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Abstract. System parameter identification is a necessary prerequisite
for model-based control. In this paper, we propose an approach to esti-
mate model parameters of robot servo actuators that does not require
special testing equipment. We use Iterative Learning Control to deter-
mine the motor commands needed to follow a reference trajectory. To
identify parameters, we fit a model for DC motors and friction in geared
transmissions to this data using a least-squares method. We adapt the
learning method for existing position-controlled servos with proportional
controllers via a simple substitution. To achieve compliant position con-
trol, we apply the learned actuator models to our humanoid soccer robot
NimbRo-OP. The experimental evaluation shows benefits of the proposed
approach in terms of accuracy, energy efficiency, and even gait stability.

1 Introduction

DC servo motors are popular actuators in the field of robotics because of their
ease of use and low cost. Traditional control methods often ignore the dynamics
of the motor, in particular friction forces, and compensate the loss of knowledge
about the system through sensory feedback. While it is possible to reach very
small position errors with this method, high-gain position control often results
in undesirable behavior like stiffness and oscillations (limit cycles).

The research field of humanoid soccer robots places unique demands on the
performance of robot joints. Having the ability to perform highly dynamic mo-
tions is more important than accurate setpoint tracking at low speeds. These
motions require considerable torques and moments and can be dangerous to the
joint—in particular to the gear—if not executed properly.

The use of motor and friction models enables the controller to demand exactly
the torque needed to follow a position trajectory. In addition to minimizing
energy consumption, this leads to a more compliant motion of the robot in the
face of unexpected obstacles or perturbations—a feature that is important in
many robot applications.

Determining motor model coefficients can be a daunting task, since specific
test runs in controlled situations are needed. Often the motor cannot remain in
the robot for parameter measurement. Additionally, special test setups might
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be needed to produce fixed load conditions. These problems call for a simpler
identification method, which is the main objective of this work.

In this paper, we define models for DC motors and friction in gear transmis-
sions. We apply Iterative Learning Control [1] to follow a reference trajectory.
From the resulting motor commands, we identify the model parameters. We
evaluate this learning and identification process on our NimbRo-OP humanoid
soccer robot [2]. Finally, we apply the model for feed-forward control during
full-body walking motions.

2 Related Work

Friction effects in robot joints have been thoroughly investigated and character-
ized. Waiboer et al. [3] successfully modeled friction forces in robotic joints as
friction between lubricated discs in a rolling-sliding contact. For parameter es-
timation, a four step least-squares fitting involving the hand-tuning of Stribeck
parameters is needed.

A smaller version (AX-12+) of the actuator used for evaluation (MX-106)
has been modeled before [4] with a similar friction model. Special test setups were
used to determine viscous and static friction constants. The Stribeck parameters
were also hand-tuned.

A few approaches for online learning of friction compensation torques exist.
Kim et al. [5] apply reinforcement learning with a neural network to control a
1-DOF system with changing friction parameters.

Iterative Learning Control has been proposed as a method for friction com-
pensation before. Liu [6] used a PD type iterative control for learning torque
commands to overcome friction effects on a fixed trajectory. However, general-
ization to other trajectories or operating conditions was not attempted.

In contrast to the existing work, the proposed system identification method
does not require special test benches or isolation of the actuator. The parameters
are estimated using a trajectory that is relevant to the robot’s general operation.
This ensures good results in important position, velocity, and acceleration ranges.
While the Stribeck curve parameters still might need to be tuned by hand, all
other parameters are calculated using a single linear optimization.

Of particular interest here is the direct modeling of DC motors, which has
not been at the center of scientific attention since most robot actuators are
controlled by position or torque, hiding the internal workings of the servo motor
behind a controller interface.

3 Modeling Robot Joints

3.1 Motor Model

The motor model we are considering here describes a simplified ideal DC motor.
This assumption is a good one for most robotics actuators, since they contain
high-quality DC motors.
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A simple model for an ideal DC motor can be derived by considering the
power balance present in the motor at a constant voltage U:

Pel:Pmech+PJa (1)

where P, is the electrical power consumed, P,,..;, denotes the mechanical output
power and P; corresponds to the Joule heating losses in the motor winding.
Further substitution yields

Ul =wr + RI? 2)
& U= w% + RI, (3)

where U is the voltage applied to the motor, I is the current flowing through
the winding, w and 7 are the present angular velocity and torque, respectively,
and R denotes the motor winding resistance.

The torque constant k. describes the relationship of 7 and I:

T =k, (4)

which gives

R
U=uwk; +—7. (5)
s
This equation determines the required motor voltage at a given angular ve-
locity to produce a target torque, which can be calculated using the inverse
dynamics as discussed below.

3.2 Friction Model

The above motor model describes an ideal DC motor. Real robot joints suffer
from friction effects not only inside the motor itself but also in connected trans-
missions. The focus of our research is on gear transmissions, as they are the
most common type of transmission used. We will not consider gear inertia, but
discuss a way how they could be included.

