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Abstract

For autonomous navigation in difficult terrain, such as degraded environments in disaster
response scenarios, robots are required to create a map of an unknown environment and to
localize within this map. In this paper, we describe our approach to simultaneous localization
and mapping that is based on the measurements of a 3D laser-range finder. We aggregate
laser-range measurements by registering sparse 3D scans with a local multiresolution surfel
map that has high resolution in the vicinity of the robot and coarser resolutions with increas-
ing distance, which corresponds well to measurement density and accuracy of our sensor. By
modeling measurements by surface elements, our approach allows for efficient and accurate
registration and leverages online mapping and localization. The incrementally built local
dense 3D maps of nearby key poses are registered against each other. Graph optimization
yields a globally consistent dense 3D map of the environment. Continuous registration of
local maps with the global map allows for tracking the 6D robot pose in real time. We assess
the drivability of the terrain by analyzing height differences in an allocentric height map and
plan cost-optimal paths. The system has been successfully demonstrated during the DARPA
Robotics Challenge and the DLR SpaceBot Camp. In experiments, we evaluate accuracy
and efficiency of our approach.
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1. Introduction

In order to enable robot systems to enter areas inaccessible to humans, e.g., in disaster
scenarios or for planetary exploration, autonomous navigation is key. It necessitates the ca-
pability to simultaneously build maps of unknown environments and to localize within. These
environments can be cluttered or degraded and pose a challenge for perception algorithms.
To enable autonomous navigation, the perceived map of the environment has to be accurate
enough to allow for analyzing whether a particular region is drivable or not. Besides that,
the efficiency of the perception system is important since the operation in these environments
often requires online mapping and localization in real time with limited onboard computers.

In this paper we describe our system for mapping and localization on our mobile manip-
ulation robot Momaro. The robot has been developed according to the requirements of the
DARPA Robotics Challenge1 (DRC). The goal of the DRC was to foster research for robots
that are able assist humans in responding to catastrophic situations, such as the nuclear
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Figure 1: The mobile manipulation robot Momaro taking a soil sample during the DLR
SpaceBot Camp. Without intervention of an operator, the robot learned a map of the
previously unknown environment, localized within this map, and autonomously navigated to
the goal pose that has been specified in a coarse environment map beforehand.

disaster at Fukushima in 2011. Being teleoperated over a limited network connection, the
robots had to solve eight tasks relevant to disaster response. While the DRC showed the
potential of robots for tasks found in disaster response scenarios, it also showed that fully au-
tonomous navigation and manipulation in unstructured environments—also due to the lack
of applicable perception methods—is still beyond the state of the art.

In contrast to the DRC, where robots could be teleoperated for navigation, the DLR
SpaceBot Camp 2015 focused on autonomy. Based on a coarse map of the environment, the
robot had to explore a previously unknown planetary-like environment and to perform a set
of mobile manipulation tasks. Figure 1 shows our robot Momaro taking a soil sample. By
means of a 3D continuously rotating laser scanner, Momaro acquires range measurements in
all spatial directions. The 3D scans of the environment are aggregated in a robot-centric local
multiresolution map. The 6D sensor motion is estimated by registering the 3D scan to the
map using our efficient surfel-based registration method [1]. In order to obtain an allocentric
map of the environment—and to localize in it—individual local maps are aligned to each
other using the same surfel-based registration method. A pose graph that connects the maps
of neighboring key poses is constructed and optimized globally. By localizing the robot with
respect to the optimized pose graph, we gain an accurate estimate also in larger environments
with big loops, where filter-based approaches would obtain an inaccurate estimate. The
graph-based formulation allows to globally minimize accumulated errors, resulting in an
accurate map of the environment and localization pose.

The remainder of the paper describes our laser perception system that was used during
the DRC Finals and the DLR SpaceBot Camp. During the DRC, only the local mapping
components where used to build a egocentric map of the robot’s direct vicinity. This map
was used by the manipulation operator when planning motions and to correct odometry drift
of the robot, when aligning to a previously acquired local map. This part of the system is
described in Section 4 and Section 5 and is based on our previous work in [1]. Apart from the
local mapping, our allocentric mapping component [2] was used to allow for fully autonomous
navigation during DLR SpaceBot Camp and is described in Section 6.

In this article, we present a complete system for continuous mapping and localization,
fully integrated in our navigation system and extensively tested. Building a fully integrated
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system with the given requirements led to the following advances over our previous work:

1. We extended our local multiresolution map to address for dynamics in the environment.
By efficiently maintaining occupancy information we increase the quality of the maps
and the robustness of the registration.

