
YOLOPose V2: Understanding and Improving

Transformer-based 6D Pose Estimation

Arul Selvam Periyasamy, Arash Amini, Vladimir Tsaturyan, and Sven Behnke

Autonomous Intelligent Systems, University of Bonn, Germany
periyasa@ais.uni-bonn.de

Abstract. 6D object pose estimation is a crucial prerequisite for au-
tonomous robot manipulation applications. The state-of-the-art mod-
els for pose estimation are convolutional neural network (CNN)-based.
Lately, Transformers, an architecture originally proposed for natural lan-
guage processing, is achieving state-of-the-art results in many computer
vision tasks as well. Equipped with the multi-head self-attention mech-
anism, Transformers enable simple single-stage end-to-end architectures
for learning object detection and 6D object pose estimation jointly. In
this work, we propose YOLOPose (short form for You Only Look Once
Pose estimation), a Transformer-based multi-object 6D pose estimation
method based on keypoint regression and an improved variant of the
YOLOPose model. In contrast to the standard heatmaps for predicting
keypoints in an image, we directly regress the keypoints. Additionally, we
employ a learnable orientation estimation module to predict the orien-
tation from the keypoints. Along with a separate translation estimation
module, our model is end-to-end differentiable. Our method is suitable
for real-time applications and achieves results comparable to state-of-the-
art methods. We analyze the role of object queries in our architecture
and reveal that the object queries specialize in detecting objects in spe-
cific image regions. Furthermore, we quantify the accuracy trade-off of
using datasets of smaller sizes to train our model.

Autonomous robotic object manipulation in real-world scenarios depends on
high-quality 6D object pose estimation. Such object poses are also crucial in
many other applications like augmented reality, autonomous navigation, and in-
dustrial bin picking. In recent years, with the advent of convolutional neural
networks (CNNs), significant progress has been made to boost the performance
of object pose estimation methods. Due to the complex nature of the task, the
standard methods favor multi-stage approaches, i.e., feature extraction followed
by object detection and/or instance segmentation, target object crop extraction,
and, finally, 6D object pose estimation. In contrast, Carion et al. [8] introduced
DETR, a Transformer-based single-stage architecture for object detection. In
our previous work [1], we extended the DETR model with the T6D-Direct ar-
chitecture to perform multi-object 6D pose direct regression. Taking advantage
of the pleasingly parallel nature of the Transformer architecture, the T6D-Direct
model predicts 6D pose for all the objects in an image in one forward-pass. De-
spite the advantages of the architecture and its impressive performance, the

behnke
Schreibmaschine
Robotics and Autonomous Systems, vol. 168, article 104490, Elsevier, 2023.

overall 6D pose estimation accuracy of T6D-Direct, which directly regresses
translation and orientation components of the 6D object poses, is inferior to
state-of-the-art CNN-based methods, especially in rotation estimation. Instead
of directly regressing the translation and orientation components, the keypoint-
based methods predict the 2D pixel projection of 3D keypoints and use the
perspective-n-point (PnP) algorithm to recover the 6D pose. In this work, we
extend our T6D-Direct approach to utilize keypoints as 2D projected sparse cor-
respondences. Our proposed model performs keypoint direct regression instead
of the standard heatmaps for predicting the spatial position of the keypoints
in a given RGB image and uses a multi-layer perceptron (MLP) to learn the
orientation component of 6D object pose from the keypoints. Another indepen-
dent MLP serves as the translation direct estimator. In short, our contributions
include:

1. a Transformer-based real-time single-stage model for multi-object monocular
6D pose estimation using keypoint regression,

2. a learnable rotation estimation module to estimate object orientation from a
set of keypoints to develop an end-to-end differentiable architecture for pose
estimation, and

3. achieving results comparable to the state-of-the-art pose estimators on the
YCB-Video dataset as well as yielding the fastest inference time.

This article extends our conference paper [2] that received the Best Paper
Award at the 17th International Conference on Intelligent Autonomous Systems,
2021. we make the following additional contributions:

1. analyzing the role of object queries in the YOLOPose architecture,
2. improving the accuracy of the YOLOPose model by deriving new variants

with additional inputs to the pose estimation MLPs,
3. quantifying the robustness of the learned PnP module compared to the an-

alytical PnP algorithm, and
4. quantifying the accuracy trade-off of using datasets of smaller sizes to train

our model.

1 Related Work

1.1 RGB Object Pose Estimation

The recent significant progress in the task of 6D object pose estimation from
RGB images is driven—like for many computer vision tasks—by deep learning
methods. The current methods for object pose estimation from RGB images can
be broadly classified into three major categories, namely direct regression meth-
ods, keypoint-based methods, and refinement-based methods. Direct regression
methods formulate the task of pose estimation as a regression of continuous
translation and rotation components, whereas keypoint-based methods predict
the location of projection of some of the specific keypoints or the 3D coordinates

no object (Ø) Ø

Y
O
L
O
P
os
e

Set of
Predictions

Input
image

Prediction Groundtruth

Fig. 1. Proposed YOLOPose approach. Our model predicts a set with a fixed cardinal-
ity. Each element in the set corresponds to an object prediction and after predicting
all the objects in the given input image, the rest of the elements are padded with Ø
as no object predictions. The predicted and the ground-truth sets are matched using
bipartite matching and the model is trained to minimize the Hungarian loss between
the matched pairs. Our model is end-to-end differentiable.

of the visible pixels of an object in an image and use the PnP algorithm to re-
trieve the 6D pose from the estimated 2D-3D correspondences. Often, the PnP
algorithm is used in conjunction with RANSAC for improving the robustness of
the pose estimation.

Some examples of direct regression methods include [1, 41, 57, 59]. Keypoint-
based include [22, 23, 40, 44, 53]. One important detail to note regarding these
methods is that except for [1, 7, 23, 54] all the other methods use multi-staged
CNNs. The first stage performs object detection and/or semantic or instance
segmentation to detect the objects in the given RGB image. Using the object
detections from the first stage, a crop containing the target object is extracted.
In the second stage, these models predict the 6D pose of the target object. To en-
able end-to-end differentiability of the CNN models, these models employ region
of interest (ROI) pooling, anchor box proposal, or non-maximum suppression
(NMS) procedures [21, 45, 46]. In terms of the 6D pose prediction accuracy,
keypoint-based methods perform considerably better than the direct regression
methods [19], though this performance gap is shrinking [1].

The third category of pose estimation methods are the refinement-based
methods. These methods formulate the task of pose estimation as iterative pose
refinement, i.e., the target object is rendered according to the current pose esti-
mate, and a model is trained to estimate a pose update that minimizes the pose
error between the ground-truth and the current pose prediction. Refinement-
based methods [26, 30, 37, 42] achieve the highest pose prediction accuracy
among three categories [19]. They need, however, a good object pose initializa-
tion within the basin of attraction of the final pose estimate.

1.2 RGB-D Object Pose Estimation

Although we deal with the problem of RGB pose estimation in this work, it is
highly relevant to review the RGB-D methods as well. RGB-D deep learning
methods for pose estimation fuse visual features from the RGB input extracted
by a CNN model and geometric features from the point cloud or depth input.
The predominant methods for extracting point-wise geometric features from the
point cloud input include PointNet [43], PointNet++ [43], and Point Trans-
former [61]. Xu et al. [60] learned to estimate 3D bounding box corners by
fusing visual and geometric features. Wang et al. [56] learned dense point-wise
embeddings from which the pose parameters are regressed in an iterative pose
refinement procedure. He et al. [16] lifted the pixel-wise 2D keypoint offset
learning proposed by Peng et al. [40] for RGB images to 3D point clouds by
learning point-wise 3D keypoint offset and using a deep Hough voting network.
He et al. [15] jointly learned keypoint detection and instance segmentation and
estimated 6D pose from the predicted keypoint and segmentation using a least-
squares fitting scheme from multi-view RGB-D input. Overall, RGB-D methods
leverage the geometric features in the point cloud or depth input and achieve
better accuracy than RGB-only methods. Despite the advantages of the RGB-D
data, the RGB-D sensors have limitations in terms of resolution and frame rate.
Reflectance and transparency properties of the objects also pose challenges for
RGB-D sensors [25, 32, 35, 36]. Additionally, calibrating RGB and depth sen-
sors in large industrial settings is often time-consuming [3, 49, 50]. Moreover,
RGB methods are comparatively simpler and require less computational power
and processing time. This motivates us in focusing on monocular RGB pose
estimation.

