.Sc. degree in Autonomous Systems from the
University of Applied Sciences Bonn-Rhein-Sieg in 2009. Since May 2009, he is
a researcher in the Autonomous Intelligent Systems Group of the University of
Bonn. His research interests include efficient 3D perception and SLAM.

Sven Behnke received his Diploma in Computer Science from Martin-Luther-
Universität Halle-Wittenberg in 1997 and Ph.D. from Freie Universität Berlin
in 2002. He worked in 2003 as postdoctoral researcher at the International Com-
puter Science Institute, Berkeley. From 2004 to 2008, he headed the Humanoid
Robots Group at Albert-Ludwigs-Universität Freiburg. Since 2008, he is profes-
sor for Autonomous Intelligent Systems at the University of Bonn. His research
interests include cognitive robotics, computer vision, and machine learning.

References

1. Abraham, S., Förstner, W.: Fish-eye-stereo calibration and epipolar rectification.
ISPRS Journal of Photogrammetry and Remote Sensing 59(5), 278–288 (2005)

2. Applegate, D., Bixby, R., Chvatal, V., Cook, W.: Concorde TSP solver (2006)

3. Chambers, A., Achar, S., Nuske, S., Rehder, J., Kitt, B., Chamberlain, L., Haines,
J., Scherer, S., , Singh, S.: Perception for a river mapping robot. In: Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS) (2011)

4. Droeschel, D., Nieuwenhuisen, M., Beul, M., Holz, D., Stückler, J., Behnke, S.:
Multilayered mapping and navigation for autonomous micro aerial vehicles. Journal
of Field Robotics 33, 451–475 (2016)

5. Droeschel, D., Stückler, J., Behnke, S.: Local multi-resolution representation for
6D motion estimation and mapping with a continuously rotating 3D laser scanner.
In: Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA) (2014)

6. Droeschel, D., Stückler, J., Behnke, S.: Local multi-resolution surfel grids for MAV
motion estimation and 3D mapping. In: Proc. of the Int. Conf. on Intelligent Au-
tonomous Systems (IAS) (2014)

7. Fiedler, M.: Inventairy. http://www.inventairy.de/ (2016), [german]

8. Flores, G., Zhou, S., Lozano, R., Castillo, P.: A vision and GPS-based real-time
trajectory planning for a MAV in unknown and low-sunlight environments. Journal
of Intelligent & Robotic Systems 74(1-2), 59–67 (2014)

9. Fossel, J., Hennes, D., Claes, D., Alers, S., Tuyls, K.: OctoSLAM: A 3D mapping
approach to situational awareness of unmanned aerial vehicles. In: Proc. of the
Int. Conf. on Unmanned Aircraft Systems (ICUAS) (2013)

10. Geiger, A., Ziegler, J., Stiller, C.: StereoScan: Dense 3D reconstruction in real-time.
In: IEEE Intelligent Vehicles Symposium (2011)

11. Grzonka, S., Grisetti, G., Burgard, W.: A fully autonomous indoor quadrotor.
IEEE Trans. on Robotics 28(1), 90–100 (2012)

http://www.inventairy.de/


Autonomous Navigation with a Cognitive Micro Aerial Vehicle 37

12. Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap:
An efficient probabilistic 3D mapping framework based on octrees. Autonomous
Robots 34, 189–206 (2013)

13. Huh, S., Shim, D., Kim, J.: Integrated navigation system using camera and gim-
baled laser scanner for indoor and outdoor autonomous flight of UAVs. In: Proc. of
the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS) (2013)

14. Jutzi, B., Weinmann, M., Meidow, J.: Weighted data fusion for UAV-borne 3D
mapping with camera and line laser scanner. International Journal of Image and
Data Fusion (2014)

15. Kohlbrecher, S., Meyer, J., von Stryk, O., Klingauf, U.: A flexible and scalable
SLAM system with full 3D motion estimation. In: Proc. of the IEEE Int. Sympo-
sium on Safety, Security and Rescue Robotics (SSRR) (2011)

16. Kuemmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: G2o: A
general framework for graph optimization. In: Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA). pp. 3607–3613 (2011)

17. Magree, D., Mooney, J.G., Johnson, E.N.: Monocular visual mapping for obstacle
avoidance on UAVs. Journal of Intelligent & Robotic Systems 74(1-2), 17–26 (2014)

18. Meier, L.: Micro aerial vehicle link protocol (MAVLink). mavlink.org (2015)
19. Meier, L., Tanskanen, P., Heng, L., Lee, G., Fraundorfer, F., Pollefeys, M.: PIX-

