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Abstract

Micro aerial vehicles (MAVs) pose specific constraints on onboard sensing, mainly
limited payload and limited processing power. For accurate 3D mapping even
in GPS-denied environments, we have designed a lightweight 3D laser scan-
ner specifically for the application on MAVs. Similar to other custom-built 3D
laser scanners composed of a rotating 2D laser range finder, it exhibits differ-
ent point densities within and between individual scan lines. When rotated
fast, such non-uniform point densities influence neighborhood searches which in
turn may negatively affect local feature estimation and scan registration. We
present a complete pipeline for 3D mapping including pair-wise registration and
global alignment of such non-uniform density 3D point clouds acquired in-flight.
For registration, we extend a state-of-the-art registration algorithm to include
topological information from approximate surface reconstructions. For global
alignment, we use a graph-based approach making use of the same error metric
and iteratively refine the complete vehicle trajectory. In experiments, we show
that our approach can compensate for the effects caused by different point den-
sities up to very low angular resolutions and that we can build accurate and
consistent 3D maps in-flight with a micro aerial vehicle.

Keywords: Mapping, registration, micro aerial vehicles, approximate surface
reconstruction, Generalized-ICP

Accepted for Robotics and Autonomous Systems, Elsevier, to appear 2015.

1. Introduction

Micro aerial vehicles (MAVs) such as quadrotors have attracted much at-
tention in the field of aerial robotics in recent years. Their size and weight
limitations, however, pose a problem in designing sensory systems for environ-
ment perception. Most of today’s MAVs are equipped with ultrasonic sensors
and camera systems due to their minimal size and weight. While these small
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(a) Flying micro aerial vehicle with scanner (b) Example of a scan acquired in-flight

Figure 1: The laser scanner is mounted slightly below the MAV facing forwards. Continuously
rotating it allows an almost omnidirectional perception of its surroundings. The resulting 3D
scans (aggregated over one half rotation using visual odometry) show different point densities
within and between individual scan lines.

and lightweight sensors provide valuable information, they suffer from a lim-
ited field-of-view and cameras are sensitive to illumination conditions. Only
few MAVs [1, 2, 3, 4] are equipped with 2D laser range finders (LRF) that are
used for navigation. These provide accurate distance measurements to the sur-
roundings but are limited to the two-dimensional scanning plane of the sensor.
Objects below or above that plane are not perceived.

3D laser scanners provide robots with the ability to extract spatial infor-
mation about their surroundings, detect obstacles in all directions, build 3D
maps, and localize. In the course of a larger project on mapping inaccessible
areas with autonomous micro aerial vehicles, we have developed a lightweight
3D scanner [5] specifically suited for the application on MAVs. It consists of
a Hokuyo 2D laser range scanner, a rotary actuator and a slip ring to allow
continuous rotation. Just as with other rotated scanners, the acquired point
clouds (aggregated over a half rotation of the scanner) show the particular char-
acteristic of having non-uniform point densities: usually a high density within
each scan line and a larger angle between scan lines (see Figure 1). Since we use
the laser scanner for omnidirectional obstacle detection and collision avoidance,
we rotate it quickly with 1 Hz, resulting in a particularly low angular resolution
of roughly 9◦ to 10◦. The resulting non-uniform point densities affect neighbor-
hood searches and cause problems in local feature estimation and registration
when keeping track of the MAV movement and building allocentric 3D maps by
means of simulatenous localization and mapping (SLAM).

In this paper, we present a complete processing pipeline for building globally
consistent 3D maps with this sensor on a flying MAV. To compensate for the
non-uniform point densities, we approximate the underlying measured surface
and use this information in both initial pairwise registration of consecutive 3D
scans to track the MAV movement and graph-based optimization for building a
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consistent and accurate 3D map. For initial registration, we extend the state-of-
the-art registration algorithm Generalized-ICP (GICP) [6] to include topological
surface information instead of a point’s 3D neighborhood. We represent the
resulting trajectory in a pose graph [7] and connect neighboring poses by edges
representing point-pair correspondences between scans and encoding the same
error metric using topological surface information. This graph is iteratively
refined, re-estimating the point correspondences in each iteration, to build a
consistent 3D map.