1.3 Learned PnP

Given a set of 3D keypoints and their corresponding 2D projections, and the
camera intrinsics, the PnP algorithm is used to recover the 6D object pose. The
standard PnP algorithm [13] and its variant EPnP [28] are used in combina-
tion with RANSAC to improve the robustness against outliers. Both PnP and
RANSAC are not trivially differentiable. In order to realize an end-to-end differ-
entiable pipeline for the 6D object pose estimation, Wang et al. [57], and Hu et al.
[22] proposed a learning-based PnP module. Similarly, Li et al. [29] introduced
a learnable 3D Lifter module to estimate vehicle orientation. Recently, Chen
et al. [9] proposed to differentiate PnP using the implicit function theorem. Al-
though a generic differentiable PnP has many potentials, due to the overhead
incurred during training, we opt for a simple MLP that estimates the orientation
component given the 2D keypoints.

C
N
N

F
e
a
t
u
r
e
s

Backbone

Positional
Encoding

+

...

Layer 1

...

Layer 6

...

Encoder

Layer 1

...

Layer 6

Decoder

Object Queries

FFN

FFN

FFN

FFN

class, bbox,
keypoints,
t

class, bbox,
keypoints,
t

class, bbox,
keypoints,
t

Ø
object

Prediction Heads

RotEst

RotEst

RotEst

R

R

R

Fig. 2. YOLOPose architecture in detail. Given an RGB input image, we extract fea-
tures using the standard ResNet model. The extracted features are supplemented with
positional encoding and provided as input to the Transformer encoder. The encoder
module consists of six standard encoder layers with skip connections. The output of
the encoder module is provided to the decoder module along with N object queries.
The decoder module also consists of six standard decoder layers with skip connections
generating N output embeddings. The output embeddings are processed with FFNs to
generate a set of N elements in parallel. Each element in the set is a tuple consisting of
the bounding box, the class probability, the translation, and the interpolated bounding
box keypoints. A learnable rotation estimation module is employed to estimate object
orientation R from the predicted 2D keypoints.

Perspective

projection

A

B

C

D

a

b

c

d

Fig. 3. Interpolated bounding box points. Bounding box points are indicated with red
dots, and the interpolated points are indicated with blue crosses. The cross-ratio of
every four collinear points is preserved during perspective projection, e.g., the cross-
ratio of points A, B, C, and D remains the same in 3D and, after perspective projection,
in 2D.

2 Method

2.1 Multi-Object Keypoint Regression as Set Prediction

Object pose estimation is the task of estimating the position and the orientation
of an object with respect to the sensor coordinate frame. Occlusion, reflective
properties of objects, lighting effects, and camera noise in real-world settings
aggravate the complexity of the task. The early methods for pose estimation like
template matching [6, 17, 20] and keypoint-based [39, 48, 55] decoupled object
pose estimation from object detection and followed a multi-staged pipeline in
which 2D bounding boxes are extracted in the first stage and only the crop
containing the target object is processed in the second stage for pose estimation.
Most of the deep learning methods also followed the same multi-stage approach
for pose estimation. However, multi-stage pipelines suffer from two major issues.
Firstly, inaccuracies in the first stage impede the final pose estimation accuracy,
Secondly, complex modules like NMS, ROI, and anchor boxes are needed to
realize end-to-end differentiable pipelines. Multi-object pose estimation methods
alleviate the issues with multi-stage pipelines by detecting and localizing all
objects in a given image. Following DETR [8] and T6D-Direct [1], we formulate
multi-object pose estimation as a set prediction problem. Fig. 1 gives an overview
of our approach. Given an RGB input image, our model outputs a set of elements
with a fixed cardinality N . Each element in the set is a tuple containing the 2D
bounding boxes, the class probability, the translation, and the keypoints. 2D
bounding boxes are represented with the center coordinates, height, and width
proportional to the image size. The class probability is predicted using a softmax
function. To estimate translation t = [tx, ty, tz]

T ∈ R
3 as the coordinate of the

object origin in the camera coordinate system, we follow the method proposed
by PoseCNN [59] which decouples the estimation of t into directly regressing
the object’s distance from the camera tz and the 2D location of projected 3D
object’s centroid in the image plane [cx, cy]

T . Finally, having the intrinsic camera
matrix, we can recover tx and ty. The exact choice of the keypoints is discussed
in Section 2.3. The number of objects present in an image varies; therefore, to
enable output sets with fixed cardinality, we choose N to be larger than the
expected maximum number of objects in an image in the dataset and introduce
a no-object class Ø. This Ø class is analogous to the background class used
in semantic segmentation models. In addition to predicting the corresponding
classes for objects present in the image, our model is trained to predict Ø for
the rest of the elements in the set.

2.2 Model Architecture

The proposed YOLOPose architecture is shown in Fig. 2. The model consists of
a ResNet backbone followed by Transformer-based encoder-decoder module and
MLP prediction heads to predict a set of tuples described in Section 2.1. CNN
architectures have several inductive biases designed into them [10, 27]. These
strong biases enable CNNs to learn efficient local spatial features in a fixed

neighborhood defined by the receptive field to perform well on many computer
vision tasks. In contrast, Transformers, aided by the attention mechanism, are
suitable for learning spatial features over the entire image. This makes the Trans-
former architecture suitable for multi-object pose estimation. In this section, we
describe the individual components of the YOLOPose architecture.

Backbone Network We use a ResNet50 backbone for extracting features from
the given RGB image. For an image size of height H and width W, the backbone
network extracts 2048 low-resolution feature maps of size H/32×W/32. We then
use 1×1 convolution to reduce the 2048 feature dimensions to smaller d=256
dimensions. The standard Transformer models are designed to process vectors.
Hence, to enable processing the d×H/32×W/32 features, we vectorize them to
d×H

32
W
32 .

Encoder The Transformer encoder module consists of six encoder layers with
skip connections. Each layer performs multi-head self-attention of the input vec-
tors. Given pixel with embedding x of dimension d, the embedding is split into
h chunks, or “heads” and for each head i, the scaled dot-product attention is
computed as:

Attention(Q,K, V) = softmax(
QK⊤

√

d/h
)V,

where Q, K, and V are the query, key, and value matrices for the head i, respec-
tively, and are computed by linearly projecting x using projection parameter
matrices W q, W k, W v, respectively. The attention outputs of the heads are
concatenated and transformed linearly to compute MultiHead self-attention:

MultiHead(Q,K,V) = concat
i∈h

(Attention(Qi,Ki, Vi))W
O,

where WO ∈ R
d×d is also a projection parameter matrix, and concat denotes

concatenation along the embedding dimension. In contrast to the convolution
operation, which limits the receptive field to a small neighborhood, self-attention
enables a receptive field of the size of the whole image. Note that the convolution
operation can be cast as a special case of self-attention Cordonnier et al. [11].

Positional Encodings The multi-head self-attention operation is permutation-
invariant. Thus, the Transformer architecture ignores the order of the input
vectors. We employ the standard solution of supplementing the input vectors
with absolute positional encoding following Carion et al. [8] to provide the
Transformer model with spatial information of the pixels. We encode the pixel
coordinates as sine and cosine functions of different frequencies:

P.E.(pos,p) = sin(pos/10000
2p
d),

P.E.(pos,p+1) = cos(pos/10000
2p+1

d),

where pos is the pixel coordinate (either width or height), d is the embedding
dimension, and p is the index of the positional encoding. The positional em-
beddings are added to the backbone feature vectors before feeding them to the
Transformer encoder as input.

