
Rendering the Directional TSDF for Tracking and Multi-Sensor Registration
with Point-To-Plane Scale ICP

Malte Splietker and Sven Behnke

Abstract—Dense real-time tracking and mapping from
RGB-D images is an important tool for many robotic ap-
plications, such as navigation and manipulation. The re-
cently presented Directional Truncated Signed Distance
Function (DTSDF) is an augmentation of the regular
TSDF that shows potential for more coherent maps and
improved tracking performance. In this work, we present
methods for rendering depth- and color images from
the DTSDF, making it a true drop-in replacement for
the regular TSDF in established trackers. We evalu-
ate the algorithm on well-established datasets and ob-
serve that our method improves tracking performance
and increases re-usability of mapped scenes. Further-
more, we add color integration which notably improves
color-correctness at adjacent surfaces. Our novel formu-
lation of combined ICP with frame-to-keyframe photo-
metric error minimization further improves tracking re-
sults. Lastly, we introduce Sim(3) point-to-plane ICP
for refining pose priors in a multi-sensor scenario with
different scale factors.

1 Intoduction

Since its first appearance in KinectFusion [1], GPU accelerated
TSDF algorithms have become a de-facto standard in scene re-
construction from depth images, leveraging inexpensive sensors
and massive parallel processing on GPUs for good real-time
performance. By modeling the closest distance to the next sur-
face with a signed distance function (SDF), geometry can be
reconstructed by finding the zero-transition from positive (i.e.,
in front of the surface) to negative (i.e., behind the surface)
values. In practice, this function is obtained by fusing measure-
ments into a regular grid, the so called voxels, and interpolating
between them. The necessity to store both front- and backside
of the surface implies, however, that there is a minimum thick-
ness of objects that can be represented. Especially with thin
objects, integration of new measurements might interfere with
and contradict old data belonging to a different surface, leading
to a corrupted model. We have explored this issue and intro-
duced the concept of the Directional Truncated Signed Distance
Function (DTSDF) in our previous work [2]. The DTSDF1 uses
six TSDF volumes, one for each positive and negative coordinate
axis, to store surface sections with different orientations. We
proposed a method for fusing depth images into this data struc-
ture and for extracting meshes with a modified marching cubes
algorithm. The latter is, however, not applicable for real-time
tracking applications.

Instead, in this work we propose methods for rendering virtual
camera views, which allows to use the standard ICP algorithm
for real-time sensor motion tracking. Moreover, we introduce
color integration into the DTSDF, which helps preserving color
details of adjacent object surfaces, especially along sharp edges.
With these additions, the DTSDF becomes a true replacement
for the regular TSDF with only minor modifications to the
fusion and rendering algorithms. We showcase and evaluate our
method on well-known datasets and deduce, that the DTSDF

1Code available at https://github.com/AIS-Bonn/DirectionalTSDF

DTSDF

X POS

Z NEG

Combining

Rendering
TSDF

Depth
map

RGB
render

ICP
Tracking

Pose

Figure 1: The top part shows a cut view of the reconstructed
Stanford copyroom scene. The lower left half is the rendered
depth; upper right shows the directions involved in rendering in
different colors, mixed whenever multiple directions contributed.
The bottom part shows the pipeline for rendering and tracking
with the DTSDF.

has advantages in tracking certain types of sequences and is
better at preserving the overall map for later reuse.

Throughout the related work the ICP algorithm has been
implemented with some variations, some of which we discuss
in Section 5. Especially, we investigate the use of photometric
ICP with the TSDF and found, that there are different varia-
tions of frame-to-frame and frame-to-model photometric ICP,
but no frame-to-keyframe. We re-formulate the error function
accordingly and conduct a case study which indicates, that
frame-to-keyframe is favorable in most sequences.

As part of the PhenoRob Cluster of Excellence 2 we are
involved in a project to create 3D reconstructions of crops
captured by a robot on the field. One of the challenges is to
align the multiple point clouds from high-accuracy laser depth-
and RGB stereo sensors. Even given an offline pose prior of the
sensors, each scan requires pose refinement, due to the limited
rigidity of the robot’s chassis. The computed depth from the
stereo-pairs is also affected by geometric changes, so in Section 6
we showcase our method by extending the point-to-plane SE(3)
ICP algorithm to the Sim(3) Group, which jointly optimizes
translation, rotation and scale.

2 Related Work

In 3D reconstruction and SLAM feature-based, sparse, and dense
methods are distinguished. Our work belongs to the category of
dense methods that describe closed surfaces, separate objects,
and even free space [3].

Research focus in this field has shifted in recent years towards
learned representations. Occupancy networks [4] learn a binary
descriptor describing the occupancy of space, i.e., whether a
point lies inside an object or not. In DeepSDF by Park et

2Cluster of Excellence PhenoRob – Robotics and Phenotyping for Sus-
tainable Crop Production https://www.phenorob.de

https://github.com/AIS-Bonn/DirectionalTSDF
https://www.phenorob.de
behnke
Schreibmaschine
Robotics and Autonomous Systems, 162:104337, Elsevier, April 2023.https://doi.org/10.1016/j.robot.2022.104337

al. [5], a representation is learned, which like our work allows
querying the signed distance to the closest object for arbitrary
points in space. Neural Radiance Fields (NeRF) [6, 7] use deep
networks to regress density and color. While these approaches
show impressive results and use less memory to store the model
or even enable scene completion, they have some shortcomings.
The limited model size results in a lack of detail for large scenes.
Also training and inference times, though improving lately, are
still not applicable for real-time applications. Hence, the classic
TSDF fusion algorithms are still state-of-the-art in live mapping
scenarios.

Since its first occurrence, the TSDF fusion algorithm has
seen widespread use cases and is mostly used in its original
form without changes to the representation. There have been
attempts to augment it, though. Dong et al. [8] created a
hybrid data structure, combining the TSDF with probabilistic
surfels. Multiple overlapping TSDF sub-volumes are used in
pose graphs for large-scale SLAM, enabling re-aligning parts
of the map on loop closure detection for consistency [9, 10, 11].
This approach is similar to the DTSDF in the way it maintains
several overlapping representations, but does not fix the TSDF’s
inability to represent thin objects observed from opposite sides
within the same volume. While this may not be an issue for
some applications, object scans and walk-around type scenes
profit from this capability.

Zhang et al. [12] give an overview of current RGB-D SLAM
algorithms. The typical method for localizing the sensor pose
in the TSDF is frame-to-model geometric ICP [1], where the
current depth image is registered against a point cloud rendered
from the TSDF at the previous position. It uses the point-
to-plane metric and Gauss Newton for minimizing the sum
of squared errors. There are modified versions, such as the
extended ICP tracker [13], which uses the Huber-norm and has
advanced outlier detection. Nguyen et al. [14] model the depth
dependent noise of the RGB-D sensor in a weighted ICP scheme.
Xia et al. [15] use a simplified weight based on the inverse
quadratic depth. But the regular ICP is still most commonly
used.

Photometric ICP instead uses a registration loss that is based
on the per-pixel photometric error of RGB images [16]. This is
helpful for preventing drift in geometrically ambiguous scenes,
e.g., textured planar surfaces. To take advantage of both, color
and depth, combined ICP optimizes both error functions simul-
taneously [17, 9, 10, 18].

Common for most TSDF ICP implementations is, that they
register the current input depth- and color images against point
clouds and color images rendered from the TSDF (frame-to-
render). Some combined ICP variants use frame-to-render for
geometric- and frame-to-frame for photometric registration [10,
13]. Moreover, there is the direct volume matching line of
algorithms that directly performs registration within the SDF.
Point-to-SDF [19, 20, 21] and SDF-to-SDF [22] approaches
can be distinguished. Millane et al. [23] recently proposed a
method for extracting and matching local features directly on
the SDF. Model-less RGB-D SLAM systems like DVO [17] or
ORB-SLAM [24] often use keyframes combined with a pose
graph. Even without graph optimization, the use of keyframes
has an advantage over frame-to-frame tracking which tends to
accumulate drift faster. To our knowledge, this has not been
used in combination with the TSDF yet. Section 5.2 discusses
and compares the different option choices.

Further hybrid approaches utilize other tracking sources.
BundleFusion [18] is an advanced method that combines ICP
error minimization and visual SIFT features in a global bundle
adjustment, and then de- and reintegrates parts of scene to keep
the overall representation consistent.

The goal of this work is to make DTSDF usable as replacement

or supplement for the regular TSDF. To be able to profit from
established tracking methods without further modifications we

� introduce color fusion into the DTSDF,

� present an efficient method for generating rendered views
of the DTSDF,

� use these rendered views to track sensor motion with the
combined ICP algorithm,

� derive a formulation for combined ICP with keyframes for
the photometric error,

� Implement Sim(3) point-to-plane ICP for jointly optimizing
pose and scales in a multi-sensor setup.

3 Fusion and Weights

Formally, the signed distance function Φ : R3 −→ (d,wd, c, wc)
maps an arbitrary point in space to a tuple comprising signed
distance to the closest surface d, distance weight wd, RGB
color c and color weight wc, where the weights represent the
confidence of the integrated information. The surfaces of the
environment are determined by finding zero-transition of Φ, i.e.,
finding the subset in R3 where the signed distance turns from
positive (in front of surface) to negative (behind surface) values.
As reconstruction only requires information close to the actual
surface, the TSDF only maps points within a truncation band τ
around the actual surface. In practice, the TSDF is stored as a
evenly-spaced grid of voxels and the signed distance, color, and
weights in Φ for an arbitrary point in R3 are estimated by linear
interpolation between tuples stored in the neighboring voxels.

The directional TSDF [2] Φdir(p) = (ΦD(p))D∈Directions

extends this representation by mapping a point to mul-
tiple signed distance functions – one for each direction
{X+, X−, Y +, Y −, Z+, Z−} – corresponding to the positive and
negative coordinate axes v = {(1, 0, 0)ᵀ, · · · , (0, 0,−1)ᵀ}. Ob-
served depth points are assigned to those directions D that fulfill

arccos〈n,vD〉 < θ (1)

for depth normal n and angular threshold θ ∈ (π/4, π/2], i.e., the
angular difference between surface normal and direction vector
is smaller than threshold θ. The range for θ is chosen, such
that an overlap between neighboring directions is guaranteed
and every surface point matches at least one and at most three
directions.