2. We extended our allocentric mapping system to allow for fully continuous mapping and
localization during mission, without the necessity to map the environment beforehand
or to stop for acquiring new 3D scans and to process them.

3. In the evaluation section, we show data acquired during the DARPA Robotics Challenge
Finals and the DLR SpaceBot Camp 2015.

Our mapping pipeline is published open-source2, making it available to other researchers
in order to facilitate developing robotic applications, contributing to the system, and for
comparing and reproducing results.

2. Related Work

For mobile ground robots that operate in cluttered and degraded environments, 3D laser
scanners are the preferred sensor for mapping and localization. They provide accurate dis-
tance measurements, are almost independent on lighting conditions, and have a large field-
of-view.

Mapping with 3D laser scanners has been investigated by many groups [3, 4, 5, 6]. A
common research topic in laser-based simultaneous localization and mapping (SLAM) is
efficiency and scalability, i.e. maintaining high run-time performance and low memory con-
sumption. To gain both memory and runtime efficiency, we build local multiresolution surfel
grid maps with a high resolution close to the sensor and a coarser resolution farther away.
Local multiresolution corresponds well to the sensor measurement characteristics. Measure-
ments are aggregated in grid cells and summarized in surface elements (surfels) that are used
for registration. Our registration method matches 3D scans on all resolutions concurrently,
utilizing the finest common resolution available between both maps, which also makes reg-
istration efficient. In previous own work [7, 8], we used this concept within an octree voxel
representation.

For aligning newly acquired 3D scans with the so far aggregated map, we use our surfel-
based registration method [1]. In contrast to many methods for point set registration—mostly
based on the Iterative Closest Point (ICP) algorithm [9]—our method recovers the transfor-
mation between two points sets through probabilistic assignments of surfels. Probabilistic
methods for point set registration are becoming more and more popular recently and show
promising results [10, 11, 12].

Hornung et al. [13] implement a multiresolution map based on octrees (OctoMap). Ryde
et al. [14] use voxel lists for efficient neighbor queries. Both of these approaches consider
mapping in 3D with a voxel being the smallest map element. The 3D-NDT [15] discretizes
point clouds in 3D grids and aligns Gaussian statistics within grid cells to perform scan
registration.

Belter et al. [16] also propose to use local grid maps with different resolutions. In contrast
to our approach, different map resolutions are used for different sensors, resulting in an
uniform grid map for each sensor. Herbert et al. propose elevation maps [17], extending 2D
grid maps by adding a height for every grid cell. While elevation maps only model a single
surface, multi-level surface maps [18] store multiple heights in each grid cell, allowing to
model environments with more than on surface, such as bridges for example. Pfaff et al. [19]

2https://github.com/AIS-Bonn/mrs_laser_map
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Figure 2: Momaro’s sensor head. The Hokuyo laser scanner is rotated by an actuator around
the red axis to allow for an omnidirectional field-of-view. The IMU is used to compensate
for motion during scan acquisition and for estimating the attitude.

propose a method for detecting loop closures in elevation maps. Frankhauser et al. [20] use
local elevation maps and handle drift by propagating uncertainties of the robot pose through
the map.

Our mapping system has been successfully applied on micro aerial vehicles (MAV) to al-
low for fully autonomous navigation [21]. In contrast to this work, we do not rely on accurate
visual odometry anymore, but on imprecise wheel odometry in combination with measure-
ments from an inertial measurement unit (IMU). Compared to other mapping approaches, we
efficiently build robot-centric maps that are locally consistent—with constant computation
and memory requirements. We construct an allocentric graph of local maps from different
view poses, resulting in a sparse pose graph that can be optimized efficiently. Compared
to the mapping system used in our previous work [22], the system presented here is more
efficient and maps the environment in a continuous manner—without the requirement to stop
for acquisition and processing of new 3D scans. Besides that, the robustness of the local-
ization improved since the current system aligns dense local maps to the allocentric map, in
contrast to single 2D scans. While many methods assume the robot to stand still during 3D
scan acquisition, some approaches also integrate scan lines of a continuously rotating laser
scanner into 3D maps while the robot is moving [23, 24, 25, 26, 27].