The torque 7 generated by the DC motor is converted into the output torque
T, and the friction torque 7¢. Motor axis angular velocity w and joint velocity ¢
are tightly coupled by the gear constant:

T ="T,+ Ty, (6)
w = kgear‘j' (7)

The dominant friction forces result from static and Coulomb friction in the
gears and bearings. The transition between these friction states is known as the
Stribeck curve [7]. A common choice for this transition is an exponential decrease
from static to Coulomb friction developed by Bo and Pavelescu [8] and refined by
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Armstrong-Helouvry [9] with an additional viscous friction term for lubricated
gear teeth:

75 = sgn(q) (1 — B)7e + Brs) + Vg, (8)

T
q
B = €exp <_ ’q(s) > y (9)

where ¢ is the joint position (angular or linear), 7. and 75 describe Coulomb
and static friction torques, and ¢(*) is the viscous friction constant. The Stribeck
parameter ¢(*) determines the transition velocity between static and Coulomb
friction. The empirical exponent § depends on the material surfaces and ranges
from 0.5 to 1.0 [3].

The combination of motor and friction models results in the equation

U = b+ 1 (74 s80(d) (1= 8)7 + Br) + <) (10)

= Gkgeark- + gn +7e sgn(q%(l —B)+7s sgn(d)gﬂ + k—lfc(”)q' (11)

— oot ks + )+ 7t sg(@)(L— B) + 7o sen@B, (12
which can be simplified to

U = agTo + 14 + agsgn(q)(1 — B) + azsgn(q)B. (13)

As exact values for the physical motor and friction constants are not required,
it suffices to determine the «; to obtain a motor model usable for control. The
«; are linear coeflicients and can be estimated from experimental data using
regression techniques.

One should note that 3 depends on the Stribeck parameters § and ¢(®),
which cannot be estimated using linear optimization. Non-linear optimization
techniques may be employed to solve this problem, but have their own short-
comings, as they might find local optima which generate physically incorrect
solutions [10].

As the influence of the Stribeck parameters is limited to very low velocities,
it is satisfactory in most cases to use a reasonable fixed transition speed and
set the exponent § to 1 in order to simplify the calculations. If low velocities
are an important aspect of the robot’s operation, hand-tuning of the Stribeck
parameters might be necessary.

If explicit consideration of gear inertia is needed, a fifth term needs to be
added, as the torque generated by gear inertia is directly proportional to the
angular acceleration § of the joint axis:

U= aoTo + 14 + azsgn(q)(1 — ) + azsgn(q)8 + aug. (14)

In our experiments, consideration of gear inertia was not required for good
model performance.
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A reaction time t4 needs to be included in the model equation if there are
significant time delays in the system:

U(t —ta) = aoTo(t) + a1q(t) + a2 sgn(q(t)) (1 — B(1)) + assgn(q(t))5(1). (15)

3.3 Adaption to Position-Controlled Actuators

Most of the available intelligent actuators for robotics are position-controlled
servo motors. Since the applied motor voltage cannot be directly influenced, a
relationship between the command input of the actuator and the applied motor
voltage needs to be found. The actuators usually include a complete PID position
controller with configurable gains. In most cases, however, only the proportional
part P is used, which results in:

U= Ubatkctrlkp(qd - Q), (16)

where Upq: is the supply voltage, kp is the configurable P controller gain and
ket maps the controller output to motor voltage U. The current and desired
servo positions are described by ¢ and g4, respectively. Since g4 is the command
variable, we solve for it:

1
= U+ 17
1 kctrl kP Ubat 1 ( )

1 .
= ———(aoTo + 14 + (1l — B) + a38) +q. (18)
kctrlkPUbat

As kg is unknown, it is combined with the model coefficients a;:

- 1
kP Ubat

qd (doTo + d1q + cia(1 — B) + d3B) +q. (19)

The proposed learning and identification procedure can then be performed
as presented below. Care should be taken to select a small enough kp. If kp is
big, the model influence will be small, resulting in bad model fit precision.

The explicit consideration of the supply voltage U, compensates drops in
voltage due to battery draining and ensures good model match over wide voltage
ranges.

One should note that the feedback characteristic of the P controller is not
modified as long as the model is correct. This means positional errors lead to
proportional responses in voltage, just offset by the voltage required to generate
To-

4 System Identification

4.1 Reference Trajectory and Learning Process

During the learning process, the robot repeatedly executes a fixed reference
trajectory function g,.¢(t) on a single joint, which in turn defines the goal servo
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position over time. The reference trajectory should cover a wide range of servo
motions, especially those relevant in later operation. A reference trajectory for
a soccer robot should, for instance, include walking and kicking motions.