Fusion is the process of integrating new observations into the
voxels as weighted cumulative moving average, where weights
denote the certainty of the added information. For every voxel
and associated depth point, a fusion weight is calculated. While
there is no definite weighting scheme, most implementations use
a combination of factors to compensate for measurement noise
and for uncertainty by down-weighting voxels behind the surface
[1, 25, 14]. In addition to these factors, the fusion weight in [2]
includes a direction factor ŵDdir =

〈
n,vD

〉
to blend surfaces

which are represented by multiple directions (c.f. Eq. (1)) over
the whole span of [0, π/2]. Then, all ŵDdir are explicitly compared
to threshold cos(θ) and fused, if smaller. Instead, we propose
the membership function

wDdir(n) = min

(
max

(
1− arccos〈n,vD〉

2θ − π
4

, 0

)
, 1

)
(2)

which has multiple advantages, as illustrated in Figure 2. Firstly,
for angles larger than θ the weight becomes zero, so explicit
thresholding becomes superfluous. In the exclusive area, where
the point belongs to exactly one direction, the weight is one.

2

angle

weight

1

π
2θ

cos θ

(a) Old direction weight from [2]

angle

weight

1

π
2θ

(b) New direction weight wDdir

Figure 2: Direction weight for angle arccos〈n,vD〉 between
surface normal n and two neighboring direction vectors (e.g.,

vX
+

and vY
+

) indicated by the blue and green lines, respectively.
The angular threshold θ determines the width of exclusive (solid)
and overlapping (hatched) areas of the two directions.

The blending area, where a point belongs to multiple directions,
now blends linearly on the full [0, 1] range, whereas the old
function had an effective range of [cos θ, 1]. Just like in the
previous work [2], the combined depth fusion weight for fusing
a point into direction D is

wd = wdepth · wangle · wDdir. (3)

The weight function parameters were omitted for improved
readability.

Color is fused analogous to distances, but with a different
weight. Again, there are different variants throughout literature.
Dryanovski et al. [26] use the same constant weight for depth
and color to save computation time. Whelan et al. [10] use
angle between depth normal and view ray to downweight steep
observation angles, which Bylow et al. [25] use in combination
with the depth weight. This factor is also included in our depth
weight. We argue that using the depth fusion weight for colors is
important, as the uncertainty is reflected in the choice of voxels
associated with pixels. Let x ∈ R3 be the voxel location and
p ∈ R3 the depth point with associated color that is fused into
the voxel. Then our color fusion weight is

wc = wd

(
1−min

(
1,
||p− x||

τ

))
, (4)

where wd is the depth fusion weight. The factor in parenthesis
reduces the confidence for voxels further away from the surface,
as multiple colors from various observations may blend together
here. For depth fusion we use the point-to-plane metric, which
mitigates this issue, but there is no equivalent for colors, as their
information is only accurate right at the surface.

Free space, that is space between camera and observed surface,
is not explicitly mapped to save memory. Nonetheless, due to
noise, sensor error, or dynamic objects it can happen that
spurious measurements are mapped in space, that is unoccupied
in reality, and it is important to remove these artifacts. When
the computed distance Eq. (5) is larger than the truncation
range τ , the voxel is located in free space and updated with a
SDF value of 1 and a constant weight. No directional weight is
used in this case, as the goal is to carve everything in free space.
Special care has to be taken at depth discontinuities: carving
can corrupt voxels of edges, because aliasing and small tracking
inaccuracies associate the voxel with a more distant surface.
Therefore, carving is only applied if there is no depth difference
of more than τ in a radius of two pixels to the associated depth
pixel. To free up memory, voxels that are erroneously allocated
but become free space by repeated carving can be recycled in
an asynchronous process, as has been done in [27].

For depth point p with normal n and truncation range τ ,
the signed distance to voxel position x is computed with the

point-to-plane metric

d =
1

τ
〈p− x,n〉. (5)

For convenience, the distance is normalized and clamped to
[−1, 1]. The point-to-plane metric helps keeping the SDF con-
sistent with varying observation angles as opposed to the point-
to-point metric [25].

While in our previous work [2] we explored ray casting sim-
ilarly to Klingensmith et al. [28] for fusing individual depth
pixels along the view- or normal direction, this method often
shows bad results with noisy real-world data. For tracking ap-
plications, voxel projection, like in the original KinectFusion,
has proven more robust. During voxel projection fusion, every
allocated voxel within the current view frustum is projected into
the current camera frame, associated with a depth (and color)
pixel, and updated with the respective values and weights.

4 DTSDF Raycast Rendering

Rendering real-time views of the model from arbitrary positions
is useful for visualization and also tracking. Instead of developing
specialized tracking methods for the DTSDF, our approach is
to render a map of depth points and use known and tested ICP-
based algorithms [1, 13, 17, 9] to register input depth images.

The rendering process involves casting a ray per pixel of
the virtual depth camera and extracting the iso-surface, i.e.,
the first transition from positive to negative SDF values. This
involves probing the TSDF along the ray at regular intervals,
until the distance turns negative and then multiple small steps,
determined by the interpolated SDF value, to minimize the
absolute distance value. Similar to the meshing presented in [2]
the question is: how to combine up to six SDF values from
partially overlapping directions?

By its mathematical definition, the signed distance function
can represent any given object. In other words, the six directions
could, given a fine enough resolution, be combined into a single,
conflict-free TSDF. But in practice, the combination is not
straight forward: overlapping free and occupied space from
different volumes has to be combined in accordance with the
orientation of mapped surfaces, while considering corner cases,
real-world noise and imperfections. Also, the practical use is
limited. Ray-cast rendering relies on the width of the truncation
range for finding zero-transitions, which for thin objects can be
easily missed. Instead, we made an important observation:

Lemma 1. For a DTSDF and a fixed camera position, a com-
bined conflict-free regular TSDF can be computed.

The basic intuition behind this lemma is, that surfaces the
camera perceives from the backside are not relevant from a
given position. Figure 3 visualizes this idea as a 2D example,
omitting the z-axis: a thin, L-shaped object is represented by
TSDFs for the directions X−, X+, Y − and Y + as depicted in
Figure 3a. For the given resolution, a complete representation by
a regular TSDF is not possible, as the negative distance for the
inside of the object cannot be stored. However, given a camera
pose A, a conflict-free combination is possible, as depicted in
Figure 3b. Only the blue surfaces are visible and negative SDF
values from backside surfaces are omitted. Positive values are
still important, as they prevent rendering surfaces in free space,
like the overhanging zero-transitions of individual directions.
In comparison, even doubling the resolution barely enables
visualization, as the inside of the object is very thin. This is
especially problematic, when the depth noise and truncation
range exceed the thickness.

3

X− X+

Y − Y +

(a) TSDFs of directions X+, X−, Y +, Y − for the scene. Blue indicates
surfaces, that fulfill wDdir(n) > 0 (c.f. Eq. (2)), i.e., surfaces that are represented
by direction D.

A

(b) combined TSDF from view point A. The blue line
indicates the surfaces that are visible from A.

Figure 3: 2D example of computing the combined TSDF. The black outline represents the mapped object, green/red gradients
correspond to positive/negative SDF values and the grid denotes the voxel grid.

The challenge is, for each point in p ∈ R3 to decide whether
it is free space (SDF > 0) or occupied (SDF ≤ 0) and which
directions to combine. We developed the following algorithm:

Algorithm 1 Compute Combined TSDF.

procedure CombinedTSDF(p, c)
r← p−c

||p−c|| . view ray
freespace← 0
if ∃D : ΦD(p) > 0 then

q← first zero-transition from p in direction −r in ΦD

if q = ∅ then
freespace← 1

else if 6 ∃D̃ : ΦD̃(q) < 0 and 〈nD̃(q),−r〉 > 0 then
freespace← 1

end if
end if
if freespace = 1 then return weighted sum of free space

directions
else return weighted sum of occupied space directions
end if

end procedure

The input values are the point to look up p and camera
position c. If there is a direction D, for which p lies in free space
it has to be checked, whether it conflicts with other directions
under consideration of the cameras position: if this free space
in D lies within the occupied space of a visible surface from
another direction D̃ and, moreover, the surface point q on the
ray between p and c in D̃ also lies within the occupied space, p
cannot be free space. Figure 4 illustrates explain this rule with a
positive and negative example, each. After determining whether
p is free space or occupied space, all congruent directions are
combined as weighted sum using the fused voxel weights.

There are some additional considerations for implementing
the algorithm, including

� ignoring information from points with invalid gradients
w.r.t. the direction vector, as this is not supposed to be
represented by that direction.

� If point p is close to a surface and one direction indicates
free space, one occupied space, the algorithm would only
consider free space, instead of a weighted combination, even
when both directions map the same surface.

X+

c

p1

p2

Y −

c

p1

p2

Figure 4: Visualization of view-point dependent free-space
detection. From the camera’s perspective point p1 is hidden
behind the surface. The zero-transition (circles) in X+ found by
ray-casting from p1 towards c lies inside the occupied space of
Y −, so there is no free space. The first zero-transition from p2,
on the other hand, lies within the free space of Y −, so it does
not conflict and p2 is marked as free space. The same holds, if
there is no zero transition for p2 (i.e., q = ∅).

� In reality there are many TSDF entries with low weight,
which can erroneously induce free space.

While in theory and on synthetic data fused from ground
truth poses the algorithm performs well, real-world usage is
very limited. Due to sensor noise and slight tracking errors,
fused data often leads false free space identification, resulting
in dents and holes in the rendered surfaces — especially near
corners. Instead, we propose a simple weighting scheme as
approximation, which performs better in practice:

For a point x ∈ R3 and direction D, let nD be the normalized
SDF gradient (∂ΦD/∂x, ∂ΦD/∂y, ∂ΦD/∂z)ᵀ at x, wDd the stored
distance weight and r the normalized view ray from camera
center to x. Then the combination weight for direction D is
defined as

wDcomb = wDdir(n
D) · 〈nD,−r〉 · wDd . (6)

The first factor in Eq. (6) ensures that only gradients that
actually comply with the direction they are stored in are used,
with according weights to blend between directions. The second
factor ensures that only directions with eligible surfaces are
used, which is the main reason for using the DTSDF. The

4

approximation is not perfect and certain constellations work
only under the premise, that all direction’s SDF weights are
similar. On the other hand, it has shown to be more robust in
practice than the algorithm proposed above.