Path planning for navigating in 3D indoor environments with flat floors is well-studied [28,
29]. For navigation on non-flat terrain, several approaches generate 2D cost maps from sensor
readings and plan paths in these [30, 31, 32, 33]. Rusu et al. [34] model 3D maps by a set
of convex polygons and adapt existing 2D planners to operate in 3D terrain. Chhaniyara et
al. [35] and Papadakis [36] compiled surveys on judging traversability of terrain and avoiding
obstacles with robots. In many environments, color or texture do not provide sufficient
traversability information, so 3D geometry is needed. We present an integrated system for
efficient laser-based 3D SLAM, traversability analysis, and cost-optimal path planning.

3. System Overview

Momaro is equipped with four articulated compliant legs that end in pairs of directly
driven, steerable wheels. The combination of legs and steerable wheels allows for omnidirec-
tional driving and stepping locomotion. To perform a wide range of manipulation tasks [37],
Momaro is equipped with an anthropomorphic upper body with two 7 degrees of freedom
manipulators that end in dexterous grippers.

Momaro’s main sensor for environmental perception is a continuously rotating laser scan-
ner on its sensor head (see Figure 2). It consists of a Hokuyo UTM-30LX-EW 2D laser scanner
which is rotated around the vertical axis by a Robotis Dynamixel MX-64 servo actuator to
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Figure 3: Overview of our mapping, localization and navigation system. The measurements
are processed in preprocessing steps described in Section 5.1. The resulting 3D point cloud
is used to estimate the transformation between the current scan and the map (Section 5).
Registered scans are stored in a local multiresolution map (Section 4). Keyframe views of
local maps are registered against each other in a SLAM graph (Section 6). A 2.5D height
map is used to assess drivability. A standard 2D grid-based approach is used for planning
(Section 7).

gain a 3D FoV. Hence, the sensor can measure in all directions, except for a cylindrical blind
spot around the vertical axis centered on the robot. The 2D LRF is electrically connected
by a slip ring, allowing for continuous rotation of the sensor.

The Hokuyo 2D laser scanner has an apex angle of 270◦ and an angular resolution of 0.25◦,
resulting in 1080 distance measurements per 2D scan, called a scan line. The Dynamixel
actuator rotates the 2D laser scanner at 0.2 rotations per second, resulting in 200 scan lines
per full rotation. Slower rotation is possible if a higher angular resolution is desired. For our
current setup, we acquire one full 3D scan with up to 216,000 points per rotation every 5
seconds (shown in Figure 4a).

A PIXHAWK IMU is mounted close to the laser scanner, which is used for motion com-
pensation during scan aggregation and attitude estimation.

An overview of our software system is shown in Figure 3. It consists of preprocessing steps
to assemble 3D scans (Section 5.1), local mapping (Sections 4 and 5), global mapping (Sec-
tion 6), and navigation planning (Section 7).

4. Local Multiresolution Map

Distance measurements from the laser-range sensor are accumulated in a 3D multireso-
lution map with increasing cell sizes from the robot center. The representation consists of
multiple robot-centered 3D grid-maps with different resolutions. On the finest resolution,
we use a cell length of 0.25 m. Each grid-map is embedded in the next level with coarser
resolution and doubled cell length. The stored points and grid structure is shown in Figure 4.

We use a hybrid representation, storing 3D point measurements along with occupancy
information in each cell. Point measurements of consecutive 3D scans are stored in fixed-sized
circular buffers, allowing for point-based data processing and facilitating efficient nearest-
neighbor queries. Figure 5 shows the point-based representation of the local multiresolution
map during the SpaceBot Camp. It even shows relatively small objects—like a battery pack
that the robot shall grasp.

Figure 6 shows a 1D schematic illustration of the map organization. We aim for efficient
map management for translation and rotation. Individual grid cells are stored in a circular
buffer to allow for shifting elements in constant time. We interlace multiple circular buffers
to obtain a map with three dimensions. The length of the circular buffers depends on the
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(a) 3D scan (b) Points in map

(c) Grid cells in map (d) Surfels in map

Figure 4: The local multiresolution grid map during the first DRC competition run. (a): The
3D scan acquired with our continuously rotating laser scanner. (b): 3D points stored in the
local multiresolution map. Color encodes height from ground. (c): The multiresolution grid
structure of the map. Cell size (indicated by color) increases with the distance from the
robot. (d): For every grid cell a surfel es summarizes the 3D points in the cell. Color encodes
the orientation of the surfel.