The first and second derivative of the reference trajectory are needed, since
both appear in the motor and friction models and/or dynamics equations which
are required to calculate 7.

We apply the classic Tterative Learning Control (ILC) algorithm introduced
by Arimoto et al. [1] to determine the command inputs from one iteration k to
the next iteration k + 1:

U ) =0, (20
U(’”l)(t) =y (t) + )\(e(k) (t+tq)), (21)

where ) is the learning feedback coefficient and e*) denotes the trajectory error
in the k-th iteration. The first command curve U(®)(t) can also be initialized
with a guessed command curve (e.g. using the output of an existing controller)
to make the algorithm converge faster.

4.2 Parameter Estimation

When the trajectory error after K ILC iterations is sufficiently small, the com-
bined motor and friction model can be fitted against the command curve U (%)
generated with ILC. A discrete sampling with N samples is used, while simul-
taneously compensating the system reaction time:

Un) = U (nAt), (22)
To(n) = To(RAL + tg), (23)
q4(n) = q(nAt +tq), (24)
B(n) = B(nAt + ta). (25)

The parameter identification can then be modeled as a least-squares linear op-
timization problem:

a % oo |
g; = argmin || A g; - (26)
(0%} (0%} U(N - 1)
with
7%(0) 4(0)  sgn(q(0))(1 - B(0)) sgn(4(0))3(0)
A — . . . . (27)

£(N—1) §(0) sgn(§(N—1))(1 — BN—1)) sgn(§(N—1))B(N—-1)

Traditional methods including SVD or QR factorization can be used to solve for
(678
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Fig. 1. Experimental setup: (a) NimbRo-OP prototype on which the experiments
were carried out; (b) Setup for single joint evaluations. Fixed robot parts are
drawn in black, while the orange leg can move freely.

5 Experimental Results

To validate our approach, we performed experiments on the NimbRo-OP Hu-
manoid TeenSize Open Platform robot [2] (see Fig. 1(a)). NimbRo-OP primarily
uses Dynamixel MX-106 intelligent actuators from Robotis Inc. in its legs.

We used a newly introduced inverse dynamics module based on the Recursive
Newton-Euler Algorithm [11] contained in the open-source Rigid Body Dynamics
Library (RBDL, see [12]) to calculate the torques needed for achieving desired
joint trajectories. For these calculations, we created a full kinematic model of
our robot, including inertial information. We estimate the direction of gravity
using the built-in inertial measurement unit of NimbRo-OP.

5.1 Single Joint Evaluation

For evaluation on the single joint level, we fixed the NimbRo-OP torso to a table
and used a hip pitch actuator of the robot (see Fig. 1(b)). The other actuators of
the leg were commanded to hold position. Given that the servo is position con-
trolled, Equation (19) models the system. We choose a reference trajectory that
contained elements relevant to the robot application (robot soccer), as shown in
Fig. 2. We derived velocities and accelerations from the reference trajectory and
calculated torques using the inverse dynamics module.

We fixed the Stribeck parameters ¢(*) and § to initial assumptions and esti-
mated the system reaction time t4 from the time delay between command and
reaction under P control (see Fig. 5). We increased the ILC learning coefficient
A slowly until a sufficient convergence speed was reached. The final parameter
values are summarized in Table 1(a).
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Fig. 2. The reference trajectory used in the experiments. The first section con-
tains sinusoidal oscillations as they occur during walking motions. The second

section is composed of fast sinusoidal and linear parts often used for kicking
motions.
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Fig. 3. Learning process applied on the reference trajectory with 12 iterations
of ILC. Note that the first ILC iteration (k = 0) starts at the goal trajectory,

with further iterations converging towards the model command curve fitted in
the 12th iteration.
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Fig. 4. Maximum windowed trajectory error g,q. (see Eq. 28) during the learn-
ing process.
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Table 1. (a) Chosen parameters of the learning process; (b) identified model
parameters for ROBOTIS Dynamixel MX-106.

q™ 5 ta A &o a1 Qs as
0.Irad/s 1.0 0.03s 038 0.19817 0.49586 0.13729 0.03006

(a) (b)

The learning process is visualized in Fig. 3. During the learning process, the
trajectory deviation was measured in a windowed fashion to allow for latencies:

Qmaz = mtax —DH<ﬂaH<D ‘QTEf (t> — qm(t+ a)| ) (28)
where ¢, (t) denotes the measured trajectory.

A total of 12 ILC iterations were needed to produce an acceptable maximum
trajectory deviation of approx. 0.02rad for a window size D = 25 ms. Note that
the learned commands sent to the motor often significantly deviate from the
reference trajectory by more than 1rad. The model was then fitted using least
squares. The fitted model produced a maximum trajectory deviation of 0.1 rad on
the reference trajectory. Fig. 4 shows the detailed development of the trajectory
error. The identified parameters are summarized in Table 1(b).