These per-direction weights can be used to directly look up the
combined SDF value at any point in space as weighted sum, but
ray-casting becomes very slow, because many TSDF lookups and
memory reads have to be performed, especially for the gradient
computation. The massive parallel computation also results in
many cache misses, so the algorithm becomes memory bound.
As suggested by Lemma 1, a view-dependent combined TSDF
can be pre-computed by calculating the combined SDF for every
voxel in the view frustum. This combined TSDF can then be
used like a regular TSDF, but only for ray-casting from the pose
used during combination. As a bonus, this opens up yet another
class of tracking algorithms: the direct volume matching type,
that perform registration directly within the SDF [19, 20, 22].

To always use the most recent observations, all voxels that
received new information during fusion also need to be updated
in the combined TSDF. But for static scenes this is not al-
ways necessary. Instead, we use conditional combination. Only
meeting one of the following criteria triggers an update of the
combined TSDF:

framesSinceStart < 5, boot up (7)

framesSinceLastUpdate > 50, stale state (8)

‖pose− lastPose‖translation > 0.05 m, translation (9)

‖pose− lastPose‖angle > 0.05
π

2
. rotation (10)

The boot up condition Eq. (7) ensures, that during the first
frames where the map is still uncertain, always the most recent
data is used for tracking. Eq. (8) enforces regular updates in
case the camera does not move. Eq. (9, 10) are a relaxation of
Lemma 1, that states minor changes in the camera pose don’t
change the combined TSDF, similar to small-motion assump-
tion on which the data association for ICP is based [1]. We
experimentally chose the thresholds relatively small, so as not
to violate the underlying assumption. A more thorough investi-
gation on the impact of these limits would be interesting. On
the tested sequences, the update is triggered on average around
every third frame. By also selecting voxels slightly beyond the
camera frustum (±1/8 image size), motions of the camera will
not leave the scope of the combined TSDF before triggering
a recalculation. Voxels that receive data for the first time are
always directly added to the combined TSDF.

To prevent empty voxels in the absence of gradients in all
directions (e.g., at edges), the weights

wDnoGrad = wD · 〈vD,−r〉 (11)

are used instead.

5 ICP Tracking

The geometric Iterative Closest Point algorithm optimizes the
pose difference ∆T ∈ R4×4 between two point clouds, or in our
case a point cloud and a depth map. As introduced by Newcombe
et al. [1], the new depth frame is registered against a point cloud
rendered from the previous pose estimate, starting with an
estimate of ∆T = I4. This frame-to-render as compared to direct
frame-to-model registration might seem to be an unnecessary
intermediate step, but saves time on data lookups and the data
is often already available, if the algorithm is running live with a
visualization. The algorithm uses projective data association to
project each point from the depth frame at time t+ 1 into the
frame rendered from the estimated pose at time t according to

the current estimate of ∆T .

The rigid body transform ∆T is element of the Lie-group
SE(3). Optimization takes place in the accompanying Lie-
algebra se(3). The 6-vector ξ = (ν, ω) ∈ se(3) with translation
and rotation components ν, ω ∈ R3 is a minimal representa-
tion for the rigid body transform and the exponential map
exp : se(3) → SE(3) converts from algebra to group elements.
We adopt the notation from Blanco [29], who published a good
review on the SE(3), including the most important derivatives.
For improved readability, we omit conversions from and to
homogeneous coordinates and use group elements of SE(3) syn-
onymous with the respective transformation matrices ∈ R4×4.
Let pi ∈ R3 be the i-th point of the depth frame and qi, ni ∈ R3

the associated point and normal in the rendered scene. Then
the weighted geometric ICP formulation is

Egeom =
∑
i

wi〈qi − exp(ξ)∆Tpi | ni〉︸ ︷︷ ︸
=:ri

2. (12)

The error is minimized using the Gauss-Newton method, where
linearization around ξ = 0 allows to derive the Jacobian

Ji =
∂ri
∂ξ

∣∣∣∣
ξ=0

=
(
−ni −∆Tpi × ni

)ᵀ
∈ R6 (13)

We had some serious issues with the repeatability of our
experiments due atomic operations in the CUDA kernels: while
computing the Hessian matrices during ICP with a three-level
reduction pyramid, the resulting summands of the individual
blocks get atomically added together. Floating point addition
is, however, not commutative on computation hardware and
we’ve seen deviation of our tracking results in the order of
1%. Therefore we changed summation to a fully-deterministic
hierarchical scheme, with no noticeable increase in computation
time.

H = 2
∑
i

wi
∑
j,k

Ji,jJi,k ∈ R6×6 (14)

g = 2
∑
i

wiJ
ᵀ
i ri ∈ R6 (15)

The equation system
Hξ̂ = −g (16)

can be solved efficiently using Cholesky decomposition, yielding
solution ξ̂ that is used to update the current pose estimate for
the next iteration:

∆T ′ = exp(ξ̂)∆T. (17)

The algorithm iterates until the step size ‖ξ̂‖2 falls below a
certain threshold or a maximum number of iterations is reached.

5.1 Weighted ICP

The error formulation in Eq. (12) contains an optional per-pixel
weight factor wi. Surprisingly, while most TSDF implemen-
tations use some form of weighting during fusion, especially
regarding the increasing unreliability with larger depth (c.f.
Figure 5), only few implementations apply weights during track-
ing, when it is most crucial. Xia et al. [15] apply the following
weight function for each depth value z and valid depth range
z ∈ [zmin, zmax]:

wXia =

1
z2
− 1

z2max

1
z2min

− 1
z2max

. (18)

5

TUM fr3 long office SUN lounge

0mm ≥80mm

Figure 5: Depth noise examples, error increases from blue to
red.

Nguyen et al. [14] developed a more accurate, specific noise
model for the Kinect v1 camera by measuring a flat panel at
set distances and angles and fitting a function. They include
an additional factor if the angle θ between surface normal to
camera view ray exceeds 60°:

wNguyen =
σ(zmin, 0)

σ(z, θ)
, (19)

σ(z, θ) = 0.0012 + 0.0019 ∗ (z − 0.4)2

[
+

0.0001√
z

θ2(
π
2
− θ
)2
]
.

(20)

The summand in squared brackets is only applied for θ > 60◦.
It is easy to spot that, apart from the angular factors, both
weight functions use the inverse quadratic depth, but wNguyen

has additional shaping parameters. As visualized in Figure 6
for a depth range of [0.1, 6], the weight function wXia puts
very high emphasis on close observations, so everything closer
than 0.5 m far outweighs other measurements. This creates
problems in certain scenes, where objects sweep through the
frame at a very close distance, e.g., it leads to tracking failure
in the ICL deer walk sequence. With constant ICP weights,
noisy sequences often fail completely (for instance, the noise-
augmented sequences of the Zhou dataset, which have somewhat
overexaggerated noise levels compared to real-world sensors).
While of course desirable, it is impractical to calibrate a specific
noise model for every sensor. Therefore, we propose another
depth weight, which has similar characteristics to the model by
Nguyen et al., but does not rely on any magic numbers:

wICP =
1

(z + (1− zmin))2 . (21)

The function stays within [0, 1] and its asymptotic behavior still
considers distant points to a reasonable degree.

As proposed before by Prisacariu et al. [13], we also per-
formed experiments with the Huber loss as cost function, that
theoretically should make tracking more robust against outliers,
but found it to generally reduce tracking performance. Similar
findings were reported by Bellekens et al. [30]. Therefore, we
kept the standard quadratic error function.

5.2 Photometric ICP

Photometric ICP, that minimizes the photometric error between
pixels of two RGB frames to determine the relative pose differ-
ence, has been used in RGB-D tracking for some time [16] and
was successfully adapted to the TSDF as well [10, 9, 31].

Setting aside the discussion of how to incorporate RGB data
into tracking, a more fundamental question is which data to
actually compare. While geometric ICP relies on rendering a
point cloud from the TSDF, for photometric ICP there are two
directions throughout literature: frame-to-frame (f2f) track-

Figure 6: Visualization of depth-dependent ICP weights used
in [14] (wNguyen), [15] (wXia) and proposed (wICP) for depth
range [0.1, 6] m.

ing [10, 13], where the frame at time t is registered against the
frame at time t− 1, and frame-to-render (f2r) [31, 9, 15], where
the current frame is tracked against a point cloud rendered
from the TSDF. The authors of [19, 21] perform frame-to-model
tracking, but the same discussion as above holds. Frame-to-
render has the advantage of tracking against a consistent model,
thus it should be more robust against drift. On the other hand,
because of the way colors are fused into the TSDF (without
other augmentations), the contained photometric information is
subject to blur, lighting and exposure changes, error accumula-
tion etc. Moreover, the detail and sharpness directly correlate
to the voxel size. Therefore, it would be plausible, that with
increasing voxel sizes, the frame-to-render tracking deteriorates.
Frame-to-frame tracking, on the other hand, has the advantage
of retaining the resolution of the input images, which for mod-
ern sensors (e.g., Intel RealSense) usually exceeds the depth
image resolution. Whelan et al. [10] argue, that very distant
points that are useful for rotational constraining are usually
not represented in the TSDF and also the TSDF resolution
limits the effectiveness, though this argument only holds to a
certain extent, as data association is performed by projecting
depth points from the current image pair to the previous color
image, so it is still bounded by the maximum perceivable depth
of the sensor. A disadvantage, besides the obvious drift, is the
individual image quality which is subject to blur, rolling shutter,
and depth-color synchronization issues.

Interestingly, to our knowledge, frame-to-keyframe (f2kf)
tracking, where the current frame is registered against a se-
lected keyframe from the past, has not been applied in photo-
metric tracking with the TSDF yet. It has been successfully
implemented in model-less graph-based algorithms [17, 24, 18],
effectively reducing drift, so we want to investigate its use in
combination with the TSDF. We discuss this approach more in
Section 5.3.