Figure 5: Photo and the corresponding local map of the battery pack—one of the objects to
manipulate during the SpaceBot Camp. Color encodes distance from ground.
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Figure 6: One-dimensional illustration of the hybrid local multiresolution map. Along with
the occupancy information, every grid-cell (blue) maintains a circular buffer with its associ-
ated measurement points (green). The map is centered around the robot and in case of a
robot motion, ring buffers are shifted according to the translational parts of the movement,
maintaining the egocentric property of the map. Cells at coarser levels are used to retain
points from vanishing cells at finer levels and to initialize newly added cells (red arrows).

resolution and the size of the map. In case of a translation of the robot, the circular buffers
are shifted whenever necessary to maintain the egocentric property of the map. In case of a
translation equal or larger than the cell size, the circular buffers for respective dimensions are
shifted. For sub-cell-length translations, the translational parts are accumulated and shifted
if they exceed the length of a cell.

Since we store 3D points for every cell for point-based processing, single points are trans-
formed in the local coordinate frame of a cell when adding, and back to the map coordinate
frame when accessing. Every cell in the map stores a list of 3D points from the current
and previous 3D scans. This list is also implemented by a fixed-sized circular buffer. If the
capacity of the circular buffer is exceeded, old measurements are discarded and replaced by
new measurements.

Rotating the map would necessitate to shuffle all cells. Consequently, our map is oriented
independent to the robot orientation. We maintain the orientation between the map and the
robot and use it to rotate measurements when accessing the map.

5. Scan Registration

We register consecutive 3D laser scans with our local multiresolution grid map to estimate
the motion of the robot. Since the scans are taken while the robot is driving, the motion
of the robot needs to be compensated for when assembling the scan measurements into 3D
scans. We register 3D scans with the so far accumulated map of the environment and update
it with the registered 3D scan.

5.1. Preprocessing and 3D Scan Assembly

The raw measurements from the laser scanner are subject to spurious measurements
at foreground-background transitions between two objects. These so-called jump edges are
filtered by comparing the angle of neighboring measurements. After filtering for jump edges,
we assemble a 3D scan from the 2D scans of a complete rotation of the scanner. Since the
sensor is moving during acquisition, we undistort the individual 2D scans in two steps.

First, measurements of individual 2D scans are undistorted with regards to the rotation
of the 2D laser scanner around the sensor rotation axis. Using spherical linear interpolation,
the rotation between the acquisition of two scan lines is distributed over the measurements.
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Second, the motion of the robot during acquisition of a full 3D scan is compensated. Due
to Momaro’s flexible legs, it is not sufficient to simply use wheel odometry to compensate for
the robot motion. Instead, we estimate the full 6D state with the PIXHAWK IMU attached
to Momaro’s sensor head. Here we calculate a 3D attitude estimate from accelerometers and
gyroscopes to compensate for rotational motions of the robot. Afterwards, we filter the wheel
odometry with measured linear acceleration to compensate for linear motions. The resulting
6D state estimate includes otherwise unobservable motions due to external forces like rough
terrain, contacts with the environment, wind, etc. It is used to assemble the individual 2D
scans of each rotation to a 3D scan.

5.2. Scan To Map Registration

We register the points P = {p1, . . . , pP} in a 3D scan with the points Q = {q1, . . . , qQ}
in the local grid map of the environment [1]. Similarly, the registration of two local maps is
treated as the registration of their point sets. We formulate the registration of the 3D scan
with the local environment map as optimizing the joint data-likelihood

p(P | θ,Q) =
P∏
k=1

p(pk | θ,Q). (1)

Instead of considering each point individually, we map the 3D scan into a local multiresolution
grid and match surfels, i.e.,

p(P | θ,Q) ≈
N∏
i=1

p(xi | θ, Y )Px,i . (2)

By this, several orders of magnitudes less map elements are used for registration. Figure 4d
shows the surfels of an exemplary multiresolution map. We denote the set of surfels in the
scene (the 3D scan) by X = {x1, . . . , xN} and write Y = {y1, . . . , yM} for the set of model
surfels in the environment map. E.g., a surfel xi summarizes its attributed Px,i points by
their sample mean µx,i and covariance Σx,i. We assume that scene and model can be aligned
by a rigid 6 degree-of-freedom (DoF) transformation T (θ) from scene to model. Our aim is
to recover the relative pose θ of the scene towards the model.