This paper is an extended version of our previous works on registration and
mapping with such sparse 3D laser scans [8, 9]. It is organized as follows.
After a discussion of related work in Section 2, we present our registration
approach including the approximate surface reconstruction and the approximate
feature estimation in Section 3. In Section 4, we discuss the extension to a
complete SLAM system: we extend the registration approach to also estimate
the pose uncertainty and use this information for graph-based SLAM (single
edge between connected nodes) as a baseline system. We then introduce our
SLAM approach using multiple edges per connection where every edge encodes a
point-to-point correspondence (in terms of the GICP error metric). In Section 5,
we present the results of a thorough experimental evaluation of both the plain
registration approach and the two SLAM variants. Finally, we summarize the
main conclusions and discuss future work in Section 6.

2. Related Work

Particularly important for the autonomous application of MAVs is the abil-
ity to perceive and avoid obstacles. Building environment maps is necessary for
goal-directed navigation planning and executing the planned trajectories. In the
following, we discuss related works with a focus on 1) perception, 2) registra-
tion and 3) mapping. The former two allow sensing environmental structures,
keeping track of the motion of the MAV, and aggregating measurements in lo-
cal egocentric maps in order to be able to reliably avoid collisions. The latter
aims for building allocentric 3D environments for being able to plan paths and
missions.

2.1. Perception and Mapping with Micro Aerial Vehicles
Scaramuzza et al. [10] present vision-based perception, control and map-

ping for a swarm of MAVs. In contrast to our work, 3D mapping is done on a
ground station gathering visual keypoints from all MAVs, and dense 3D maps
are reconstructed from the final trajectories off-line. Moreover, the approach
is purely vision-based and restricted to downward-facing cameras whereas our
approach aims at omnidirectional perception thereby allowing to map environ-
mental structures that are not below the MAV.

For mobile ground robots, 3D laser scanning sensors are widely used due to
their accurate distance measurements even in bad lighting conditions and their
large field-of-view. For instance, autonomous cars often perceive obstacles by
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means of a rotating laser scanner with a 360◦ horizontal field-of-view, allowing
for the detection of obstacles in every direction [11, 12]. Up to now, such 3D
laser scanners are rarely used on lightweight MAVs—due to payload limitations.
Instead, two-dimensional laser range finders are often used [1, 2, 3, 4, 13, 14].
Using a statically mounted 2D laser range finder restricts the field-of-view to
the two-dimensional measurement plane of the sensor. This poses a problem
especially for reliably perceiving obstacles surrounding the MAV. When moving
however, and in combination with accurate pose estimation, these sensors can
very well be used to build 3D maps of the measured surfaces. Fossel et al. [15],
for example, use Hector SLAM [16] for registering horizontal 2D laser scans and
OctoMap [17] to build a three-dimensional occupancy model of the environment
at the measured heights.

Morris et al. [18] follow a similar approach and in addition use visual features
to aid motion and pose estimation. Still, perceived information about environ-
mental structures is constrained to lie on the 2D measurement planes of the
moved scanner. In contrast, we use a continuously rotating laser range finder
that does not only allow capturing 3D measurements without moving, but also
provides omnidirectional sensing at comparably high frame rates (2 Hz in our
setup by aggregating scans over one half rotation).

A similar sensor is described by Scherer et al. and Cover et al. [19, 20].
Their MAV is used to autonomously explore rivers using visual localization and
laser-based 3D obstacle perception. In contrast to their work, we use the 3D
laser scanner for both omnidirectional obstacle perception and mapping the
environment in 3D.

For building maps with a hand-held rotating 2D laser range finder, Zhang et
al. [21] compute edge points and planar points in the acquired range scans. They
split the SLAM task in two problems: matching range scans to obtain motion
estimates at a high frame rate and accurate registration for mapping at a lower
frame rate. The method produces accurate 3D maps of smaller environments
but does not detect loop closures, i.e., entering previously mapped regions.

2.2. 3D Scan Registration
The fundamental problem in 3D map building is registration in order to align

the acquired 3D laser scans and estimate the poses (positions and orientations)
where the scans have been acquired. Over the past two decades, many different
registration algorithms have been proposed. Prominent examples for estimating
the motion of mobile ground robots using 3D scan registration are the works of
Segal et al. [6], Nüchter et al. [22], and Magnusson et al. [23].