Decoder On the decoder side, we compute cross-attention between the encoder
output embeddings and N learnable embeddings, referred to as object queries, to
generate decoder output embeddings, where N is the cardinality of the predicted
set. The decoder consists of six decoder layers and the object queries are pro-
vided as input to each decoder layer. Unlike the fixed positional encoding used
in the encoder, the object queries are learned jointly with the original learn-
ing objective—joint object detection and pose estimation, in our case—from the
dataset. At the start of the training process, the object queries are initialized
randomly, and during inference, the object queries are fixed. In Section 5, we
investigate the role of object queries generating object predictions. The embed-
dings used in our model—both learned and fixed—are 256-dimensional vectors.

FFN From the N decoder output embeddings, we use feed-forward prediction
heads to generate a set of N output tuples independently. Each tuple consists of
the class probability, the bounding box, the keypoints, and the pose parameters.
Prediction heads are fully-connected three-layer MLPs with hidden dimension
256 and ReLU activation in each layer.

2.3 Keypoints Representation

An obvious choice for selecting 3D keypoints is the eight corners of the 3D
bounding box [38]. Peng et al. [40] instead used the Farthest Point Sampling
(FPS) algorithm to sample eight keypoints on the surface of the object meshes,
which are also spread out on the object to help the PnP algorithm find a more
stable solution. Li et al. [29] defined the 3D representation of an object as sparse
interpolated bounding boxes (IBBs), shown in Fig. 3, and exploited the property
of perspective projection that cross-ratio of every four collinear points in 3D (A,
B, C, and D as illustrated in Fig. 3) is preserved under perspective projection in
2D [14]. The cross-ratio consistency is enforced by an additional component in
the loss function that the model learns to minimize during training. We further
investigate these keypoints representations in Section 4 and present our results
in Table 4.

2.4 RotEst

The standard solution for the perspective geometry problem of recovering 6D
object/camera pose given 2D-3D correspondences and a calibrated camera is the
PnP algorithm. The minimum number of correspondences needed for employing
PnP is 4. However, the accuracy and the robustness of the estimated pose in-
crease with the number of correspondences. Moreover, PnP is used in conjecture

with RANSAC to increase the robustness. Although PnP is a standard and well-
understood solution, incorporating it in neural network pipelines introduces two
drawbacks. First, it is not trivially differentiable. Second, PnP combined with
RANSAC needs multiple iterations to generate highly accurate pose predictions.
These drawbacks hinder us in realizing end-to-end differentiable pipelines with a
single step forward pass for pose estimation. To this end, we introduce the RotEst
module. For each object, from the estimated pixel coordinates onto which the
32 keypoints (the eight corners of the 3D bounding box and the 24 intermediate
bounding box keypoints) are projected, the RotEst module predicts the object
orientation represented as the 6D continuous representation in SO(3) [62]. Fur-
thermore, we experimented with providing additional inputs to the FFNs. We
created three variants of the YOLOPose model: variants A, B, and C (shown
in Fig. 4). In variant A, in addition to the estimated IBB keypoints, we pro-
vide the output embedding of the object query to the FFNs. In variant B, IBB
keypoints, object query output embedding, and the canonical 3D bounding box
points (based on the predicted object class) are provided to the FFNs, whereas
in variant C, estimated IBB keypoints and class probabilities are fed as input
to FFNs. Note that the size of the embedding used in YOLOPose model is 256.
Thus, the number of parameters used in FFNs of the three variants is larger
than that of the YOLOPose model. We implement the RotEst module using six
fully connected layers with a hidden dimension 1024 and a dropout probability
of 0.5.

IBB Keypoints

Output
Embedding FFN

(A)

IBB Keypoints

Output
Embedding

Canonical
3D Points

FFN

(B)

IBB Keypoints

Class
Probabilities

FFN

(C)

Fig. 4. Variants of the YOLOPose model. All three variants are derived from the
YOLOPose model and differ in the inputs provided to the pose estimation FFNs.

2.5 Loss Function

Our model is trained to minimize the Hungarian loss between the predicted
and the ground-truth sets. Computing the Hungarian loss involves finding the
matching pairs in the two sets. We use bipartite matching [8, 24, 51] to find
the permutation of the predicted elements that minimize the matching cost.
Given the Ø class padded ground-truth set Y of cardinality N containing labels
y1, y2, ..., yN , the predicted set denoted by Ŷ, we search for the optimal permu-
tation σ̂ among the possible permutations σ ∈ SN that minimizes the matching

cost Lmatch. Formally,

σ̂ = argmin
σ∈SN

N
∑

i

Lmatch(yi, ŷσ(i)). (1)

Although each element of the set is a tuple containing four components,
bounding box, class probability, translation, and keypoints, we use only the
bounding box and the class probability components to define the matching cost
function. In practice, omitting the other components in the cost function defini-
tion does not hinder the model’s ability in learning to predict the keypoints and
keeps the computational cost of the matching process minimal.

Given the matching ground-truth and predicted sets Y and Ŷσ, respectively,
the Hungarian loss is computed as:

LHungarian(Y, Ŷσ) =

N
∑

i

[−logp̂σ̂(i)(ci) + ✶ci 6=ØLbox(bi, b̂σ̂(i))+

λkp✶ci 6=ØLkp(ki, k̂σ̂(i)) + λpose✶ci 6=ØLpose(Ri, ti, R̂σ̂(i), t̂σ̂(i))]. (2)

Class Probability Loss The class probability loss function is the standard
negative log-likelihood. Since we choose the cardinality of the set to be higher
than the expected maximum number of objects in an image, the Ø class appears
disproportionately often. Thus, we weigh the loss for the Ø class with a factor
of 0.1.

Bounding Box Loss The 2D bounding boxes are represented as (cx, cy, w, h)
where (cx, cy) are 2D pixel coordinates and w and h are object width and height,
respectively. To train the bounding box prediction head, We use a weighted
combination of the Generalized IoU (GIoU) [47] and ℓ1-loss with 2 and 10 factors,
respectively.

Lbox(bi, b̂σ(i)) = αLiou(bi, b̂σ(i)) + β||bi − b̂σ(i)||, (3)

Liou(bi, b̂σ(i)) = 1−

(

|bi ∩ b̂σ(i)|

|bi ∪ b̂σ(i)|
−

|B(bi, b̂σ(i)) \ bi ∪ b̂σ(i)|

|B(bi, b̂σ(i))|

)

, (4)

and B(bi, b̂σ(i)) is the largest box containing both the ground truth bi and the

prediction b̂σ(i).

Keypoint Loss Having the ground truth Ki and the model output K̂σ̂(i), the
keypoints loss can be represented as:

Lkp(Ki, K̂σ̂(i)) = γ||Ki − K̂σ̂(i)||1 + δLCR, (5)

where γ and δ are hyperparameters. The first part of the keypoints loss is the
ℓ1 loss, and for the second part, we employ the cross-ratio loss LCR defined in
Equation 6 to enforce the cross-ratio consistency in the keypoint loss as proposed
by Li et al. [29]. This loss is self-supervised by preserving the cross-ratio of each
line to be 4/3. The reason is that after the camera projection of the 3D bounding
box on the image plane, the cross-ratio of every four collinear points remains the
same.

LCR = Smoothℓ1(CR
2 −

||c− a||2||d− b||2

||c− b||2||d− a||2
), CR =

||C −A|| ||D −B||

||C −B|| ||D −A||
=

4

3
,

(6)
where CR2 is chosen since ||.||2 can be easily computed using vector inner prod-
uct. A, B, C, and D are four collinear points and their corresponding predicted
2D projections are a, b, c, and d, respectively.