Figure 7 displays a comparison of photometric error for the
different reference methods. All error images are rendered from
the same ground truth poses. Even given perfect poses from
a noise-less artificial dataset (ICL deer firefly), the f2f and
f2kf still show some error: a point from the current depth
frame gets back projected into the reference color frame for data
association and the photometric value is bilinearly interpolated,
as the coordinates are not integer. The f2kf images (third
column) have some missing pixels, as the warped keyframe is
partially outside the current view. The second row contains
footage from the real-world dataset TUM fr3. Especially for
larger voxel sizes where many colors, lighting conditions and
image exposures blend together, the rendered color image are
very blurred. Therefore, many pixels fall below the minimum
gradient threshold or above the maximum intensity threshold
that prevent using pixels with unreliable information during
optimization.

Only using photometric ICP does not provide reliable tracking,

6

RGB frame frame-to-frame frame-to-keyframe frame-to-render
10 mm

frame-to-render
40 mm

IC
L

d
ee

r
fi
re

fl
y

T
U

M
fr

3
st

ru
ct

u
re

te
x
tu

re
n
ea

r

Figure 7: Photometric error comparison for different reference image types for photometric ICP. Photometric error from blue
(no error) to red (intensity threshold).

so we use combined ICP as described in [10, 15], where the error
functions are combined as

E = Egeom + λEphoto. (22)

Most combined ICP approaches use a fixed weight between
photometric and geometric terms for the entire image pair,
though its role is not clearly stated in all works: it is required to
compensate the difference in metric between depth and intensity
errors. A reoccurring constant weight throughout literature is
0.1, though there are some discrepancies whether the weight
is squared and whether the kernel for gradient computation is
normalized [9, 10, 15]. We used 0.1 without squaring and, upon
inspection, the magnitudes of the geometric and photometric
Hessian matrices were in the same order.

In their implementation Whelan et al. [10] additionally use
the root mean square of the intensity difference to down-weight
pixels with larger errors, but didn’t find any good explanation.
We apply the same per-pixel depth weight as before, as the data
association of color pixels also depends on the quality of the
depth.

5.3 Keyframe Photometric ICP

For combined ICP, The frame-to-frame and frame-to-render
formulations use the fact that the model is rendered at the same
location as the RGB reference image frame. With frame-to-
keyframe ICP, the pose of the reference (key)frame at time tkf

differs from the pose of the rendered scene at time t. Let TRS

be the transform from rendered scene to reference frame and
∆T , just like above, the pose estimate from rendered scene to
frame t + 1 of the current ICP iteration (initialized with I4).
Then the error formulation becomes

Ekf
RGB =

∑
i

∥∥∥∥∥∥∥∥I
t+1 (Π(pi))− It

kf
(

Π
(
K · TRS exp(ξ)∆T · pi

))
︸ ︷︷ ︸

=:r(ξ,pi)

∥∥∥∥∥∥∥∥
2

. (23)

with camera matrix K, projective function Π (Eq. (28)). Lin-
earization around ξ = 0 gives

∂r

∂ξ
(ξ, pi) ≈ r(0, pi) +

∂r

∂ξ
(0, pi) · ξ (24)

with the derivative being

∂r

∂ξ
(0, pi)

= ∂Ikf

∂Π
· ∂Π
∂K
· ∂K
∂pi
· ∂T

RS exp(ξ)∆Tpi
∂ξ

(25)

=∇Ikf · ∂Π
∂a

∣∣
a=KTRS∆Tpi

·K ·R(TRS) [I3 | −(∆Tpi)
∧] . (26)

R(·) extracts the rotation matrix from the transform. The wedge
operator for a vector ν = (x, y, z)ᵀ ∈ R3 is defined as

ν∧ =

 0 −z y

z 0 −x
−y x 0

 . (27)

The derivative of the projection function is

∂Π

∂(x, y, z)ᵀ
=

∂

∂(x, y, z)ᵀ

[
x
z
y
z

]
=

[
1
z

0 x
z2

0 1
z
− y
z2

]
. (28)

For the f2f scenario, the same formulation can be used with
TRS = I4.

Keyframe Selection The choice of keyframes is the problem of
finding a compromise between good coverage of the scene and
using only as few views as necessary. Most approaches in the past
used heuristics of different complexity to find suitable keyframes.
The easiest way is to select a new keyframe at fixed intervals,
as it is done in ORB-SLAM [24]. Other common heuristics are
thresholding the change of angular and translational change [32,
33, 34]. Sucar et al. [35] compute a measure on how much of the
current depth image is not yet represented by the map. Some
methods also decide based on image quality, by selecting frames
with low jitter, camera velocity [36] or when the exposure time
changed too much [34]. The downside to these hand-crafted
metrics is, that they require tuning of multiple parameters,
possibly even depending on the scene. Entropy based selection
schemes use the covariance of the Hessian matrix of the Gauss-
Newton algorithm to determine when a new keyframe is due.
Kerl et al. [17] compare the negative entropy of the keyframe
and the current frame and if the ratio falls below a threshold,
select a new keyframe. Because the average negative entropy
levels can drift with the camera moving (especially they can also
increase), Kuo et al. [37] apply a running average filter to the
entropies for comparing. The main advantage of this method
is that this only leaves one threshold as tunable parameter. In
practice we found, though, that tuning these methods is not that

7

(a) Photoneo depth (b) DSLR RGB image

Figure 8: Example data from PhenoRob UGV dataset.

simple. High frequency fluctuations can cause fast change of
keyframes, but using a more conservative threshold often results
in keeping the keyframe for too long. Because of the running
average adapting to the overall trend of negative entropies, the
method proposed by Kuo et al. [37] would sometimes not select
any new keyframes at all.

In our experiments we want to investigate, whether using
keyframes can help mitigate drift and jitter. For comparability,
it is important that all runs use the same keyframes, as the
heuristics described above might select different keyframes based
on the differences in tracking. Therefore, we chose a very simple
scheme: every 10 frames a new keyframe is selected. All datasets
used in our experiments have an image rate of 20-30 Hz, so this
allows for large enough overlap, but is far enough apart to tell
if there is any advantage or disadvantage compared to frame-to-
frame tracking.

6 Multi-Sensor Sim3 Scale ICP

Part of our work in the PhenoRob Cluster of Excellence is to
reconstruct crops from data collected on the field by a UGV.
The UGV is an inverse U-shape constructed from aluminum
struts, driving over the crops and taking a snapshot with 14
Nikon DSLR cameras (five stereo pairs, four monocular cameras)
and five Photoneo PhoXi 3D scanners, producing high-accuracy
depth maps. The robot stops over a crop patch, takes a snapshot
with all sensors and then proceeds to the next patch. Figure 8
shows sample plant measurements.

One challenge is to fuse the data from different sensors, as
there are slight depth discrepancies. Moreover, in this scenario
the extrinsic parameters of the cameras change when the robot
moves, because of its size and limited rigidity. Also, the stereo-
pair baseline is used to convert disparity images to depth maps,
so the depth might vary, based on small changes in the camera
setup. To compensate for this while fusing the data, we extend
the standard SE(3) ICP tracking, which estimates translation
and rotation, to the similarity transform Sim(3), which jointly
optimizes pose and scale. We apply this method to refine the
depth scale and pose priors provided by the extrinsic calibration
of the multiple sensors.

For the point-to-point scale ICP least-squares optimization,
there exists a closed form solution of rotation, translation and
scale, first described by Horn [38]. This method is, however,
not applicable for partially similar point clouds. This problem
was addressed by Sahillioglu et al. [39]. TEASER [40] is an
algorithm that is highly robust to large amounts of outliers
and non-zero-mean Gaussian noise. Du et al. [41] proposed an
algorithm that optimizes the scales for each coordinate axis.

LSD-SLAM [32] performs Sim(3) photometric ICP to unify the
scale-uncertainty of monocular SLAM.

Chen and Medioni [42] state, that with unknown correspon-
dences ICP with the point-to-plane metric converges quicker
than point-to-point, so it is the more sensible choice in our case.
Note, that without one-to-one point correspondences this is an
ill-posed problem, as translation and scale optimization to a de-
gree modify the same error gradient (in z-direction) and because
of the projective data association, especially for environments
with little geometric diversity like corridors etc., for a majority
of points both parameters get optimized. In other words there
are multiple solutions with similar low residuals, but different
bias towards scale and translation optimization. In the extreme
case of, for instance, perceiving only a plain a wall, optimizing
either pose or scale will have identical results.

We use the same error formulations Eq. (12) and Eq. (23)
as before, only with ξ = (ν, ω, σ)ᵀ ∈ sim(3) instead. The addi-
tional 7th parameter represents the scale and the corresponding
exponential map is

exp : sim(3)→ Sim(3), (29)

(ν, ω, σ)ᵀ 7→

[
exp(σ) exp(ω) V ν

0 1

]
. (30)

For A,D ∈ Sim(3), p ∈ R3 we require the derivative of the
transposed point at ξ = 0:

∂

∂ξ
A⊕ exp(ξ)⊕D ⊕ p

∣∣∣∣
ξ=0

= R(A)
[
I3 −(D ⊕ p)∧ D ⊕ p

]
(31)

Eq. (31) can be directly inserted into Eq. (13) and Eq. (26) to
get the respective Jacobians. The rest of the algorithm works
analogously, with the minor difference, that the resulting Hessian
is 7× 7 instead of 6× 6.

For camera intrinsics (fx, fy, cx, cy), image coordinates x, y,
and depth value d, the depth reprojection function Eq. (32) is
linear in d, so scaling the depth is equivalent to scaling the point
in the camera frame:

Π−1(x, y, d) =

(
d
x− cx
fx

, d
y − cy
fy

, d

)T
. (32)

This implies that instead of changing the entire TSDF pipeline
to use Sim(3) poses, it is possible to just scale the input images
with the given factor and use the corresponding SE(3) poses
for everything else.

To test the behavior in a controlled manner, we transform the
fr3 long office sequence into an artificial five-sensor sequence, by
scaling batches of five consecutive depth images with constant

8

(a) Unbounded (b) Drift compensation by anchoring.