3D laser scanners built out of an actuated 2D laser range finder are usually
(especially on ground robots) rotated comparably slower than ours to gain a
higher and more uniform density of points. Most of the approaches to register
such scans are derived from the Iterative Closest Points (ICP) algorithm [24].
Generalized-ICP (GICP) [6] unifies the ICP formulation for various error metrics
such as point-to-point, point-to-plane, and plane-to-plane. The effect of using
this generalized error metric is that corresponding points in two 3D laser scans
are not directly dragged onto another, but onto the underlying surfaces. For our
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non-uniform density point clouds, however, GICP tends to fail since the local
neighborhoods of points do not adequately represent the underlying surface. We
adapt the GICP approach here to use extracted information from approximate
surface reconstructions in the acquired 3D scans.

Our approach explicitly addresses the non-uniform point densities and tries
to compensate for the resulting effects by using the approximated surface infor-
mation. An alternative for using such sparse data in registration and mapping
is to aggregate the point clouds in local maps and thereby increase the point
density as is done in another work [25] within the same project on MAV-based
mapping as the work at hand. Both ways constitute problems in their own right.

Bosse et al. [26] use a spring to passively articulate a 2D laser range finder
and present a registration algorithm for building accurate 3D point cloud maps.
Due to the passivity of the spring-based articulation, however, their sensor setup
cannot guarantee complete omnidirectional point clouds at fixed controllable
intervals as is the case for a continuously rotating scanner. Furthermore, it
requires the carrying vehicle to move in order to induce oscillation. For regis-
tration, Bosse et al. use a surfel-based approach and efficiently solve both ag-
gregating point clouds and building globally consistent 3D maps. Since surfels
are computed on local neighborhoods, the approach may suffer from the same
degradation effects as GICP when applied to the non-uniform density data of
our sensor setup.

2.3. Multi-View Scan Registration and SLAM
Simultaneous Localization and Mapping (SLAM) is a key problem in mobile

robotics. Registering pairs of consecutive laser scans on its own can only provide
estimates about the movement in between the poses where the scans have been
acquired but cannot be used for building consistent maps due to inaccuracies
and drift (when propagating estimated movements over registrations). Instead,
pure pairwise registration algorithms are usually used in the front-end of SLAM
systems to obtain a rough initial vehicle trajectory and to detect loop closures,
i.e., regions where the robot has been before.

For globally aligning all acquired scans and building a consistent map, the
registration problem is usually formulated in terms of a graph where poses or
landmark positions form the vertices, and view or movement constraints form
the edges. A standard approach is to encode relative pose estimates between
connected view poses (vertices) in a single edge, e.g., a homogeneous transfor-
mation matrix, together with a covariance estimate. We present such a system
making use of the proposed registration algorithm as a baseline system for com-
parison in Section 4.2. For optimizing a graph of poses with initial estimates
many different approaches have been proposed [27, 28, 29, 30]. For a survey on
different mapping problems and their relation to graph-based SLAM, we refer
the interested reader to the survey of Agarwal et al. [31]. The difficulty in our
case is that our laser scans are particularly sparse. Consequently, our estimated
transformations are accurate but not as accurate as each individual laser mea-
surement (see the results of our experimental evaluation of pairwise registration
in Section 5.1).
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As a second mean for compensating for the non-uniform densities in our
scans, we do not use a single edge between 3D scans to encode their relative
position but estimate point correspondences in between the scans and iteratively
refine the resulting system. For each correspondence, we add an edge to the
graph that follows the same error metric as our registration algorithm—again
using the information extracted from approximate surface reconstruction. To
optimize the resulting graph, we use g2o [7], a state-of-the-art open-source graph
optimization framework. In a final optional processing step, we build a 3D map
with the optimized poses using OctoMap [17] for being able to plan paths in
future missions of the MAV.

In multi-view scan matching, multiple poses from which scans have been
taken are determined simultaneously by aligning all scans in a single error func-
tion or optimization framework. In the 2D domain, a popular multi-view scan
registration approach is the algorithm proposed by Lu and Milios (LUM) [32].
Borrmann et al. extend this approach to six degrees of freedom for the alignment
of 3D scans and present methods to efficiently deal with the resulting nonlin-
earities [33]. Several further extensions and optimizations have been proposed
by the same and other authors since then. The resulting SLAM approach first
applies the ICP algorithm to align consecutive point clouds and then builds a
graph based on the determined connectivity of view poses similar to our ap-
proach. Both the determined relative transformations between view poses and
the sets of point correspondences are represented in the edges. From both trans-
formation and correspondences a measurement vector and its covariance matrix
are computed which are then fed as one block into a large linear system. The
linear system is then solved for the optimal relative transformations and view
poses. In contrast, in the proposed multi-edge approach, every correspondence
pair forms a block in the final non-linear error function. Its simplification is
thereby left to g2o, e.g., using sparse Cholesky decomposition. Furthermore,
LUM uses a point-to-point error metric as in the original ICP algorithm which
conflicts with the particularly sparse nature of our point clouds. Instead, we
approximate the underlying surface and use a probabilistic surface-to-surface er-
ror metric in both the initial pairwise registration and the point correspondence
edges of the graph.