Pose Loss We supervise the rotation R and the translation t individually via
employing PLoss and SLoss from [59] for rotation, and ℓ1 loss for translation.

Lpose(Ri, ti, R̂σ(i), t̂σ(i)) = Lrot(Ri, R̂σ(i)) + ||ti − t̂σ(i)||1, (7)

Lrot =















1
|Mi|

∑

x1∈Mi

min
x2∈Mi

||Rix1 − R̂σ(i)x2||1 if symmetric,

1
|Mi|

∑

x∈Mi

||Rix− R̂σ(i)x||1 otherwise,
(8)

where Mi indicates the set of 3D model points. Here, we subsample 1.5K points
from meshes provided with the dataset. Ri is the ground truth rotation, and ti
is the ground truth translation. R̂σ(i) and t̂σ(i) are the predicted rotation and
translation, respectively.

3 Evaluation

In this section, we evaluate the performance of our proposed YOLOPose model
and its variants and compare it with other state-of-the-art 6D pose estimation
methods.

3.1 Dataset

We use the challenging YCB-Video (YCB-V) [59] dataset to evaluate the perfor-
mance of our model. YCB-V provides bounding box, segmentation, and 6D pose
annotations for 133,936 RGB-D images. Since our model is RGB-based, we do
not use the provided depth information. The dataset is generated by capturing
video sequences of a random subset of objects from a total of 21 objects placed in
tabletop configuration. From the 92 video sequences, twelve are used for testing

Fig. 5. Qualitative results on YCB-V test set. Top row: The predicted IBB keypoints
overlaid on the input images. Bottom row: Ground truth and predicted object poses
are visualized as object contours in green and blue colors, respectively.

and 80 are used for training. The objects used exhibit varying geometric shapes,
reflectance properties, and symmetry. Thus, YCB-V is a challenging dataset for
benchmarking 6D object pose estimation methods. YCB-V also provides high-
quality meshes for all 21 objects. Mesh points from these objects are used in
computing the evaluation metrics that we describe in Section 3.2. Hodaň et al.
[19] provided a variant of YCB-V1 as part of the BOP challenge in which the cen-
ters of the 3D bounding boxes are aligned with the origin of the model coordinate
system and the ground-truth annotations are converted correspondingly. We use
the BOP variant of the YCB-V dataset. In addition to the YCB-V dataset im-
ages, we use the synthetic dataset provided by PoseCNN [59] for training our
model. Moreover, we initialize our model using the pre-trained weights on the
COCO dataset [33] for the task of object detection.

3.2 Metrics

Xiang et al. [59] proposed area under the curve (AUC) of ADD and ADD-S met-
rics for evaluating the accuracy of non-symmetric and symmetric objects, respec-
tively. Given the ground-truth 6D pose annotation with rotation and translation
components R and t, and the predicted rotation and translation components
R̂ and t̂, ADD metric is the average ℓ2 distance between the subsampled mesh
pointsM in the ground truth and the predicted pose. In contrast, the symmetry-
aware ADD-S metric is the average distance between the closest subsampled
mesh points M in the ground-truth and predicted pose. Following the standard
procedure proposed by Xiang et al. [59], we aggregate the results and report
the area under the threshold-accuracy curve for distance thresholds from zero
to 0.1m.

ADD =
1

|M|

∑

x∈M

‖(Rx+ t)− (R̂x+ t̂)‖, (9)

ADD-S =
1

|M|

∑

x1∈M

min
x2∈M

‖(Rx1 + t)− (R̂x2 + t̂)‖. (10)

1 https://bop.felk.cvut.cz/datasets/

The ADD and ADD-S metrics are combined into one metric by using ADD
for non-symmetric objects and ADD-S for symmetric objects. This combined
metric is denoted as ADD-(S).

3.3 Hyperparameters

The γ and δ hyperparameters in Lkp (Eq. (5)) are set to 1 and 10, respectively.
While computing the Hungarian loss, the pose loss component is weighted down
by a factor of 0.05. The cardinality of the predicted set N=20. The model takes
images of the size 640 × 480 as input and is trained using the AdamW opti-
mizer [34] with an initial learning rate of 10−4 for 150 epochs. Afterward, the
model is trained additionally for 50 epochs, with a reduced learning rate by a
factor of 0.1. The batch size is 32. Gradient clipping with a maximal gradient
norm of 0.1 is applied.

3.4 Results

Table 1. Comparison of the proposed keypoints-based method YOLOPose with the
state-of-the-art methods on YCB-V. The symmetric objects are denoted by *. The best
results are shown in bold.

Method
GDR-Net

[57]
YOLOPose

(Ours)
YOLOPose-A

(Ours)
DeepIM

[30]
YOLOPose-A

(Ours)

Metric
AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S

AUC of
ADD(-S)

AUC of
ADD-S
@0.1d

AUC of
ADD(-S)
@0.1d

master chef can 96.6 71.1 91.3 64.0 91.7 71.3 93.1 71.2 71.3 36.6
cracker box 84.9 63.5 86.8 77.9 92.0 83.3 91.0 83.6 83.3 71.1
sugar box 98.3 93.2 92.6 87.3 91.5 83.6 96.2 94.1 83.6 59.5
tomato soup can 96.1 88.9 90.5 77.8 87.8 72.9 92.4 86.1 72.9 29.8
mustard bottle 99.5 93.8 93.6 87.9 96.7 93.4 95.1 91.5 93.4 93.4
tuna fish can 95.1 85.1 94.3 74.4 94.9 70.5 96.1 87.7 70.5 17.4
pudding box 94.8 86.5 92.3 87.9 92.6 87.0 90.7 82.7 87.0 70.9
gelatin box 95.3 88.5 90.1 83.4 92.2 85.7 94.3 91.9 85.7 23.4
potted meat can 82.9 72.9 85.8 76.7 85.0 71.4 86.4 76.2 71.4 31.2
banana 96.0 85.2 95.0 88.2 95.8 90.0 91.3 81.2 90.0 83.1
pitcher base 98.8 94.3 93.6 88.5 95.2 90.8 94.6 90.1 90.8 90.1
bleach cleanser 94.4 80.5 85.3 73.0 83.1 70.8 90.3 81.2 70.8 62.9
bowl∗ 84.0 84.0 92.3 92.3 93.4 93.4 81.4 81.4 93.4 87.4
mug 96.9 87.6 84.9 69.6 95.5 90.0 91.3 81.4 90.0 71.0
power drill 91.9 78.7 92.6 86.1 92.5 85.2 92.3 85.5 85.2 73.6
wood block∗ 77.3 77.3 84.3 84.3 93.0 93.0 81.9 81.9 93.0 93.0
scissors 68.4 43.7 93.3 87.0 80.9 71.2 75.4 60.9 71.2 42.5
large marker 87.4 76.2 84.9 76.6 85.2 77.0 86.2 75.6 77.0 14.7
large clamp∗ 69.3 69.3 92.0 92.0 94.7 94.7 74.3 74.3 94.7 94.1
extra large clamp∗ 73.6 73.6 88.9 88.9 80.7 80.7 73.3 73.3 80.7 65.7
foam brick∗ 90.4 90.4 90.7 90.7 93.8 93.8 81.9 81.9 93.8 78.9

MEAN 89.1 80.2 90.1 82.6 91.2 83.3 88.1 81.9 83.3 61.4

Table 2. Pose estimation results on YCB-V.

Input Method ADD(-S)
AUC of
ADD-S

AUC of
ADD(-S)

Inference
Time

[ms/frame]

RGB

CosyPose† [26] - 89.8 84.5 395
PoseCNN [59] 21.3 75.9 61.3 -
GDR-Net [57] 49.1 89.1 80.2 65
YOLOPose (Ours) 65.0 90.1 82.6 17

YOLOPose-A (Ours) 69.0 91.2 83.3 22

RGB-D

PVNet3D [16] - 95.5 91.8 170
PVNet3D+ICP [16] - 96.1 92.3 190
FFB6D [59] - 96.6 92.7 75

FFB6D+ICP [59] - 97.0 93.7 95
† indicates the refinement-based method.