5.3. Gaussian Mixture Observation Model

We explain each transformed scene surfel as an observation from a mixture model, similar
as in the coherent point drift (CPD) method [10]. A surfel xi is observed under the mixture
defined by the model surfels and an additional uniform component that explains outliers, i.e.,

p(xi | θ, Y ) =
M+1∑
j=1

p(ci,j) p(xi | ci,j, θ, Y ), (3)

where ci,j is a shorthand for the 1-of-(M+1) encoding binary variable ci ∈ BM+1 with j-th
entry set to 1. Naturally, ci indicates the association of xi to exactly one of the mixture
components. The model is a mixture on Gaussian components for the M model surfels
through

p(xi | ci,j, θ, Y ) :=

N
[
T (θ)µx,i;µy,j,Σy,j +R(θ)Σx,iR(θ)T + σ2

j I
]
, (4)
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where σj = 1
2
ρ−1y,j is a standard deviation that we adapt to the resolution ρy,j of the model

surfel. We set the likelihood of the uniform mixture component to p(ci,M+1) = w. For this
uniform component, the data likelihood of a surfel xi is

p(xi | ci,M+1, θ) =
Px,i
P
N (0; 0, R(θ)Σx,iR(θ)T + σ2

j I). (5)

For the prior association likelihood, we assume the likelihood of xi to be associated to one
of the points in the model map to be equal. Hence, for each Gaussian mixture component
j ∈ {1, . . . ,M} we have p(ci,j) = (1−w)

Qy,j

Q
. By modeling the scene surfels as samples from

a mixture on the model surfels, we do not make a hard association decision between the
surfels sets, but a scene surfel is associated to many model surfels.

5.4. Registration through Expectation-Maximization

The alignment pose θ is estimated through maximization of the logarithm of the joint
data-likelihood

ln p(P | θ,Q) ≈
N∑
i=1

Px,i ln
M+1∑
j=1

p(ci,j) p(xi | ci,j, θ, Y ). (6)

We optimize this objective function through expectation-maximization (EM) [38]. The com-
ponent associations c = {c1, . . . , cN} are treated as latent variables to yield the EM objective

L(q, θ) :=
N∑
i=1

Px,i

M+1∑
j=1

q(ci,j) ln
p(ci,j) p(xi | ci,j, θ, Y )

q(ci,j)
, (7)

for which we exploit q(c) =
∏N

i=1

∏M+1
j=1 q(ci,j). In the M-step, the latest estimate q for the

distribution over component associations is held fixed to optimize for the pose θ

θ̂ = argmax
θ

L(q, θ) (8)

with

L(q, θ) := const .+
N∑
i=1

Px,i

M+1∑
j=1

q(ci,j) ln p(xi | ci,j, θ, Y ). (9)

This optimization is efficiently performed using the Levenberg-Marquardt method as in [7].
The E-step obtains a new optimum q̂ for the distribution q by the conditional likelihood of
the cluster associations given the latest pose estimate θ

q̂(ci,j) =
p(ci,j) p(xi | ci,j, θ, Y )∑M+1

j′=1 p(ci,j′) p(xi | ci,j′ , θ, Y )
. (10)

In order to evaluate these soft assignments, we perform a local search in the local multires-
olution surfel grid of the model. We first look-up the grid cell with a surfel available on the
finest resolution in the model map at the transformed mean position of the scene surfel. We
consider the surfels in this cell and its direct neighbors for soft association.

5.5. Filtering Dynamic Objects

Dynamics in the environment—caused e.g., by moving doors or debris—results in spu-
rious measurements during mapping. Also, registration failures or fast motion of the laser
during acquisition of a 3D scan, that could not be compensated by the IMU, result in aban-
doned measurements in the map. These spurious measurements can affect registration or
distract the operator when using the map to plan manipulation tasks. We account for these
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1 scan (5 s) 2 scans (10 s) 5 scans (25 s)

Figure 7: Filtering dynamic objects such as the door during the DRC Finals. After opening
the door, abandoned measurements are filtered from the local multiresolution map. Camera
image and the point-based representation of the map at 4 different time steps. The columns
shows the map before opening the door and after adding 1, 2, and 5 scans. Color encodes
height from the ground.
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by maintaining an occupancy probability—using log-odds notation to avoid multiplication
when updating—for each cell in our multiresolution map. Similar to [13] we use a beam-
based inverse sensor model and ray-casting to update the occupancy of a cell. For every
measurement in the 3D scan, we update the occupancy information of cells on the ray be-
tween the sensor origin and the endpoint. Since this ray-casting operation is computationally
expensive, we use an approximation to take advantage of the multiresolution structure of our
map.