Using multiple edges constraining the relative transformation between two
view poses also forms the underlying idea of landmark-based SLAM and bundle
adjustment. In landmark-based SLAM, features are extracted from the data
acquired by the moving sensor and used as landmarks in the graph. In order
to form constraints in the graph of poses and landmarks, the extracted features
are matched. Matching is usually performed in a higher-dimensional descriptor
space to ease the involved data association problem. Prominent examples in-
clude using 3D features such as FPFH by Rusu et al. [34] or appearance-based
features such as SIFT, SURF or ORB as in the evaluation of Endres et al. [35].
Repeatable features are not easily extractable from our 3D laser scans, especially
since the different scans are likely to not include the same parts of environmen-
tal structures due to the low angular resolution between individual scan lines.
Instead, our matching is purely based on proximity of the raw points. Due to
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the low angular resolution, it is very likely that none of the matching pairs is
formed by two measurements of the same point, but by measureing two points
in close vicinity, possibly on different surfaces. By using a robust surface-to-
surface error metric, we compensate for this inaccuracy. To compensate for false
correspondences in the initial matching steps, we iteratively refine both trans-
formation and matches in the initial registration and the global alignment with
a decreasing distance threshold in an ICP-like fashion. Hence, our approach
can be categorized as being somewhere between multi-view scan matching and
landmark-based SLAM.

Similar to our multi-edge global alignment step is the approach of Ruhnke
et al. [36]. They also use raw point matches as constraints in the graph and
apply a surfel-based error metric to iteratively refine both the sensor poses and
the positions of the points. Their approach can build highly accurate object
models but requires a rough initial alignment of the dense RGB-D data. In
constrast, we present a complete pipeline that is tailored for the challenging
non-uniform density point clouds instead of dense RGB-D data and that can
cope with unavailable and erroneous initial pose estimates. Both the initial reg-
istration and the multi-edge global alignment make use of approximate surface
reconstructions and the same surface-to-surface error metric.

Recently, Zlot and Bosse [37] presented a 3D mapping system for mines that
uses a continuously spinning SICK scanner. They use non-rigid surfel registra-
tion and graph optimization for aggregating point clouds and building consistent
maps. Compared to our work, their scanner is rotated slower, equipped with
an accurate inertial measurement unit, and mounted on a slowly driving truck.
Moreover, the aggregation is performed in larger local windows to increase the
density of the data in a similar fashion as Droeschel et al. who build local ego-
centric maps [25]. Instead, we address the problem of registration and mapping
directly using the sparse non-uniform density point clouds.

3. Registration of Sparse 3D Laser Scans

Under the assumption of good motion estimates (e.g., GPS, visual odometry,
or inertial measurement units) at least over short periods of time, acquired range
scans can be aggregated to form locally consistent 3D point clouds. Throughout
this paper, we will assume such an estimate as given (robust visual odometry)
and process point clouds aggregated over one half rotation of the laser range
scanner. For details on scan aggregation, initial motion estimate and sensor
characteristics, we refer to [5].

In contrast to the motion estimate being reliable over short periods of time
for aggregating point clouds, we do not assume a good pose estimate between
aggregated point clouds and good motion estimates over longer periods of time
in general. Instead, we design our approach to be robust against noisy, erroneous
and no initial pose estimates so as to estimate the motion of the MAV between
the acquisition of aggregated point clouds. This allows mapping and localization
purely based on point cloud registration even in case of sensor outages and other
localization errors.
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3.1. Registration of 3D Point Clouds
A point cloud is a data structure P used to represent a collection of multi-

dimensional points p ∈ P . In a 3D point cloud, the elements usually represent
the X, Y , and Z geometric coordinates of an underlying sampled surface. When
more information is available (such as color information) or information about
local surface normal n or curvature κ, the points p ∈ P become n-dimensional.