Figure 9: Comparison of unbounded- and anchored scale estimation for five sensors. Gray dotted lines are the true scale factors.
The colored lines correspond to the scale factors estimated for the individual sensors; the anchored sensor in the (b) is represented
by the blue line.

factors (1.0, 1.05, 0.975, 1.025, 0.95), such that the sequence con-
sists of a repeated cycle of five different sensors. Just like with
pose tracking, estimation of scale against the model accumu-
lates drift over time, as Figure 9a shows. Noticeably, the drift
happens in unison across the sensors. By anchoring the scale
of one of the sensors to a fixed value ŝ0 and compensating the
other estimates, the drift is effectively prevented and absolute
error of scale estimates is significantly lower, as can be seen
in Figure 9b. Let ŝi be the estimated scale of sensor i > 0 at
time t. Then the compensated scale is computed as

sti = exp(ŝi
t) exp(ŝ0)−1 = ŝi

t − ŝ0. (33)

Figure 8 depicts examples of typical data acquired by the
robot on the field. Note, how the Photoneo sensor yields many
missing measurements around the plants. These are caused by
occlusions and wind moving the plants during scans, as the
acquisition process takes 250 – 2500 ms. We use Kalibr [43]
to determine intrinsic and extrinsic parameters of the RGB
cameras and multiple ArUco markers on the side panels of the
robot to align RGB and the Photoneo sensors. For generating
depth from stereo, we have experimented with classical methods
like Semi-Global Matching [44] and the hierarchical deep stereo
matching method by Yang et al. [45], but have not yet generated
satisfying results, i.e., the depth error is too large to reliably
overlay multiple views. Instead, we use the multi-view stereo
(MVS) pipeline COLMAP [46, 47] to generate cross-matched
depth maps for all RGB cameras. Owing to the large overlap
of camera views, a depth map is generated for each of the 14
cameras. Figure 10 shows a set of all 14 depth images that form
a single scan.

While COLMAP already computes good poses, which don’t
require further refinement, MVS does not produce an absolute
metric scale, so we use the depth of the high-accuracy Photoneo
PhoXi sensors and register the MVS depth maps against them.
The initial guess of the optimization procedure takes as input the
scale estimate which is visually close to the Photoneo depth, and
use the extrinsics from our offline calibration process, including
the RGB sensor poses, so all sensors get registered. Figure 11
shows example reconstructions without alignment, with SE(3)
and with Sim(3) ICP pose refinement in comparison. Sim(3)
optimization produces the smallest error.

7 Implementation Details

Our implementation is based on InfiniTAM [48], with significant
modifications. For optimized memory usage, the voxel hashing
scheme introduced by Nießner et al. [31] is used. Voxels are
allocated in blocks of 8× 8× 8 only where required and a hash

map is used for constant-time access. Among other changes, the
implementation now uses the stdgpu library by Stotko [49] to
replace several components, especially the original hash map,
which could not allocate blocks with colliding hash values within
the same iteration.

Unlike the previous DTSDF implementation presented in [2]
where 6 separate TSDF volumes were used for the different
directions, here only a single TSDF is utilized. The hash index
is extended from (x, y, z) ∈ Z3 to (x, y, z,D) ∈ Z3 ×Directions.
This simplifies many functions and better utilizes the statically
allocated memory on the GPU: For most scenes the DTSDF has
an imbalance of direction-usage, which wastes a lot of memory
in the old scheme. Resizing the volumes is an option, but
requires additional overhead which can be simply avoided by
the aforementioned modification.

As a proof of concept, we use the pipeline depicted in Figure 1
with the geometric and combined ICP tracker described in
Section 5. We solve the optimization with the Levenberg-
Marquardt (LM) algorithm. The originally implemented LM
damping scheme, where the damping factor is multiplied/divided
by 10 whenever the error increases/decreases was replaced by
the scheme proposed by Madsen et al. [50], which promises bet-
ter convergence while avoiding premature convergence towards
local minima.

The time for computing the rendering TSDF is crucial for
real-time usage of our method. It can be significantly sped up
by taking advantage of the lookup positions being only integer
voxel positions. Hence, no trilinear interpolation is required and
the gradient can be computed with just looking up the SDF
values stored in the 6 neighboring voxels. We further managed
to halve the time by pre-caching the TSDF lookups for all voxels
of the same block in shared memory. At the very most, for every
direction there are the current block and its six neighboring
blocks, so a total of 48 are looked up at the beginning.

Image preprocessing includes a depth filter. Especially the
artificial datasets with noise augmentation contain an abundance
of noisy pixels around object boundaries. If there are not at
least two depth pixels in the direct neighborhood, that support
the depth value, the pixel is discarded. Depth normals are
approximated as cross product of neighboring pixels in x- and y
direction and afterwards processed by a bilateral filter.

8 Evaluation

The datasets used in our evaluation are the Stanford 3D Scene
Data (totempole, etc.) [51], ICL NUIM [52] (lr and office),
Zhou [53], the TUM RGB-D benchmark [54] (fr1 and fr3) as
well as (new) ICL [55] (deer and diamond). For improved
readability, we omit the dataset name where possible. Frame-to-

9

≤ 1.25 m ≥ 2.5 m

Figure 10: Example depth images generated by COLMAP.

(a) No pose refinement. (b) SE(3) pose refinement. (c) Sim(3) pose refinement.

Figure 11: PhenoRob UGV sugar beet reconstructions with and without pose refinement. Voxel size 2.5 mm.

10

frame, frame-to-keyframe, and frame-to-render are abbreviated
as f2f, f2kf and f2r, respectively. SotA refers to the state-of-
the-art regular TSDF.

Our evaluation compares and analyzes the impact of selected
parameters on the results of the algorithm, which will be clearly
stated for the experiments. All other parameters are consistent
throughout all runs and were chosen based on experiments and
values found in related work to give a good balance between
convergence reliability and tracking quality:

� depth outlier filter as described in Section 7,

� bilateral depth filter (σd = 5.0, σr = 0.025, radius = 5),

� bilateral normal filter (σd = 2.5, σr = 5.0, radius = 5),

� ICP settings

– termination condition minimum step size 10−6m,

– iteration upper bound 20 coarse / 50 fine,

– depth outliers threshold 0.05 m coarse / 0.005 m fine
and

– intensity outlier threshold 0.175 coarse / 0.05 fine.

8.1 ICP Tracking

For comparing the tracking performance, we evaluate the regular
TSDF (marked state-of-the-art, SotA) against the DTSDF by
running scenes from the aforementioned datasets and comparing
the tracking results against the provided ground-truth trajectory
using the relative pose error (RPE) with a window size of 30
frames (1 s). Note that this study does not try to compare
to complete SLAM algorithm with loop closure detection and
correction, but showcases the performance of the DTSDF relative
to the regular TSDF as an enhanced data structure. All settings
are equal across both modes and the tracker uses the default
geometric ICP algorithm.

As expected, tracking does benefit from the DTSDF in scenes,
where the camera observes thin structure from different angles.
Otherwise, there is no significant difference.

The first test on artificially generated sequences from the ICL
NUIM and Zhou datasets is reported in Table 1 for different
voxel sizes. Note that the noise-augmented sequences are being
used. The tracking performance is similar for most sequences,
which is likely due to the mapped environments, which are
convex rooms where the regular TSDF does not display its
issues. The Zhou office sequences, a scene of cluttered office
desks scanned from different directions, provides an environment
where the DTSDF actually has an advantage, which is reflected
in the RPE. Table 2 does the same comparison on the turntable-
like dataset used in the original DTSDF paper [2]. In those
sequences the camera orbits around a center point and only the
model is visible, which is challenging to track due to the details
and high percentage of thin structure w.r.t. the whole scene.
The RPE distinctly shows the strength of the DTSDF.

Table 3 shows the results with real-world scans from the TUM
dataset, with very similar results. Large planar surfaces with
sharp corners (structure notex sequences) seem to benefit from
the DTSDF. Here, the measurements have to be considered with
care, as the underlying ground-truth is not perfect.

8.2 Map Reusability

Overall, the tracking results show that the DTSDF generally
only has an advantage in sequences, where the camera observes
structure from different sides. In those sequences, the perfor-
mance is significantly better, especially with increasing voxel
size, as the problems of the regular TSDF increase as well. In

Table 1: Tracking RPE in mm, mean memory usage, and
per-frame runtime of synthetic ICL NUIM [52] and Zhou [53]
sequences for different voxel sizes.

voxel size 5 10 20

SotA DTSDF SotA DTSDF SotA DTSDF

lr kt0n 10.5 10.3 9.4 9.3 9.5 9.5

lr kt1n 9.5 9.5 9.9 9.6 9.7 9.4

lr kt2n 15.3 15.3 15.6 15.5 15.5 15.5

lr kt3n 15.6 11.7 29.1 14.9 16.8 87.4

office kt0n 9.7 9.7 9.7 9.7 9.7 9.8

office kt1n 9.5 9.5 9.5 9.5 9.5 9.5

office kt2n 15.4 15.5 15.6 16.0 15.4 15.4

office kt3n 11.0 10.9 11.3 10.9 11.2 11.0

Zhou lr1 1.5 0.8 1.3 1.1 2.4 2.2

Zhou lr2 0.8 0.7 1.1 1.0 2.3 2.0

Zhou office1 1.2 1.0 3.2 1.3 10.5 3.1

Zhou office2 1.0 0.8 3.6 1.4 14.8 2.4

∅ time [ms] 8.4 10.7 6.4 7.1 5.7 6.0

∅ mem [MB] 1350 1855 326 502 75 137

Table 2: Tracking RPE in mm, mean memory usage, and per-
frame runtime of synthetic sequences rendered from Stanford
3D models [2] for different voxel sizes.

voxel size 5 10 20

SotA DTSDF SotA DTSDF SotA DTSDF

armadillo 2.8 2.7 2.9 2.5 10.6 5.6

bunny 2.0 2.0 2.3 1.9 9.4 4.8

dragon 3.0 2.9 4.7 3.4 21.6 10.6

turbine
blade

10.4 6.7 16.9 10.1 84.8 13.5

∅ time [ms] 4.9 4.9 4.8 4.7 4.7 4.7

∅ mem [MB] 18 41 4 13 1 4

Table 3: Tracking RPE in mm, mean memory usage, and
per-frame runtime of TUM sequences [54] for different voxel
sizes.