Before updating the occupancy information of the cells in question, we determine the
endpoints of each beam—in our case the 3D point in the local coordinate system of the
map—and the corresponding cell in every level. These cells are marked as occupied and
are excluded from further occupancy updates of the 3D scan they belong to. We do this to
prevent from artifacts caused by shallow angles between the line-of-sight of the sensor and
the surface, as suggested by [13].

To update the occupancy information efficiently, we start with the coarsest level in our
map and perform ray-casting with an approximated 3D Bresenham algorithm [39]. Informa-
tion from the coarser level is used when updating the finer levels to quickly traverse empty
spaces. In detail, we omit ray-casting points on the finer levels if the traversed cells on the
coarsest level are observed free. An example is shown in Figure 7. One can observe that the
opened door is quickly removed from the local map.

6. Allocentric Mapping and Localization

To estimate the motion of the robot, we incorporate IMU measurements, wheel odometry
measurements and the the local registration results. While these estimates allow us to control
the robot and to track its pose over a short period of time, they are prone to drift. Fur-
thermore, they do not provide a fixed allocentric frame for the definition of mission-relevant
poses. To overcome drift and to localize the robot with respect to a fixed frame, we build an
allocentric map from local multiresolution maps acquired at different view poses [2].

Therefore, a pose graph G = (V , E) is constructed. Every node in the graph corresponds to
a view pose and its local multiresolution map. Nearby nodes are connected by edges, modeling
spatial constraints between two nodes. Each spatial constraint is a normally distributed
estimate with mean and covariance. An edge eij ∈ E describes the relative position xji
between two nodes vi and vj, which arises from aligning two local multiresolution maps with
each other. Similar to the alignment of a newly acquired 3D scan, two local multiresolution
maps are aligned by our surfel-based registration method described in the previous section.
Each edge models the uncertainty of the relative position by its information matrix, which
is established by the covariance from registration.

During operation, the current local map is registered towards the closest node in the
graph, the reference node vref. This allows us to track the current pose in the allocentric
frame. A new node is generated for the current view pose, if the robot moved sufficiently
far. In addition to edges between the previous node and the current node, we add spatial
constraints between close-by nodes in the graph that are not in temporal sequence. Thus,
we check for one new constraint between the current reference vref and other nodes vcmp. We
determine a probability

pchk(vcmp) = N
(
d(xref, xcmp); 0, σ2

d

)
(11)

that depends on the linear distance d(xref, xcmp) between the view poses xref and xcmp. Ac-
cording to pchk(v), we choose a node v from the graph and determine a spatial constraint
between the nodes.

By adding edges between close-by nodes in the graph, we detect loop closures. Loop
closure allows us to minimize drift from accumulated registration errors. For example, if the
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Figure 8: Data flow of our navigation method. Data filtering/processing modules are colored
yellow and navigation components red.

robot traverses unknown terrain and reenters a known part of the environment.
From the graph of spatial constraints, we infer the probability of the trajectory estimate

given all relative pose observations

p(V | E) ∝
∏
eij∈E

p(xji | xi, xj). (12)

This pose graph optimization is efficiently solved using the g2o framework [40], yielding
maximum likelihood estimates of the view poses xi. Optimization is performed when a loop
closure has been detected, allowing for on-line operation.

6.1. Localization

While traversing the environment, the pose graph is extended whenever the robot explores
previously unseen terrain and optimized when a loop closure has been detected. We localize
towards this pose graph during mission to get the pose of the robot in an allocentric frame.

Since the laser scanner acquires complete 3D scans with a relatively low frame rate,
we incorporate the egomotion estimate from the wheel odometry and measurements from
the IMU. The egomotion estimate is used to track the pose of the robot w.r.t. the last
localization result between two consecutive 3D scans. In detail, we track the pose hypothesis
by alternating the prediction of the robot movement given the filter result and alignment of
the current local multiresolution map towards the allocentric map of the environment.

The allocentric localization is triggered after acquiring a 3D scan and adding it to the local
multiresolution map. Therefore, the updated local map is registered towards the closest node
in the graph. By aligning the dense local map to the pose graph—instead of the relative sparse
3D scan—we gain robustness, since information from previous 3D scans is incorporated. We
update the allocentric robot pose with the resulting registration transform. To achieve real-
time performance of the localization module, we track only one pose hypothesis.

During the SpaceBot Camp, we assumed that the initial pose of the robot was known,
either by starting from a predefined pose or by means of manually aligning our allocentric
coordinate frame with a coarse height map of the environment. Thus, we could navigate to
goal poses in the coarse height map by localizing towards our pose graph.