S
c
e
n
e

A
tt
e
n
ti
o
n

M
a
p
s

(a) (b) (c) (d)

0 0.2 0.4 0.6 0.8 1

Fig. 6. Top: Object detections predicted by bounding boxes in the given image. Bot-
tom: Decoder cross-attention maps for the object queries corresponding to the predic-
tions in the first row.

In this section, we present the quantitative and qualitative results of the
proposed method. We present exemplar qualitative results in Fig. 5. In Table 1,
we provide the quantitative per class area under the accuracy curve (AUC) of
the ADD-S and ADD(-S) metrics. Both YOLOPose and YOLOpose-A perform
well across all object categories and achieve higher AUC scores than the methods
in comparison. YOLOPose-A achieves an impressive AUC of ADD-S and ADD-
(S) score of 91.2 and 83.3, respectively, which is an improvement of 1.1 and
0.7 over the YOLOPose model. In terms of the individual objects, YOLOPose-A
performs significantly better than the mean on mustard bottle, bowl, large clamp,
and foam brick, while performing worse than the mean on master chef can, tuna
fish can, bleach cleanser, and scissors. Interestingly, our methods perform well
on identical large clamp and extra large clamp, whereas both the competing
methods perform poorly on these objects. Real-world robotic applications require
handling objects of different sizes and this necessitates highly accurate pose
estimates. The standard procedure of reporting the AUC of ADD-(S) and ADD-
S metrics with a fixed threshold of 0.1m does not take the object size into
account. To better reflect the performance of our method on smaller objects,
we present the AUC of ADD-(S) and ADD-S metric with a threshold of 10 %
of the object diameter. We denote this metric as AUC of ADD-(S) and ADD-
S @0.1d. The accuracy of the proposed method drops significantly for smaller
objects while using the object-specific threshold. In particular, the AUC of ADD-
(S)@0.1d score for tuna fish can, gelatin box, and large marker are less than 30.
This could be due to the fact that the Pose Loss discussed in Section 2.5 is
computed using the subsampled model points and smaller objects contribute
less to the overall loss. In Table 2, we also present a comparison of the ADD-
S and the mean AUC ADD-S and ADD-(S) scores of the predominant RGB as
well as RGB-D methods. Benefiting from the geometric features imparted by the
depth information, RGB-D methods outperform RGB-only methods. However,
RGB-only methods are catching up with the RGB-D methods fast [52].

The FFNs in our model generate the set predictions from the decoder output
embeddings, which are the result of cross-attention between the object queries
and the encoder output embeddings. Each encoder output embedding corre-
sponds to a specific image pixel. This allows us to investigate the pixels that
contribute the most to each object prediction. In Fig. 6, we visualize the decoder
cross-attention corresponding to four different object detections, where the at-
tended regions correspond to the object’s spatial position in the image very well.
Moreover, looking closely at the pixels with the highest attention score reveals
the object parts that contribute most to the object predictions. For example, in
Fig. 6(a), the tip and base of the drill contribute the most and in Fig. 6(d), the
spout and the handle pitcher base contribute the most. Note that in Fig. 6(a),
the base is severely occluded and the base barely visible. Despite being occluded,
the attention mechanism focuses on the base heavily, which demonstrates the
significance of the base in drill pose estimation.

In Table 3, we present a quantitative comparison of the YOLOPose variant
discussed in Section 2.4. Variant A performs the best among the variants. This

can be attributed to the additional object-specific information contained in the
output embedding.

Table 3. Quantative comparison of the YOLOPose variants.

Method
AUC of
ADD(-S)

AUC of
ADD-S

Parameters
×106

YOLOPose 82.6 90.1 48.6

Variant A 83.3 91.2 53.2
Variant B 82.8 91.0 53.4
Variant C 82.8 90.9 52.8

3.5 Inference Time Analysis

In terms of inference speed, one of the major advantages of our architecture
is that the feed-forward prediction networks (FFN) can be executed in parallel
for each object. Thus, irrespective of the number of objects in an image, our
model generates pose predictions in parallel. In Table 2, we present the inference
time results for 6D pose estimation. YOLOPose-A operates at 45 fps, whereas
YOLOpose operates at 59 fps, which is significantly better than the refinement-
based methods and the RGB-D methods.

4 Ablation Study

In contrast to the standard approach of predicting the 2D keypoints and using
a PnP solver—which is not trivially differentiable—to estimate the 6D object
pose, we use the learnable RotEst module to estimate the object orientation
from a set of predicted interpolated keypoints. In this section, we analyze the
effectiveness of our RotEst module and the choice of the keypoint representation.

4.1 Effectiveness of keypoints representations

We compare various keypoints representations, namely 3D bounding box key-
points (BB), random keypoints sampled using the FPS algorithm, and our rep-
resentation of choice, the interpolated bounding box keypoints (IBB). We use
the OpenCV implementation of the RANSAC-based EPnP algorithm with the
same parameters to recover the 6D object pose from the predicted keypoints.
Since EPnP does not contain any learnable components, this experiment serves
the goal of evaluating the ability of the YOLOPose model to estimate different
keypoint representations in isolation. YOLOPose is trained using only the ℓ1 loss
in the case of BB and FPS representations, whereas for the IBB representation,
ℓ1 is combined with the cross-ratio loss described in Section 2.5. Table 4 reports

object pose estimation performance for the different representations. When used
in conjecture with the EPnP solver, the FPS keypoints performed worse than
all other representations. The reason is that the locations of FPS keypoints are
less intuitive, making them more difficult to predict, especially for our proposed
model that needs to deal with all objects in the YCB-V dataset. In contrast,
the IBB keypoints representation yields the best performance. We conjecture
that as the cross-ratio loss based on the prior geometric knowledge preserves
the keypoints geometrically, this representation is the appropriate choice for our
method where a single model is trained for all objects.

4.2 Effectiveness of RotEst

Table 4. Ablation study on YCB-V.

Method ADD(-S)
AUC of
ADD(-S)

FPS + EPnP 31.4 56.9
handpicked + EPnP 31.5 55.7
IBB + EPnP 56.0 74.7

IBB + EPnP for R; head for t 63.9 82.3
IBB + heads for R and t 65.0 82.6

After deciding on the keypoint representation, we compare the performance
of the learnable feed-forward rotation and translation estimators against the
analytical EPnP algorithm. The factors that impact rotation and translation
components are different [31]. The rotation is highly affected by the object’s
appearance in a given image. In contrast, the translation is more vulnerable to
the size and the location of the object in the image. Therefore, we decide to
estimate rotation and translation separately. In Table 4, we report the quanti-
tative comparison of the different variants. One can observe that using only the
rotation from EPnP and directly regressing the translation improved the accu-
racy significantly. In general, RotEst performs slightly better than using EPnP
orientation and direct translation estimation. Furthermore, the RotEst module
and the translation estimators are straightforward MLPs and thus do not add
much execution time overhead. This enables YOLOPose to perform inference
in real-time. Moreover, to quantify the robustness of the RosEst module com-
pared to the EPnP algorithm against the inaccuracies in keypoint estimation.
We exclude the symmetric objects in the comparison. Figure 7, we present the
comparison between the AUC of ADD and ADDS scores achieved by using the
RotEst module and using the EPnP algorithm for recovering 6D pose from the
estimated IBB keypoints. We discretize the average ℓ2 pixel error in keypoint
point estimation into bins of size two and average the AUC scores for all predic-
tions corresponding to each bin. EPnP performs equally well in terms of both

2 4 6 8 10 12 14 16 18

50

60

70

80

90

100

Mean ℓ2 Keypoint Prediction Error [pixels]

A
U
C

o
f
A
D
D

&
A
D
D
-S

EPnP ADD EPnP ADD-S

RotEst ADD RotEst ADD-S

Fig. 7. Comparison of the pose estimation accuracy with respect to the keypoint esti-
mation accuracy between EPnP and RotEst. In the case of highly accurate keypoint
estimation, EPnP performs comparably to RotEst. However, the RotEst module is
more robust against inaccuracies in keypoint estimation. Overall, RosEst performs
better than EPnP.

the AUC of ADDS metrics compared to the RotEst module when the keypoint
estimation accuracy is high. In the case of large keypoint estimation errors, the
RotEst module demonstrates a significantly higher degree of robustness com-
pared to the EPnP algorithm.