voxel size 5 10 20

SotA DTSDF SotA DTSDF SotA DTSDF

desk1 62.9 59.5 63.7 58.0 66.6 60.6

long office 24.3 24.1 26.8 25.2 25.5 25.8

structure
notex far

12.1 12.0 12.2 12.1 12.1 12.0

structure
notex near

15.3 15.1 15.3 15.2 15.4 15.4

∅ time [ms] 7.0 10.3 5.9 6.6 5.6 5.9

∅ mem [MB] 670 1419 132 332 28 84

all other sequences the performance is very similar, which is also
due to the fact that the fusion process makes the locally visible
area compliant: given enough observations from the current
viewpoint, all conflicts in the representation will be evened out
due to the running average (unless the conflicting side has been
observed a long time, resulting in a high weight). In many
cases this does not become apparent during tracking, but for
the reusability of the overwritten parts of the completed map it
is important to test these effects. To this end, we propose the
geometric post-fusion per-frame error: after completing fusion
of the entire sequence, for every estimated pose, a depth map
is rendered again and compared to the corresponding input
depth image by computing the pixel-wise mean absolute error
(MAE). Figure 12 shows a side-by-side example of post-fusion
error images, where the regular TSDF clearly shows more er-
rors at corners and around thin structures. Figure 13 plots the
MAE and shows that although the tracking performance is very

11

regular TSDF DTSDF

0mm ≥40mm

Figure 12: Visualization of post-fusion error of frame 330 in
sequence Zhou office 2.

Figure 13: Post-fusion MAE (dot) and 95% confidence intervals
(bars) on example dataset TUM fr3 long office.

Table 4: Difference of photometric MAE between SotA and
DTSDF (in %, numbers smaller zero mean DTSDF is better) for
different voxel sizes averaged over all sequences in the datasets.

voxel size [mm]

dataset 5 10 20 30 40

Zhou 4.3 -4.4 -4.2 -4.0 -4.1

TUM fr1 -2.1 -0.7 -0.7 -0.7 -0.5

TUM fr3 -1.2 -1.3 -1.6 -1.8 -2.1

ICL NUIM -0.2 -2.3 -2.1 -2.3 -1.4

ICL -2.5 -2.3 -2.2 -2.0 -2.0

Table 5: MAE (in mm) for different voxel sizes and datasets.

dataset mode voxel size [mm]

5 10 20 30 40

SUN copyroom
SoTA 23.0 20.9 24.8 54.4 41.8

DTSDF 20.7 30.5 21.7 25.9 30.0

SUN lounge
SoTA 16.6 16.9 24.1 33.2 45.7

DTSDF 14.9 15.7 21.8 30.0 39.2

ICL NUIM
lr kt1n

SoTA 13.2 48.4 99.0 104.5 117.7

DTSDF 6.8 14.9 37.4 81.6 76.6

ICL NUIM
office kt3

SoTA 2.0 2.2 3.6 5.5 7.3

DTSDF 2.0 2.2 3.7 5.6 7.3

Zhou office2
SoTA 5.5 9.0 21.9 52.7 –

DTSDF 5.1 7.2 13.8 22.2 36.2

turbine blade
SoTA 2.6 4.9 13.5 25.0 34.8

DTSDF 2.3 3.1 5.7 10.5 17.2

TUM fr1 desk1
SoTA 26.7 23.9 25.9 31.9 39.3

DTSDF 25.2 22.3 24.6 29.2 36.0

TUM fr3
long office

SoTA 41.5 34.4 33.2 39.8 53.3

DTSDF 35.3 28.8 29.1 34.9 46.4

(a) regular TSDF (b) DTSDF

Figure 14: Qualitative comparison of regular TSDF and
DTSDF on turntable-style sequences. The lower left rectan-
gle highlights artifacts from data fused from the backside. The
upper right rectangle shows artifacts resulting from fusion con-
flicts between right- and front side.

similar, the DTSDF is better at retaining the map.

Table 5 lists the geometric post-fusion MAE of a selection of
sequences (a complete list can be found in the Appendix Table 8).
One can observe that in most cases there is not too much
difference, especially in concave rooms like the ICL sequences.
The effect usually only affects small parts of the model, like
a corner or a computer monitor. Consequently, for the mean
error over the whole image the effect is not that significant,
but visible nonetheless. Object-scanning type sequence with
the camera orbiting around objects generally seem to profit
from the DTSDF more (c.f. Figure 14). Decreasing the voxel
size certainly does mitigate some of these issues for the SotA,
but ultimately the effect highlighted by the lower left rectangle
remains for thin surfaces. Also, as Table 1, 3 show, halving the
voxel size instead of using the DTSDF will require more memory
and computation time.

Regarding the improvements of color fusion and rendering,
Figure 19 gives a good example the DTSDF’s advantage in color
separation. While in the regular TSDF (Figure 19a) the colors
blend because of fusion from two surfaces into the same voxels,
the DTSDF retains different colors across edges (Figure 19c).
Figure 19d shows which directions contribute to which rendered
pixel. To quantify these improvements, we compute the photo-
metric post-fusion per-frame MAE, analogue to the geometric
error. The results, averaged over the datasets, are presented
in Table 4. The effect is most visible at specific locations, but
even the averaged error improves.

8.3 Photometric ICP

In this subsection, we analyze the impact of photometric ICP
and especially compare the three reference modes f2f, f2kf and
f2r. Again, all comparisons use the RMSE RPE.

In Table 7 we analyze over all datasets, whether the DTSDF
or the regular TSDF has better tracking by means of a win-
loss-tie table. We use a 0.1% tie rate, so if the RPEs differ by
no more than 0.1% it’s considered a tie. The results clearly
show, that the DTSDF is the overall winner and in combination
with photometric tracking, the gap is even higher. In the Zhou
dataset, the DTSDF outperforms the SotA in most sequences.
Especially in the noisy sequences, the regular TSDF fails com-
pletely at larger voxel sizes. Some sequences also confirm our
hypothesis that the tracking performance of f2r degrades more
with increased voxel size than the other variants. In Figure 15,
the gap between f2r and the other modes increases with growing
voxel size.

12

Table 6: Comparison of ICP results of photometric modes f2f,
f2kf and f2r for different voxel sizes. The mode win column
shows how many of the individual sequences are dominated by
which mode. The rightmost three columns show the mean of
the RPE ratios between f2f, f2kf and f2r w.r.t. geometric
ICP (smaller is better).

voxel
size

[mm]
TSDF
mode

mode win
f2f–f2kf–f2r

mean
RPE(f2f)
RPE(geom)

mean
RPE(f2kf)
RPE(geom)

mean
RPE(f2r)
RPE(geom)

5
SotA 9 –14– 10 1.512 1.412 1.029

DTSDF 6 –14– 13 1.322 1.083 1.006

10
SotA 4 –16– 13 1.053 0.990 1.015

DTSDF 5 –18– 10 1.102 0.886 1.028

20
SotA 6 –16– 11 0.976 0.894 1.117

DTSDF 7 –19– 7 1.023 0.914 1.293

30
SotA 6 –17– 10 0.939 0.905 0.965

DTSDF 7 –17– 9 0.927 0.907 1.109

40
SotA 5 –17– 9 3 1.027 0.989 1.329

DTSDF 6 –21– 5 3 1.166 0.931 1.096

Table 7: RPE Win-loss-tie table for different datasets (format:
SotA–DTSDF–tie).

dataset

geometric
ICP

combined
ICP
f2f

combined
ICP
f2kf

combined
ICP
f2r

Zhou 1–19–0 1–19–0 1–18–0 4–16–0

TUM fr3 3–21–1 4–19–2 7–18–0 8–17–0

ICL NUIM 32–31–17 35–36–9 34–34–12 42–33–5

ICL 11–26–3 12–26–2 12–26–2 15–23–2

total 47–97–21 52–100–13 54–96–15 69–89–7

It is not straightforward to answer, which of the three ref-
erence methods is the definite winner, as the performance of
the overall system is rated, which depends on many factors and
small differences in one module can have a huge impact on the
overall trajectory. Table 6 gives, however, a good indication:
throughout all voxel sizes, the frame-to-keyframe method wins
in the majority of sequences. In terms of the mean improvement
over geometric ICP. Here, again, f2kf is the winner in most
cases. Note, how f2r on average actually decreases tracking
performance for voxel sizes larger than 5 mm, though individual
sequences do profit from it. This shows that frame-to-keyframe
offers good improvements over the other methods — even with
the simple selection scheme of every 10th frame. Frame-to-
frame is a good default choice, as it is often not far behind the
frame-to-keyframe tracking and, thus, no attention to keyframe
selection has to be paid. The drift typically experienced with
frame-to-frame tracking is not so prominent, likely because of
the combined ICP, i.e., the geometric frame-to-model track-
ing prevents excessive drift. Frame-to-render seems to be the
overall worst, especially at lower resolutions. Without proper
color equalization and lighting compensation the color inside
the TSDF becomes unusable for tracking, as can be observed in
Figure 7.

8.4 Runtime and Memory Consumption

All experiments were performed on an Intel i7-8700K with
3.70GHz and a GeForce RTX 3090. The CPU part of the code
runs entirely on a single core. By reducing the changes to
rendering the DTSDF while keeping the rest of the pipeline

3Tracking failed for some sequences at this resolution.

Figure 15: RPE of different tracking modes for sequence ICL
diamond walk.

left: SotA

right: DTSDF

Figure 16: Mean per-frame update time comparison between
state-of-the-art and DTSDF on SUN totempole sequence for
different voxels sizes. Conditional combination is activated.

original, the runtime only differs in allocation, fusion and render-
ing. Figure 16 breaks down and compares runtimes for different
voxels sizes. One can observe that the additional overhead is
quite small. Note that for this example conditional combination
was activated, and a rendering TSDF was computed for 35-40%
of the frames with the conditions specified in Eq. (7)-(10).