5.2 Integration into a Walking Motion

We integrated the resulting motor model into the emerging NimbRo-OP soccer
software framework [13]. We used the model for feed-forward control only and did
not incorporate feedback mechanisms in order to avoid oscillations, which could
be caused by latencies, and to keep the robot compliant to outside disturbances.

Since our robot currently does not provide a way of measuring foot contact
forces, we move the origin of the inverse dynamics calculation to the support
foot under the assumption that it is essentially fixed to the ground (i.e. does not
slide or tilt). In this way, the calculation does not depend on the contact forces.
During support transition, when both feet are on the ground, the estimated
torque is faded in a linear fashion between the computed results of the inverse
dynamics for both feet.

The actuators of previous NimbRo robots [14] had to be driven with relatively
high proportional gains to meet trajectory requirements. The new feed-forward
control based on the learned motor model allows very low P gains to be used
while still following the target trajectory (see Fig. 5). In comparison to hard,
high-gain P control, the model-based control uses less power: Energy consump-
tion was measured with the internal current sensor of the actuator. After 40
full steps, the left knee joint had consumed 189 J. The model-based control re-
sulted in 140 J of consumed energy. Two factors contribute to this reduction of
energy usage. Current spikes are avoided by predicting higher loads, as can be
seen in Fig. 5. Steady-state current is also reduced. Less current consumption
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Fig. 5. Evaluation of feed-forward control with the learned joint model on a full-
body walking motion. Shown are the joint targets and measured angles of the
left knee. The leg contracts with a positive knee angle. a) Trajectory tracking
using high-gain P control (k, = 1.0). b) Trajectory tracking using low-gain P
control (k, = 0.35). c¢) Trajectory tracking using low-gain P control (k, = 0.35)
with model-based feed-forward control.
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Fig. 6. Obstacle experiment. (a) Experiment setup. The obstacle has a height
of 15mm; (b) Development of sagittal trunk angle during the experiment. The
purple line denotes the time of impact of the first step on the obstacle. The
applied torque by the hard P controller leads to the robot falling backwards,
while the model-based controller reacts softly enough to maintain stability.
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leads to longer battery life and less heat in the actuators—both positive effects.
As current is directly coupled with torque produced by the motor (see Eq. 4),
potentially damaging torque spikes are also avoided.

The incorporated knowledge about the system also results in less latency than
the high-gain controller. Furthermore, the explicit modeling of battery voltage
in Eq. 19 results in equal performance over the whole battery voltage range.

In the walking experiments, trajectory errors were mainly caused by erro-
neous foot contact estimation. For example, undesired behavior could be ob-
served when the robot mistakenly thought that one foot is firmly on the ground
and moved the base of the dynamics calculations to this foot. If the foot is still
in the air, the applied torques caused strange behavior. This process can be seen
in the overshoot seen in Fig. 5 on the downward slope. However, since a low-gain
P controller is used, the legs are very compliant and move back into proper po-
sition as soon as ground contact is established as can be seen in Fig. 5. Hence,
walking performance is not adversely affected.

On the contrary, the higher compliance helps NimbRo-OP to walk over small
obstacles (see Fig. 6(a)) without stabilizing algorithms. We tested rectangular
obstacles with a height of up to 15 mm and commanded the robot to walk forward
with a very slow velocity. Fig. 6(a) illustrates the robot behavior when executing
the first step onto the obstacle. One can observe that the hard P controller reacts
with too much force and causes the robot to fall backwards while the model-
based controller is more compliant and just leads to a slight backward leaning.
An additional stabilizing factor in this situations is the fact that calculated joint
torques reflect the orientation of the robot, as the direction of gravity is estimated
by the IMU.

6 Conclusion

In this paper, we demonstrated that simple motor and friction models can be
learned using Iterative Learning Control in a fast and straightforward way, avoid-
ing dedicated test runs for single parameters but instead fitting all parameters
at once. The learned model performs better than traditional P controllers on
real walking motions. Even intelligent servo actuators like the Dynamixel MX
series can profit from an accurate motor model for feed-forward control, result-
ing in less power consumption and more compliant robot movement. Due to the
generality of the used DC motor model, and the single assumption of a low-gain
position-based P controller, our approach is applicable to a wide range of robotic
actuators.

Some of the simplifications made when modeling motor and friction (e.g.
unmodelled gear inertia) may be improved in future work. Since friction is the
dominant problem in robot joint control, it may for example be prudent to
investigate more complex friction models like the more general robot joint friction
model proposed by Waiboer [10].

If the model is used in feed-forward control of position-controlled servos,
wrongly estimated model parameters or an incorrect dynamics model can re-
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sult in steady-state trajectory errors which are not corrected. Further work may
include the careful application of feedback mechanisms (e.g. online model refine-
ment) to reduce these errors.
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