4.3 Dataset Size-Accuracy Trade-off

Vision Transformer models match or outperform CNN models in many com-
puter vision tasks, but they require large datasets for pre-training [5, 12, 58].
Furthermore, obtaining large-scale 3D annotations are significantly harder than
2D annotations. Thus, the 3D datasets are supplemented with easy-to-acquire
synthetic datasets. The YOLOPose architecture consists of a CNN backbone
model for feature extraction and attention-based encoder-decoder module for
set prediction. Learning set prediction is significantly challenging due to the ad-
ditional overhead of finding the matching pairs between the ground-truth and
the predicted sets and results in a low convergence rate. To mitigate this issue,
we pre-train our model on the COCO dataset [33] for the task of object detection
formulated as set prediction. The COCO dataset comprises 328,000 images with
bounding annotations for 80 object categories. The COCO dataset pre-training
enables faster convergence while training on the YCB-V dataset. To quantify the
dataset size-accuracy trade-off in training our model for the task of joint object
detection and pose estimation formulated as set prediction, we train our model
with different subsets of the YCB-V dataset of varying sizes. As discussed in Sec-
tion 3.1, YCB-V consists of 92 video sequences. 80 of which are used for training
and the rest of them are used for testing. Additionally, Xiang et al. [59] provide
80,000 synthetic images for training as well. We created five different variants
of the training set by using only a subset of the 80 training sequences. The first
variant consists of only 16 video sequences and each subsequent variant consists
of 16 additional video sequences added to the previous variant progressively. All
five variants are supplemented with the complete set of synthetic images. We
train one YOLOPoseA model for each of the dataset variants and evaluate the
performance of the models on the test set consisting of twelve video sequences.
In Fig. 8, we present the AUC of ADD-S and ADD-(S) scores as well as the cardi-
nality error (CE), which is defined as the ℓ1 error between the cardinality of the
ground-truth and the predicted set. The model trained with the smallest training
set variant consisting of only 16 video sequences achieves an AUC of ADD-S and
ADD-(S) score of 83.5 and 75.4, respectively, whereas the model trained using
the complete training videos achieves an AUC of ADD-S and ADD-(S) score of
91.2 and 83.3, respectively. The difference between the models trained using the
smallest training set variant and the largest is even more significant in terms
of the cardinality error—0.23 compared to 0.04. This demonstrates the need for
large datasets with a wide range of scene configurations. Presented with smaller
datasets with less variability in scene configuration, the YOLOPose model not
only performs poorly in terms of pose estimation accuracy but also in terms of
object detection accuracy.

16 32 48 64 80
0

0.2

0.4

0.6

0.8

1

0.84
0.87 0.87

0.89 0.91

0.75
0.79 0.79 0.80

0.83

0.23

0.18

0.12

0.07
0.04

Training Video Sequences

A
U
C

&
C
a
rd

in
a
li
ty

E
rr
o
r

AUC of ADD-S AUC of ADD-(S)

Cardinality Error

Fig. 8. Comparison of pose estimation and object detection accuracy using a different
number of video sequences for training. The AUC scores are normalized to the range
[0, 1].

(a) (b) (c) (d)

Fig. 9. Typical failure cases for the YOLOPose model. The pose estimation accuracy
of our approach is hampered by occlusion. Ground truth and predicted object poses
are visualized as object contours in green and blue colors, respectively.

CLS Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

1 0.00 0.05 0.00 0.00 0.12 0.03 0.00 0.00 0.00 0.00 0.00 0.07 0.15 0.00 0.00 0.00 0.00 0.33 0.22 0.83

2 0.00 0.00 0.30 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.18 0.00 0.00 0.00 0.00

3 0.21 0.00 0.00 0.00 0.05 0.07 1.00 0.03 0.00 0.00 0.03 0.10 0.07 0.28 0.00 0.12 0.00 0.00 0.07 0.00

4 0.00 0.15 0.00 0.00 0.55 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.16 0.02 0.00 0.00 0.17 0.16 0.15

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.10 0.12 0.00 0.00 0.06 0.00 0.10 0.01 0.00

6 0.27 0.00 0.00 0.00 0.17 0.02 0.00 0.08 0.00 0.00 0.00 0.01 0.16 0.16 0.00 0.03 0.00 0.00 0.00 0.00

7 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.28 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8 0.16 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00

9 0.00 0.44 0.08 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.11 0.00 0.22 0.03 0.00 0.00

10 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

11 0.00 0.00 0.10 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.28 0.00 0.02 0.00 0.24 0.13 0.00 0.00 0.00 0.00

12 0.00 0.28 0.30 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.01 0.00 0.04 0.00 0.12 0.33 0.00 0.00 0.06 0.00

13 0.06 0.00 0.01 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.01 0.01 0.11 0.00 0.00 0.00 0.13 0.00 0.00

14 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.05 0.00 0.00 0.01 0.14 0.00 0.00 0.24 0.00

15 0.00 0.00 0.04 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.66 0.00 0.04 0.00 0.08 0.01 0.00 0.06 0.00 0.00

16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.33 0.13 0.00 0.00

17 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

18 0.05 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.11 0.00 0.00 0.44 0.01 0.23 0.00

19 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.34 0.02 0.01 0.00 0.00 0.01 0.00 0.03

20 0.00 0.07 0.09 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.12 0.10 0.00 0.00 0.00 0.00 0.00

21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00

0 0.2 0.4 0.6 0.8 1

Fig. 10. Correlation between object queries and the detected object classes. Except
for queries 7 and 20, the correlation is weak.

Patch Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

1 0.00

2 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

4 0.00

5 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 0.00 0.44 0.26 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.00 0.93 0.00 0.22 0.00 0.02 0.00

7 0.00 0.01 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.03 0.00 0.00 0.63 0.11 0.29 0.00 0.15

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.11 0.00 0.00 0.15 0.00 0.00 0.00 0.05

9 0.00 0.01 0.00 0.00 0.00 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.01 0.00

10 0.12 0.53 0.01 0.00 0.00 0.53 1.00 0.00 0.00 0.00 0.22 0.42 0.00 0.44 0.05 0.00 0.56 0.05 0.95 0.00

11 0.21 0.00 0.01 0.00 0.17 0.00 0.00 0.71 0.00 0.00 0.41 0.56 0.37 0.00 0.00 0.11 0.11 0.66 0.01 0.45

12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.03 0.00 0.45 0.00 0.00 0.10 0.00 0.00 0.00 0.35

13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00

14 0.17 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.44 0.00 0.00 0.00 0.00 0.01 0.00

15 0.50 0.00 0.00 0.00 0.62 0.00 0.00 0.26 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

16 0.00 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0 0.2 0.4 0.6 0.8 1

Fig. 11. Correlation between object queries and the image patch in which the object
is detected. The images are divided into 4×4 patches. Compared to the correlation
between object queries and the detected object classes shown in Fig. 10, the correlation
between object queries and image patches is stronger.

Fig. 12. Visualization of the center of the bounding boxes predicted by an object
query. Black dots represent all the spatial positions of the ground-truth bounding
boxes normalized to the image size present in the test dataset. Red dots represent the
bounding boxes predicted by an object query. Object queries specialize in detecting
objects in specific regions of the image.