As expected, the memory usage of the DTSDF is higher, as
surfaces can overlap in up to three directions. In Figure 17 the
ratio of additional memory required by the DTSDF w.r.t. the
regular TSDF is displayed for ICL NUIM scenes. For smaller
voxels, the amount for extra memory is quite small. With
increasing voxel size, the ratio increases as blocks are allocated
in chunks of 8× 8× 8 voxels and more surfaces with different
orientations fall into the same block, though the actual number
of blocks is significantly smaller.

Figure 18 plots the memory ratio for various sequences of the
datasets fused with 5 mm voxel size. It is also noticeable, that
synthetic datasets (ICL, Zhou) use less memory than real ones.
This is probably noise-related, as the depth-noise augmented
ICL sequences also have a higher ratio, which suggests that with
a more conservative allocation scheme memory can be saved. At
the moment even for stray measurements blocks are allocated,
as long as they have a valid normal. As surfaces can be fused

13

Figure 17: Ratio of allocated memory for DTSDF w.r.t. regular
TSDF for different voxel sizes and scenes form the ICL NUIM
dataset [52].

(a) best case: floor/walls aligned with coordinate axes.

(b) worst case: floor/walls 45◦ to all axes.

Figure 18: Ratio of allocated memory for DTSDF w.r.t. regular
TSDF (red line) for various sequences of different datasets and
5 mm voxel size.

into up to three directions, determined by Eq. (2), an interesting
question is how the alignment of the map coordinate frame to the
scene affects memory usage. For this, we pre-computed initial
poses for each sequence by identifying the largest planes of the
sequence. In the best case scenario (Figure 18a), the coordinate
axes are parallel; in the worst case (Figure 18b), tilted 45◦ to the
identified planes. Noticeably, the alignment does have an effect,
but not very significant. This is, however, highly dependent on
the scenes and voxel sizes, because it induces only a one-time
cost. Automating this process at the initialization phase of
mapping is recommended.

Overall for the majority of scenes the DTSDF requires around
1.5 to 2 times as much memory as the regular TSDF.

9 Conclusion

In this work, we introduced the tools to use the DTSDF as a
drop-in replacement for regular TSDF for mapping, tracking,
and visualization applications. The ability to simply extract a
regular TSDF for a given pose enables using it for a variety of
tasks and with many algorithms that have been developed over
the years.

We have shown that the DTSDF has advantages over the
state-of-the-art for the majority of sequences, both qualitatively
and quantitatively. Moreover, with the post-fusion MAE metric
we showed that, while the regular TSDF is usable for local maps,
reusability and revisiting of mapped places becomes problematic,
if conflicting information from different surfaces corrupts the
model. With reasonable memory and computation overhead,
better results and a more consistent map can be obtained by
the proposed DTSDF method. Our investigation and derivation
of frame-to-keyframe photometric ICP has shown that it has
clear benefits over frame-to-frame and frame-to-render tracking.
Sim(3) pose refinement shows promising first results for the
crop reconstruction project.

Acknowledgments

This work has been partially funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under Ger-
many’s Excellence Strategy – EXC 2070 – 390732324 – Phe-
noRob.

Appendix

Table 8: MAE (in mm) of state-of-the-art and DTSDF com-
pared for different voxel sizes and datasets.

dataset mode voxel size [mm]

5 10 20 30 40

SUN burghers
SoTA 103.2 21.5 19.9 27.4 41.0

DTSDF – 22.2 18.3 24.3 33.9

SUN copyroom
SoTA 23.0 20.9 24.8 54.4 41.8

DTSDF 20.7 30.5 21.7 25.9 30.0

SUN cactusgarden
SoTA 28.8 27.2 37.5 52.8 69.9

DTSDF 29.8 29.1 39.7 50.9 59.5

SUN lounge
SoTA 16.6 16.9 24.1 33.2 45.7

DTSDF 14.9 15.7 21.8 30.0 39.2

SUN stonewall
SoTA 52.7 22.1 62.7 33.5 111.8

DTSDF 26.1 60.8 20.7 66.6 72.6

SUN totempole
SoTA 10.2 9.9 12.5 17.4 24.1

DTSDF 10.4 9.5 10.9 14.5 19.2

armadillo
SoTA 3.6 4.0 10.2 20.0 32.5

DTSDF 3.5 3.6 6.2 11.1 17.8

bunny
SoTA 2.1 2.5 8.4 17.7 27.5

DTSDF 1.9 2.2 4.7 9.1 14.6

dragon
SoTA 4.4 5.5 14.3 25.8 34.1

DTSDF 4.1 4.4 8.8 16.1 23.0

turbine blade
SoTA 2.6 4.9 13.5 25.0 34.8

DTSDF 2.3 3.1 5.7 10.5 17.2

Zhou lr1
SoTA 3.8 3.2 6.2 11.1 16.0

DTSDF 2.7 3.1 5.7 10.3 14.9

Zhou lr2
SoTA 3.8 4.6 9.0 14.3 19.8

DTSDF 3.6 4.3 7.8 13.0 18.3

Zhou office1
SoTA 4.4 6.5 18.3 56.4 58.5

DTSDF 4.2 5.4 10.1 17.4 26.2

Zhou office2
SoTA 5.5 9.0 21.9 52.7 –

DTSDF 5.1 7.2 13.8 22.2 36.2

ICL NUIM
lr kt0

SoTA 2.3 2.9 6.1 7.5 9.5

DTSDF 2.6 2.9 5.8 7.4 9.5

ICL NUIM
lr kt1

SoTA 2.1 2.1 2.8 4.6 6.2

DTSDF 2.1 2.1 2.7 4.4 6.0

ICL NUIM
lr kt2

SoTA 3.4 3.6 5.3 8.5 12.3

DTSDF 3.4 3.7 5.3 8.3 12.0

ICL NUIM
lr kt3

SoTA 71.9 31.5 41.5 234.4 25.5

DTSDF 89.8 83.1 69.0 152.7 124.0

ICL NUIM
lr kt0n

SoTA 6.6 7.1 8.5 12.1 13.0

DTSDF 6.3 6.5 8.4 10.1 11.8

ICL NUIM
lr kt1n

SoTA 13.2 48.4 99.0 104.5 117.7

DTSDF 6.8 14.9 37.4 81.6 76.6

ICL NUIM
lr kt2n

SoTA 22.1 47.4 87.6 94.9 95.7

DTSDF 15.8 21.2 44.5 50.4 72.9

ICL NUIM
lr kt3n

SoTA 24.3 79.9 134.5 53.2 –

DTSDF 20.3 20.0 138.9 97.2 62.2

ICL NUIM
office kt0

SoTA 2.4 2.6 3.7 5.7 6.9

DTSDF 2.4 2.6 3.6 5.6 6.9

ICL NUIM
office kt1

SoTA 1.1 1.2 1.8 2.6 4.0

DTSDF 1.1 1.2 1.8 2.6 4.1

ICL NUIM
office kt2

SoTA 2.6 42.3 3.9 5.9 70.6

DTSDF 2.7 2.7 3.7 5.8 61.6

ICL NUIM
office kt3n

SoTA 459.8 376.5 258.3 159.2 147.0

DTSDF 83.9 5.8 6.3 154.3 159.5

14

(a) TSDF (b) Input RGB (c) DTSDF (d) Contributing
directions

Figure 19: Color bleeding effect on Stanford totempole sequence.

Table 8: (Continued)

dataset mode voxel size [mm]

5 10 20 30 40

TUM fr3 long
office

SoTA 41.5 34.4 33.2 39.8 53.3

DTSDF 35.3 28.8 29.1 34.9 46.4

TUM fr3 structure
texture far

SoTA 35.9 13.5 12.4 15.1 17.8

DTSDF 21.9 13.7 11.5 12.7 14.1

TUM fr3 structure
texture near

SoTA 10.6 9.9 111.6 12.2 16.6

DTSDF 8.9 8.6 9.8 10.2 13.2

TUM fr3 structure
notexture far

SoTA 15.5 10.7 11.2 13.5 18.0

DTSDF 14.4 11.7 10.8 12.0 17.3

TUM fr3 structure
notexture near

SoTA 4.4 4.4 4.8 6.0 7.3

DTSDF 3.8 3.7 3.9 4.3 5.0

TUM fr1 desk1
SoTA 26.7 23.9 25.9 31.9 39.3

DTSDF 25.2 22.3 24.6 29.2 36.0

References

[1] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux,
D. Kim, A. J. Davison, P. Kohi, J. Shotton, S. Hodges,
A. Fitzgibbon, KinectFusion: Real-time dense surface map-
ping and tracking, in: IEEE and ACM International Sym-
posium on Mixed and Augmented Reality (ISMAR), 2011,
pp. 127–136.

[2] M. Splietker, S. Behnke, Directional TSDF: Modeling sur-
face orientation for coherent meshes, in: IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS), 2019, pp. 1727–1734.

[3] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, J. Nieto,
Voxblox: Incremental 3D Euclidean signed distance fields
for on-board MAV planning, in: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2017,
pp. 1366–1373.

[4] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin,
A. Geiger, Occupancy networks: Learning 3D reconstruc-
tion in function space, in: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019, pp. 4455–
4465.

[5] J. J. Park, P. Florence, J. Straub, R. Newcombe, S. Love-
grove, DeepSDF: Learning continuous signed distance func-
tions for shape representation, in: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2019,
pp. 165–174.

[6] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron,
R. Ramamoorthi, R. Ng, NeRF: Representing scenes as
neural radiance fields for view synthesis, Communications
of the ACM 65 (1) (2021) 99–106.

[7] D. Azinović, R. Martin-Brualla, D. B. Goldman, M. Nießner,
J. Thies, Neural RGB-D surface reconstruction, in: IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2022, pp. 6290–6301.

[8] W. Dong, Q. Wang, X. Wang, H. Zha, PSDF Fusion:
Probabilistic signed distance function for on-the-fly 3D data
fusion and scene reconstruction, in: European Conference
on Computer Vision (ECCV), 2018, pp. 701–717.

[9] P. Henry, D. Fox, A. Bhowmik, R. Mongia, Patch volumes:
Multiple fusion volumes for consistent RGB-D modeling,
in: RSS Workshop on RGB-D: Advanced reasoning with
depth cameras, Berlin, Germany, 2013.