7. Navigation

One important application of the allocentric 3D maps and the localization approach is
autonomous navigation. In order to demonstrate the suitability of our approach in this
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domain, we briefly discuss our navigation pipeline, even though it does not contain novel
ideas. Figure 8 gives an overview of our the pipeline. Our approach is based on the RGB-
D-based local navigation approach of [22], which is now used on the 3D laser measurements.
Furthermore, we make no distinction between local and global navigation. For details on the
approach, we refer to [22].

For most terrains, a 2.5D height map contains all information necessary for navigation.
This reduction greatly reduces the amount of data to be processed and allows planning in
real time. The allocentric 2.5D height map is represented as a 2D grid with a resolution
of 5×5 cm. For each map cell H(x, y), we calculate the median height of the points whose
projections onto the horizontal plane lie in the map cell.

An absolute height map is not meaningful for planning local paths or for avoiding obsta-
cles. To assess drivability, the allocentric height map is transformed into a height difference
map. We calculate local height differences at multiple scales l. Let Dl(x, y) be the maximum
difference to the center pixel (x, y) in a local l-window:

Dl(x, y) := max
|u−x|<l;u6=x
|v−y|<l;v 6=y

|H(x, y)−H(u, v)| .

Missing H(u, v) values indicated by NaN are ignored. If the center pixel H(x, y) itself is
not defined, or there are no other defined l-neighbors, we assign Dl(x, y) := NaN.

Small, but sharp obstacles show up on the Dl maps with lower l scales. Larger inclines,
which might be better to avoid, can be seen on the maps with a higher l value.

The height difference maps are transformed into cost maps as in [22]. In particular, the
cost map for path planning is inflated by the robot radius (for an example, see Figure 13).
We conduct a standard A* search on the graph defined by the 8-neighborhood in the inflated
cost map.

To determine forward driving speed and rotational speed that follow the planned trajec-
tory and avoid obstacles, we use the ROS trajectory rollout planner (dwa planner). Replan-
ning is done at least once every second to account for robot movement and novel terrain
percepts.

8. Evaluation

This section describes the evaluation of our system during two public events, the DARPA
Robotics Challenge Finals and the DLR SpaceBot Camp. The datasets used for the exper-
iments are from our runs during the competition. Since quantitative measures are hard to
generate—especially on rough terrain or disaster scenarios due to the absence of a reference
measure—we focus on qualitative evaluation. We make the used data sets available on our
website3. Parts of our system have been evaluated independently in our previous work. For
example, our surfel-based registration method has been compared to state-of-the-art registra-
tion methods on data from a motion capture system [1], showing that it is more accurate and
computationally more efficient. The data sets shown in the experiments are made publicly
available4.

8.1. DARPA Robotics Challenge

Since the robots could be teleoperated during the competition, we did not use our allo-
centric mapping and localization at the DRC. The local mapping components where used

3Data sets captured during the DRC competition run and the DLR SpaceBot Camp demonstration http:

//www.ais.uni-bonn.de/data/3D-Laser.html
4http://www.ais.uni-bonn.de/laser_mapping
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Figure 9: Top: The mock-up disaster scenario of the DRC. Bottom: The resulting allocentric
map generated from the data of our first competition run. Color encodes the height from
ground.
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to build an egocentric map of the robot’s direct vicinity. This map was used by the ma-
nipulation operator when planning motions. Besides that, the navigation operator used the
resulting local maps and height images build from it to assess driveability. Also, the result of
the registration corrects odometry drift of the robot when aligning to a previously acquired
local map. Figure 9 shows the resulting allocentric map generated from the dataset of our
first-day competition. Besides the allocentric map, selected local multiresolution maps of the
pose graph are shown. Although reference data is not available, one can see that the resulting
allocentric map is globally consistent and accurate, as indicated by the straight walls and
plain floor. Also the local maps look clear and accurate.

Our team was able to solve seven out of eight tasks in the shortest time of all teams who
solved seven tasks, which yielded a fourth place in the final ranking as the best European
team. While we attribute part of our success to our flexible teleoperation solutions [37], the
quality of the 3D environment perception and thus the situational awareness of the operator
crew played a large part and was a necessary precondition for developing said teleoperation
interfaces. Further information on our DRC competition entry is available of our website5,
including a video or our first day competition run6.