5 Understanding Object Queries

To understand the role of the learned object queries in the YOLOPose architec-
ture, we analyzed the correlation between the object queries and the detected
object class ids as well as the object bounding boxes. Since we use only 20 ob-
ject queries in the YOLOPose architecture—compared to 100 in the DETR [8]
architecture—we can investigate the object queries individually in detail. To this
end, we compute the correlation between object queries and class ids, and image
patches that form a 4×4 grid. In Fig. 10, we visualize the correlation between the
object queries and class ids. Except for queries 7 and 20, the correction is weak.
In contrast, the correlation between the object queries and the image patch of
the detected object is stronger (see Fig. 11). Note that queries 4, 9, and 10 do not
correspond to any objects. This is the case only for the test dataset. In the case
of the training dataset, all the object queries correspond to object detections.
Moreover, we visualized the spatial location of the center of the bounding boxes
predicted by object queries. In Fig. 12, we show exemplar visualizations. The
visualizations also reveal that the object queries specialize in object detection in
specific regions of the image.

6 Limitations

As shown in Table 1, and in Table 2, YOLOPose achieves pose estimation ac-
curacy comparable to the state-of-the-art methods. Despite the impressive ac-
curacy, occlusion remains a big challenge. In Fig. 9, we show examples of low-
accuracy pose predictions—particularly in the case of partially-occluded objects.
One of the commonly observed failure cases is the bowl object often predicted
facing upwards even though bowl is placed downwards (See Fig. 9a). This is due
to the limitation of the symmetry-aware SLoss (Eq. (8)). The SLoss is defined as
the ℓ2 distance between the closest model points of the object in the predicted
and the ground truth poses. For some objects—bowl, for example—the 180° flip
error is not penalized enough during training.

In terms of the dataset needed for training the YOLOPose model, since we
formulate the task of joint object detection and 6D pose estimation as a set
prediction problem, our approach needs pose annotation for all objects in the
scene. Some of the commonly used datasets for training and evaluating pose
estimation models like Linemod-Occluded [4] and Linemod [18] that provide
pose annotations for just one object per scene in the training set cannot be used
for training the YOLOPose model.

7 Discussion & Conclusion

We presented YOLOPose, a Transformer-based single-stage multi-object pose es-
timation method using keypoint regression. Our model jointly estimates bound-
ing boxes, class labels, translation vectors, and pixel coordinates of 3D keypoints
for all objects in the given input image. Employing the learnable RotEst module

to estimate object orientation from the predicted keypoint coordinates enabled
the model to be end-to-end differentiable. We reported results comparable to
the state-of-the-art approaches on the widely-used YCB-Video dataset and our
model is real-time capable. Moreover, we presented an improved variant of the
YOLOPose model in which the pose estimation FFNs input additional query
output embeddings to generate improved pose estimates. Furthermore, we pre-
sented results on the role of object queries in the YOLOPose model. Based on the
correlation matrix, we conclude that the object queries specialize in detecting
objects in specific spatial locations.

8 Acknowledgment

This work has been funded by the German Ministry of Education and Research
(BMBF), grant no. 01IS21080, project “Learn2Grasp: Learning Human-like In-
teractive Grasping based on Visual and Haptic Feedback”.

Bibliography

[1] Amini, A., Periyasamy, A.S., Behnke, S.: T6D-Direct: Transformers for
multi-object 6D object pose estimation. In: German Conference on Pattern
Recognition (GCPR) (2021)

[2] Amini, A., Periyasamy, A.S., Behnke, S.: YOLOPose: Transformer-based
multi-object 6D pose estimation using keypoint regression. In: International
Conference on Intelligent Autonomous Systems (IAS) (2022)

[3] Basso, F., Menegatti, E., Pretto, A.: Robust intrinsic and extrinsic calibra-
tion of RGB-D cameras. Transactions on Robotics (T-RO) 34(5), 1315–1332
(2018)

[4] Brachmann, E.: 6D Object Pose Estimation using 3D Object Coordinates
[Data] (2020), doi:10.11588/data/V4MUMX, URL https://doi.org/10.

11588/data/V4MUMX

[5] Cao, Y.H., Yu, H., Wu, J.: Training vision transformers with only 2040
images. In: European Conference on Computer Vision (ECCV), pp. 220–
237 (2022)

[6] Cao, Z., Sheikh, Y., Banerjee, N.K.: Real-time scalable 6DOF pose estima-
tion for textureless objects. In: IEEE International Conference on Robotics
and Automation (ICRA), pp. 2441–2448 (2016)

[7] Capellen, C., Schwarz, M., Behnke, S.: ConvPoseCNN: dense convolutional
6D object pose estimation. 15th International Conference on Computer Vi-
sion Theory and Applications (VISAPP) pp. 13909–13915 (2019)

[8] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko,
S.: End-to-end object detection with transformers. In: European Conference
on Computer Vision (ECCV), pp. 213–229 (2020)

[9] Chen, B., Parra, A., Cao, J., Li, N., Chin, T.J.: End-to-end learnable geo-
metric vision by backpropagating PnP optimization. In: IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 8100–8109
(2020)

[10] Cohen, N., Shashua, A.: Inductive bias of deep convolutional networks
through pooling geometry. In: International Conference on Learning Rep-
resentations (ICLR) 2017, Toulon, France (2017)

[11] Cordonnier, J.B., Loukas, A., Jaggi, M.: On the relationship between self-
attention and convolutional layers. In: International Conference on Learning
Representations (ICLR) (2020)

[12] Gani, H., Naseer, M., Yaqub, M.: How to train vision transformer on small-
scale datasets? In: 33rd British Machine Vision Conference (BMVC), BMVA
Press (2022)

[13] Gao, X., Hou, X., Tang, J., Cheng, H.: Complete solution classification for
the perspective-three-point problem. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence (PAMI) 25, 930–943 (2003)

[14] Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision.
Cambridge University Press, 2 edn. (2004)

[15] He, Y., Huang, H., Fan, H., Chen, Q., Sun, J.: FFB6D: A full flow bidirec-
tional fusion network for 6D pose estimation. In: IEEE/CVF conference on
Computer Vision and Pattern Recognition (CVPR), pp. 3003–3013 (2021)

[16] He, Y., Sun, W., Huang, H., Liu, J., Fan, H., Sun, J.: PVN3D: A deep point-
wise 3D keypoints voting network for 6DoF pose estimation. In: IEEE/CVF
conference on Computer Vision and Pattern Recognition (CVPR), pp.
11632–11641 (2020)

[17] Hinterstoisser, S., Cagniart, C., Ilic, S., Sturm, P., Navab, N., Fua, P.,
Lepetit, V.: Gradient response maps for real-time detection of textureless
objects. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) 34(5), 876–888 (2011)

[18] Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G., Konolige, K.,
Navab, N.: Model-based training, detection and pose estimation of texture-
less 3D objects in heavily cluttered scenes. In: Asian conference on computer
vision (ACCV), pp. 548–562, Springer (2013)

[19] Hodaň, T., Sundermeyer, M., Drost, B., Labbé, Y., Brachmann, E., Michel,
F., Rother, C., Matas, J.: BOP challenge 2020 on 6D object localization.
In: European Conference on Computer Vision (ECCV), pp. 577–594 (2020)

[20] Holzer, S., Hinterstoisser, S., Ilic, S., Navab, N.: Distance transform tem-
plates for object detection and pose estimation. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1177–1184 (2009)

[21] Hosang, J., Benenson, R., Schiele, B.: Learning non-maximum suppression.
In: IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 4507–4515 (2017)

[22] Hu, Y., Fua, P., Wang, W., Salzmann, M.: Single-stage 6D object pose
estimation. In: IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2930–2939 (2020)