[10] T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J. J.
Leonard, J. McDonald, Real-time large-scale dense RGB-D
SLAM with volumetric fusion, The International Journal
of Robotics Research 34 (4-5) (2015) 598–626.

[11] A. Millane, Z. Taylor, H. Oleynikova, J. Nieto, R. Siegwart,
C. Cadena, C-blox: A scalable and consistent TSDF-based

15

dense mapping approach, in: IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 2018,
pp. 995–1002.

[12] S. Zhang, L. Zheng, W. Tao, Survey and evaluation of
RGB-D SLAM, IEEE Access 9 (2021) 21367–21387.

[13] V. A. Prisacariu, O. Kähler, S. Golodetz, M. Sapienza,
T. Cavallari, P. H. Torr, D. W. Murray, InfiniTAM v3:
A framework for large-scale 3D reconstruction with loop
closure (2017). arXiv:1708.00783.

[14] C. V. Nguyen, S. Izadi, D. Lovell, Modeling Kinect sen-
sor noise for improved 3D reconstruction and tracking, in:
International Conference on 3D Imaging, Modeling, Pro-
cessing, Visualization and Transmission (3DIMPVT), 2012,
pp. 524–530.

[15] J. K. Zhengyu Xia, Joohee Kim, Real-time 3D reconstruc-
tion using a combination of point-based and volumetric
fusion, in: IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 2018, pp. 8449–8455.

[16] F. Steinbrücker, J. Sturm, D. Cremers, Real-time visual
odometry from dense RGB-D images, in: Proc. IEEE Int.
Conf. Computer Vision Workshops (ICCV Workshops),
2011, pp. 719–722.

[17] C. Kerl, J. Sturm, D. Cremers, Dense visual SLAM for
RGB-D cameras, in: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2013, pp. 2100–
2106.

[18] A. Dai, M. Nießner, M. Zollhöfer, S. Izadi, C. Theobalt,
BundleFusion: Real-time globally consistent 3D reconstruc-
tion using on-the-fly surface reintegration, ACM Transac-
tions on Graphics (TOG) 36 (3) (2017) 24.

[19] E. Bylow, C. Olsson, F. Kahl, Robust online 3D reconstruc-
tion combining a depth sensor and sparse feature points, in:
International Conference on Pattern Recognition (ICPR),
2016, pp. 3709–3714.

[20] D. R. Canelhas, T. Stoyanov, A. J. Lilienthal, SDF Tracker:
A parallel algorithm for on-line pose estimation and scene
reconstruction from depth images, in: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), 2013, pp. 3671–3676.

[21] E. Palazzolo, J. Behley, P. Lottes, P. Giguère, C. Stachniss,
ReFusion: 3D reconstruction in dynamic environments
for RGB-D cameras exploiting residuals, in: IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), 2019, pp. 7855–7862.

[22] M. Slavcheva, W. Kehl, N. Navab, S. Ilic, SDF-2-SDF
registration for real-time 3D reconstruction from RGB-D
data, International Journal of Computer Vision 126 (2018)
615–636.

[23] A. J. Millane, H. Oleynikova, C. Lanegger, J. Delmerico,
J. Nieto, R. Siegwart, M. Pollefeys, C. Cadena Lerma,
Freetures: Localization in signed distance function maps,
IEEE Robotics and Automation Letters.

[24] R. Mur-Artal, J. M. M. Montiel, J. D. Tardos, ORB-SLAM:
a versatile and accurate monocular SLAM system, IEEE
Transactions on Robotics 31 (5) (2015) 1147–1163.

[25] E. Bylow, J. Sturm, C. Kerl, F. Kahl, D. Cremers, Real-
time camera tracking and 3D reconstruction using signed
distance functions., in: Robotics: Science and Systems
(RSS), Vol. 2, 2013.

[26] I. Dryanovski, M. Klingensmith, S. S. Srinivasa, J. Xiao,
Large-scale, real-time 3D scene reconstruction on a mobile
device, Autonomous Robots 41 (2017) 1423–1445.

[27] W. Dong, J. Shi, W. Tang, X. Wang, H. Zha, An efficient
volumetric mesh representation for real-time scene recon-
struction using spatial hashing, in: IEEE International
Conference on Robotics and Automation (ICRA), 2018, pp.
6323–6330.

[28] M. Klingensmith, I. Dryanovski, S. Srinivasa, J. Xiao,
Chisel: Real time large scale 3D reconstruction onboard a
mobile device using spatially hashed signed distance fields.,
in: Robotics: Science and Systems (RSS), Vol. 4, 2015.

[29] J.-L. Blanco, A tutorial on SE(3) transformation param-
eterizations and on-manifold optimization, University of
Malaga, Tech. Rep 3 (2010) 6.

[30] B. Bellekens, V. Spruyt, R. Berkvens, M. Weyn, A survey
of rigid 3D pointcloud registration algorithms, in: Fourth
International Conference on Ambient Computing, Applica-
tions, Services and Technologies (AMBIENT), Rome, Italy,
2014, pp. 8–13.

[31] M. Nießner, M. Zollhöfer, S. Izadi, M. Stamminger, Real-
time 3D reconstruction at scale using voxel hashing, ACM
Transactions on Graphics (ToG) 32 (6) (2013) 169.

[32] J. Engel, T. Schöps, D. Cremers, LSD-SLAM: Large-scale
direct monocular SLAM, in: European Conference on Com-
puter Vision (ECCV), 2014, pp. 834–849.

[33] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, D. Scara-
muzza, SVO: Semidirect visual odometry for monocular
and multicamera systems, IEEE Transactions on Robotics
33 (2017) 249–265.

[34] J. Engel, V. Koltun, D. Cremers, Direct sparse odome-
try, IEEE Transactions on Pattern Analysis and Machine
Intelligence 40 (2018) 611–625.

[35] E. Sucar, S. Liu, J. Ortiz, A. Davison, iMAP: Implicit
mapping and positioning in real-time, in: IEEE Interna-
tional Conference on Computer Vision (ICCV), 2021, pp.
6229–6238.

[36] L. Yang, Q. Yan, Y. Fu, C. Xiao, Surface reconstruction via
fusing sparse-sequence of depth images, IEEE Transactions
on Visualization and Computer Graphics 24 (2) (2017)
1190–1203.

[37] J. Kuo, M. Muglikar, Z. Zhang, D. Scaramuzza, Redesigning
SLAM for arbitrary multi-camera systems, in: IEEE Inter-
national Conference on Robotics and Automation (ICRA),
2020, pp. 2116–2122.

[38] B. K. P. Horn, Closed-form solution of absolute orientation
using unit quaternions, J. Opt. Soc. Am. A 4 (4) (1987)
629–642.

[39] Y. Sahillioglu, L. Kavan, Scale-adaptive ICP, Graph. Model.
116 (2021) 101113.

[40] H. Yang, J. Shi, L. Carlone, TEASER: Fast and certifiable
point cloud registration, IEEE Transactions on Robotics
37 (2) (2021) 314–333.

16

http://arxiv.org/abs/1708.00783

[41] S. Du, N. Zheng, L. Xiong, S. Ying, J. Xue, Scaling iterative
closest point algorithm for registration of m–d point sets,
Journal of Visual Communication and Image Representa-
tion 21 (5-6) (2010) 442–452.

[42] Y. Chen, G. Medioni, Object modelling by registration of
multiple range images, Image and Vision Computing 10 (3)
(1992) 145–155.

[43] P. Furgale, J. Rehder, R. Siegwart, Unified temporal and
spatial calibration for multi-sensor systems, in: IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), 2013, pp. 1280–1286.

[44] H. Hirschmuller, Accurate and efficient stereo processing
by semi-global matching and mutual information, in: IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), Vol. 2, 2005, pp. 807–814.

[45] G. Yang, J. Manela, M. Happold, D. Ramanan, Hierarchical
deep stereo matching on high-resolution images, in: IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 5515–5524.

[46] J. L. Schönberger, J.-M. Frahm, Structure-from-motion
revisited, in: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016, pp. 4104–4113.

[47] J. L. Schönberger, E. Zheng, M. Pollefeys, J.-M. Frahm,
Pixelwise view selection for unstructured multi-view stereo,
in: European Conference on Computer Vision (ECCV),
2016, pp. 501–518.

[48] O. Kähler, V. Prisacariu, J. Valentin, D. Murray, Hierar-
chical voxel block hashing for efficient integration of depth
images, IEEE Robotics and Automation Letters 1 (1) (2015)
192–197.

[49] P. Stotko, stdgpu: Efficient STL-like data structures on the
GPU (2019). arXiv:1908.05936.

[50] K. Madsen, H. Nielsen, O. Tingleff, Methods for non-linear
least squares problems (2nd ed.) (01 2004).

[51] Q.-Y. Zhou, V. Koltun, Dense scene reconstruction with
points of interest, ACM Transactions on Graphics 32 (4)
(2013) 112.

[52] A. Handa, T. Whelan, J. McDonald, A. J. Davison, A
benchmark for RGB-D visual odometry, 3D reconstruction
and SLAM, in: IEEE International Conference on Robotics
and Automation (ICRA), 2014, pp. 1524–1531.

[53] S. Choi, Q.-Y. Zhou, V. Koltun, Robust reconstruction of
indoor scenes, in: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015, pp. 5556–5565.

[54] J. Sturm, N. Engelhard, F. Endres, W. Burgard, D. Cre-
mers, A benchmark for the evaluation of RGB-D SLAM
systems, in: IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 2012, pp. 573–580.

[55] S. Saeedi, E. D. Carvalho, W. Li, D. Tzoumanikas,
S. Leutenegger, P. H. Kelly, A. J. Davison, Characterizing
visual localization and mapping datasets, in: IEEE Inter-
national Conference on Robotics and Automation (ICRA),
2019, pp. 6699–6705.

17

http://arxiv.org/abs/1908.05936

	Intoduction
	Related Work
	Fusion and Weights
	DTSDF Raycast Rendering
	ICP Tracking
	Weighted ICP
	Photometric ICP
	Keyframe Photometric ICP

	Multi-Sensor Sim3 Scale ICP
	Implementation Details
	Evaluation
	ICP Tracking
	Map Reusability
	Photometric ICP
	Runtime and Memory Consumption

	Conclusion