HAWK: A micro aerial vehicle design for autonomous flight using onboard com-
puter vision. Autonomous Robots 33(1-2), 21–39 (2012)

20. Moore, R., Dantu, K., Barrows, G., Nagpal, R.: Autonomous MAV guidance with
a lightweight omnidirectional vision sensor. In: Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA) (2014)

21. Mori, T., Scherer, S.: First results in detecting and avoiding frontal obstacles from
a monocular camera for micro unmanned aerial vehicles. In: Proc. of the IEEE
Int. Conf. on Robotics and Automation (ICRA) (2013)

22. Morris, W., Dryanovski, I., Xiao, J., Member, S.: 3D indoor mapping for micro-
UAVs using hybrid range finders and multi-volume occupancy grids. In: In RSS
2010 workshop on RGB-D: Advanced Reasoning with Depth Cameras (2010)

23. Olson, E.: AprilTag: A robust and flexible visual fiducial system. In: Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA) (2011)

24. Park, J., Kim, Y.: 3D shape mapping of obstacle using stereo vision sensor on
quadrotor UAV. In: AIAA Guidance, Navigation, and Control Conference (2014)

25. Pons, J.: DroneScan - Airborne Data Collection. http://www.dronescan.co/

(2016)
26. Ross, S., Melik-Barkhudarov, N., Shankar, K.S., Wendel, A., Dey, D., Bagnell,

J.A., Hebert, M.: Learning monocular reactive uav control in cluttered natural en-
vironments. In: Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA)
(2013)

27. Schadler, M., Stückler, J., Behnke, S.: Multi-resolution surfel mapping and real-
time pose tracking using a continuously rotating 2D laser scanner. In: Proc. of the
IEEE Int. Symposium on Safety, Security and Rescue Robotics (SSRR) (2013)

28. Schauwecker, K., Zell, A.: On-board dual-stereo-vision for the navigation of an
autonomous MAV. Journal of Intelligent & Robotic Systems 74(1-2), 1–16 (2014)

29. Schmid, K., Lutz, P., Tomic, T., Mair, E., Hirschmüller, H.: Autonomous vision-
based micro air vehicle for indoor and outdoor navigation. Journal of Field Robotics
31(4), 537–570 (2014)

30. Schwarz, M., Beul, M., Droeschel, D., Schüller, S., Periyasamy, A.S., Lenz, C.,
Schreiber, M., Behnke, S.: Supervised autonomy for exploration and mobile ma-

mavlink.org
http://www.dronescan.co/


38 Beul, Krombach, Nieuwenhuisen, Droeschel, and Behnke

nipulation in rough terrain with a centaur-like robot. Frontiers in Robotics and
AI, section Humanoid Robotics (2016)

31. Stückler, J., Behnke, S.: Multi-resolution surfel maps for efficient dense 3D mod-
eling and tracking. Journal of Visual Communication and Image Representation
25(1), 137–147 (2014)

32. Tomić, T., Schmid, K., Lutz, P., Domel, A., Kassecker, M., Mair, E., Grixa, I.,
Ruess, F., Suppa, M., Burschka, D.: Toward a fully autonomous UAV: Research
platform for indoor and outdoor urban search and rescue. Robotics Automation
Magazine, IEEE 19(3), 46–56 (2012)

33. Tripathi, A., G Raja, R., Padhi, R.: Reactive collision avoidance of UAVs with
stereovision camera sensors using UKF. In: Advances in Control and Optimization
of Dynamical Systems. pp. 1119–1125 (2014)


	Autonomous Navigation in a Warehouse with a Cognitive Micro Aerial Vehicle
	Introduction
	Related Work
	System Overview
	Perception
	Accelerometers, Gyros, Compass, and Barometer
	Cameras
	Laser Scanner
	Radio-frequency Identification

	Mapping
	Localization and State Estimation
	Triple Stereo Visual Odometry
	Laser-based Pose Tracking
	AprilTag Detection
	State Estimation Filter

	Navigation
	Mission Planning
	Path Planning
	Local Multiresolution Path Planning
	Reactive Local Obstacle Avoidance
	Velocity Control

	User Interfaces
	Flight Operator Interfaces
	Safety Pilot Interfaces

	Experiments and Evaluation
	Data Acquisition
	RFID Detection
	Flight Time
	Electromagnetic Compatibility
	Mapping and Pose Tracking
	Navigation

	Lessons Learned
	Conclusions