8.2. SpaceBot Camp 2015

At the DLR SpaceBot Camp, robots had to conduct an exploration mission in a (sim-
ulated) extraterrestrial planetary environment. The mission was—based on a rough height
image of the environment—to explore and map the environment and to manipulate objects
in it. In contrast to the DRC, the robots did not have a permanent network connection that
allowed for teleoperation. Consequently—in addition to local mapping—we used our allocen-
tric mapping component and the described planning approach to allow for fully autonomous
navigation.

The planetary-like environment was specially challenging due to the rough surface of the
terrain, consisting of different types of stones and soil that caused slip in odometry and high-
frequency motion of robot and sensor. Due to the relative small wheels of our robot, an
accurate terrain map was necessary to assess driveability. The environment and the resulting
allocentric map are shown in Figure 10. It was continuously built during autonomous naviga-
tion guided by waypoints specified on the rough height map. One can see, that although the
robot was autonomously navigating in rough terrain the resulting allocentric map is accurate
and precisely models the environment.

Figure 11 shows the allocentric map at different time steps. The figure shows how the map
is extended during a mission. New nodes (i.e., local multiresolution maps) are added to the
pose graph and new nodes are connected to existing nodes by edges. During a mission, the
map is used for localization as shown in Figure 12 and to assess traversability for navigation
as shown in Figure 13. Our system was able to solve all tasks with few interventions by
the operator crew over the degraded communication link, such as stopping navigation before
a scheduled communication blackout or re-triggering a failed manipulation task. Further
information on our SpaceBot Camp entry is available of our website7, including a video or
our demonstration run8.

5Website of our DRC entry http://www.nimbro.net/Rescue
6Video of first day DRC competition run http://youtu.be/NJHSFelPsGc
7Website of our DLR SpaceBot Camp entry http://www.nimbro.net/Explorer
8Video of SpaceBot Camp demonstration run http://youtu.be/q_p5ZO-BKWM
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Figure 10: Top: Photo of the planetary-like environment at the DLR SpaceBot Camp consist-
ing of different types of stones and soil. Bottom: The resulting 3D map built by our mapping
component from data that has been collected during our run. Color encodes distance from
ground.

Figure 11: The allocentric map from a top view at different time steps, consisting of 1 (left),
7 (middle) and 14 (right) key frames. Color encodes height. The nodes in the pose graph
(grey circles) are connected by spatial constraints (black lines). The robot model shows the
current position of the robot.
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Figure 12: The resulting allocentric map from two different perspectives with the localization
poses (black circle) from our run. Color encodes height from ground.

Figure 13: Navigation planning during (left, middle) and after exploration (right) of the
SpaceBot Camp arena. The top row shows the calculated traversability costs for each cell.
The bottom row shows inflated costs used for A* path planning. The orange dot represents
the current robot position, the blue square the target position. The planned path is shown in
green. Red areas indicate insufficient measurements for traversability analysis. Yellow areas
correspond to absolute obstacles, which the robot may not traverse. In the middle situation,
a small battery pack (20 cm × 10 cm × 4 cm) can be seen in the uninflated costs (marked
with red circle, also shown in Figure 5).
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9. Conclusions

We presented our local and allocentric mapping systems that uses an efficient 3D mul-
tiresolution map to aggregate measurements from a continuously rotating laser scanner and
align acquired scans with it. By using local multiresolution, we gain computational efficiency
by having a high resolution in the near vicinity of the robot and a lower resolution with in-
creasing distance from the robot, which correlates with the sensor characteristics in relative
distance accuracy and measurement density.

Scan registration is used to estimate the motion of the robot by aligning consecutive 3D
scans to the map. We do not match individual scan points, but represent 3D scans also
in local multiresolution grids and condense the points into surface elements for each grid
cell. These surface elements are aligned efficiently and at high accuracy in a registration
framework which overcomes the discretization in a grid through probabilistic assignments.

Modeling measurement distributions within voxels by surface elements allows for efficient
and accurate registration of 3D scans with the local map. The incrementally built local
dense 3D maps of nearby key poses are registered globally by graph optimization. This
yields a globally consistent dense 3D map of the environment. Continuous registration of
local maps with the global map allows for tracking the 6D robot pose in real time. We
demonstrate accuracy and efficiency of our approach by showing consistent allocentric 3D
maps in difficult environments with rough terrain.

The high-quality 3D environment representations were a key success factor for our team
in the competitions. During the DRC Finals, our team NimbRo Rescue solved seven of the
eight tasks in only 34 minutes, coming in 4th overall. Our team NimbRo Explorer was the
only team to solve all tasks of the DLR SpaceBot Camp.
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