[23] Hu, Y., Hugonot, J., Fua, P., Salzmann, M.: Segmentation-driven 6D ob-
ject pose estimation. In: IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3385–3394 (2019)

[24] Kuhn, H.W.: The Hungarian method for the assignment problem. Naval
Research Logistics Quarterly 2, 83–97 (1955)

[25] Kutulakos, K.N., Steger, E.: A theory of refractive and specular 3D shape by
light-path triangulation. International Journal of Computer Vision (IJCV)
76, 13–29 (2008)

[26] Labbe, Y., Carpentier, J., Aubry, M., Sivic, J.: CosyPose: Consistent multi-
view multi-object 6D pose estimation. In: European Conference on Com-
puter Vision (ECCV) (2020)

[27] LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech,
and time series. The handbook of brain theory and neural networks p.
255–258 (1995)

[28] Lepetit, V., Moreno-Noguer, F., Fua, P.: EPnP: An accurate o(n) solution to
the PnP problem. International Journal of Computer Vision (IJCV) 81(2),
155 (2009)

[29] Li, S., Yan, Z., Li, H., Cheng, K.T.: Exploring intermediate representation
for monocular vehicle pose estimation. In: IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 1873–1883 (2021)

[30] Li, Y., Wang, G., Ji, X., Xiang, Y., Fox, D.: DeepIM: Deep iterative match-
ing for 6D pose estimation. In: European Conference on Computer Vision
(ECCV), pp. 683–698 (2018)

[31] Li, Z., Wang, G., Ji, X.: CDPN: Coordinates-based disentangled pose net-
work for real-time RGB-based 6-DoF object pose estimation. In: ICCV, pp.
7678–7687 (2019)

[32] Li, Z., Yeh, Y.Y., Chandraker, M.: Through the looking glass: Neural 3D
reconstruction of transparent shapes. In: IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 1262–1271 (2020)

[33] Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D.,
Dollár, P., Zitnick, C.L.: Microsoft COCO: Common objects in context. In:
European Conference on Computer Vision (ECCV), pp. 740–755 (2014)

[34] Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: Inter-
national Conference on Learning Representations (ICLR) (2017)

[35] Lysenkov, I., Eruhimov, V., Bradski, G.: Recognition and pose estimation
of rigid transparent objects with a kinect sensor. Robotics 273(273-280), 2
(2013)

[36] Maeno, K., Nagahara, H., Shimada, A., Taniguchi, R.I.: Light field dis-
tortion feature for transparent object recognition. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (June 2013)

[37] Manhardt, F., Kehl, W., Navab, N., Tombari, F.: Deep model-based 6D pose
refinement in RGB. In: European Conference on Computer Vision (ECCV),
pp. 800–815 (2018)

[38] Oberweger, M., Rad, M., Lepetit, V.: Making deep heatmaps robust to
partial occlusions for 3D object pose estimation. In: European Conference
on Computer Vision (ECCV) (2018)

[39] Pavlakos, G., Zhou, X., Chan, A., Derpanis, K.G., Daniilidis, K.: 6-DOF
object pose from semantic keypoints. In: IEEE International conference on
robotics and automation (ICRA), pp. 2011–2018 (2017)

[40] Peng, S., Liu, Y., Huang, Q., Zhou, X., Bao, H.: PVNet: Pixel-wise voting
network for 6DOF pose estimation. In: IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4561–4570 (2019)

[41] Periyasamy, A.S., Schwarz, M., Behnke, S.: Robust 6D object pose estima-
tion in cluttered scenes using semantic segmentation and pose regression
networks. In: International Conference on Intelligent Robots and Systems
(IROS) (2018)

[42] Periyasamy, A.S., Schwarz, M., Behnke, S.: Refining 6D object pose pre-
dictions using abstract render-and-compare. In: IEEE-RAS International
Conference on Humanoid Robots (Humanoids), pp. 739–746 (2019)

[43] Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: Deep hierarchical fea-
ture learning on point sets in a metric space. In: Guyon, I., Luxburg, U.V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.)
Advances in Neural Information Processing Systems, vol. 30, Curran Asso-
ciates, Inc. (2017)

[44] Rad, M., Lepetit, V.: BB8: A scalable, accurate, robust to partial occlusion
method for predicting the 3D poses of challenging objects without using

depth. In: International Conference on Computer Vision (ICCV), pp. 3828–
3836 (2017)

[45] Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
7263–7271 (2017)

[46] Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time ob-
ject detection with region proposal networks. In: Cortes, C., Lawrence, N.,
Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information
Processing Systems (NeurIPS), vol. 28 (2015)

[47] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.:
Generalized intersection over union: A metric and a loss for bounding box
regression. In: IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 658–666 (2019)

[48] Rothganger, F., Lazebnik, S., Schmid, C., Ponce, J.: 3D object modeling
and recognition using local affine-invariant image descriptors and multi-view
spatial constraints. International journal of computer vision (IJCV) 66(3),
231–259 (2006)

[49] Schwarz, M., Lenz, C., Garćıa, G.M., Koo, S., Periyasamy, A.S., Schreiber,
M., Behnke, S.: Fast object learning and dual-arm coordination for clut-
tered stowing, picking, and packing. In: IEEE International Conference on
Robotics and Automation (ICRA), pp. 3347–3354 (2018)

[50] Staranowicz, A.N., Brown, G.R., Morbidi, F., Mariottini, G.L.: Practical
and accurate calibration of RGB-D cameras using spheres. Computer Vision
and Image Understanding 137, 102–114 (2015)

[51] Stewart, R., Andriluka, M., Ng, A.Y.: End-to-end people detection in
crowded scenes. In: IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 2325–2333 (2016)

[52] Sundermeyer, M., Hodan, T., Labbe, Y., Wang, G., Brachmann, E., Drost,
B., Rother, C., Matas, J.: BOP challenge 2022 on detection, segmenta-
tion and pose estimation of specific rigid objects. preprint arXiv:2302.13075
(2023)

[53] Tekin, B., Sinha, S.N., Fua, P.: Real-time seamless single shot 6D object
pose prediction. In: IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR) (2018)

[54] Thalhammer, S., Leitner, M., Patten, T., Vincze, M.: PyraPose: feature
pyramids for fast and accurate object pose estimation under domain shift.
In: International Conference on Robotics and Automation (ICRA), pp.
13909–13915, IEEE (2021)

[55] Tulsiani, S., Malik, J.: Viewpoints and keypoints. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1510–1519 (2015)

[56] Wang, C., Xu, D., Zhu, Y., Mart́ın-Mart́ın, R., Lu, C., Fei-Fei, L., Savarese,
S.: DenseFusion: 6D object pose estimation by iterative dense fusion.
In: IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3343–3352 (2019)

[57] Wang, G., Manhardt, F., Tombari, F., Ji, X.: GDR-Net: Geometry-guided
direct regression network for monocular 6D object pose estimation. In:

IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2021)

[58] Wang, W., Zhang, J., Cao, Y., Shen, Y., Tao, D.: Towards data-efficient
detection transformers. In: European Conference on Computer Vision
(ECCV), pp. 88–105 (2022)

[59] Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: PoseCNN: A convolu-
tional neural network for 6D object pose estimation in cluttered scenes. In:
Robotics: Science and Systems (RSS) (2018)

[60] Xu, D., Anguelov, D., Jain, A.: Pointfusion: Deep sensor fusion for 3D
bounding box estimation. In: IEEE conference on Computer Vision and
Pattern Recognition (CVPR), pp. 244–253 (2018)

[61] Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer.
In: IEEE/CVF International Conference on Computer Vision (ICCV), pp.
16259–16268 (2021)

[62] Zhou, Y., Barnes, C., Lu, J., Yang, J., Li, H.: On the continuity of rotation
representations in neural networks. In: IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 5745–5753 (2019)

	 YOLOPose V2: Understanding and Improving Transformer-based 6D Pose Estimation