Given a source point cloud A with points a ∈ A, and a target point cloud B
with points b ∈ B, the problem of registration is to find correspondences between
A and B, and estimate a transformation T that, when applied to A, aligns all
pairs of corresponding points (ai ∈ A, bj ∈ B). One fundamental problem of
registration is that these correspondences are usually not known and need to be
determined by the registration algorithm.

Iterative registration algorithms align pairs of 3D point clouds by alternately
searching for correspondences between the clouds and minimizing the distances
between matches. A standard algorithm is the Iterative Closest Point (ICP)
algorithm [24]. In order to align a point cloud A with a point cloud B, it
searches for closest neighbors in B for points ai ∈ A and minimizes the point-
to-point distances d(T )

ij =bj−Tai of the set of found correspondences C in order
to find the optimal transformation T ?:

T ? = arg min
T

∑
(ij)∈C

‖d(T )
ij ‖

2. (1)

As a result, points in A are dragged onto their corresponding points in B. As-
suming (predominantly) correct correspondences, the ICP algorithm can reliably
register regular uniform density point clouds (if the initial alignment is not con-
siderably off). In case of our non-uniform density point clouds, closest points do
not correspond to the same physical point in the measured environment. Con-
sequently, the point-to-point error metric leads to dragging the high-density
2D scan lines onto another instead of correctly aligning sensed environmental
structures.

3.2. Generalized Iterative Point Cloud Registration
A particularly robust registration algorithm is Generalized-ICP (GICP) [6]

which generalizes over the different available error metrics (point-to-point, point-
to-plane, plane-to-plane) and thus takes into account information about the
underlying surface. Instead of minimizing the distances d

(T )
ij between corre-

sponding points ai and bj as in the ICP algorithm, it inspects the distribution

d
(T )
ij ∼ N

(
bj − Tai, ΣB

j + RΣA
i R

T
)

(2)

where R is the rotation matrix of T . The underlying assumption is that both
points in A and points in B are drawn from independent normal distributions,
i.e., ai ∼ N (âi,Σ

A
i ) and bj ∼ N (b̂j ,Σ

B
j ). The optimal transformation T ? best
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(a) Topology visualization (b) Example reconstruction

Figure 2: (a) Classic neighbor searches in non-uniform density clouds may only find points in
the same scan line (red), whereas a topological neighborhood (green) may better reflect the
underlying surface. (b) Example of an approximate surface reconstruction: edges in the quad
mesh connect neighboring points in the same scan and between neighboring scans. Points in
the first and last scan of a half rotation are not connected.

aligning A to B can be found using maximum likelihood estimation (MLE):

T ? = arg max
T

∏
ij∈C

p
(
d
(T )
ij

)
= arg max

T

∑
ij∈C

log
(
p
(
d
(T )
ij

))
(3)

' arg min
T

∑
ij∈C

d
(T )
ij

T(
ΣB
j + RΣA

i R
T
)−1

d
(T )
ij .︸ ︷︷ ︸

= simplified likelihood L(T )

(4)

The effect of minimizing (4) is that corresponding points are not directly dragged
onto another, but the underlying surfaces represented by the local covariance
matrices ΣA

i and ΣB
j . The covariance matrices are computed so that they ex-

press the expected uncertainty along the local surface normals at the points.
Consequently, the convergence of Generalized-ICP degrades with inaccurate es-
timates of the covariances with regular neighborhood searches as illustrated in
Figure 2a. If the neighborhood radius is too small, the covariance only reflects a
single scan line and not the surface. If it is too large, the covariance can become
inaccurate compared to the underlying surface.

At the heart of our approach is the idea to approximate the surfaces in the
point clouds in order to compensate for the non-uniform point densities and to
compute accurate covariances that better reflect the underlying surfaces.

3.3. Approximate Surface Reconstruction
In order to get a better estimate of the underlying covariances, we perform

an approximate surface reconstruction as done in our previous work [38] in the
context of range image segmentation. We traverse an organized point cloud
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P once and build a simple quad mesh by connecting every point p = P (u, v)
(v-th point in the u-th scan line) to its neighbors P (u, v + 1), P (u + 1, v + 1),
and P (u + 1, v) in the same and the subsequent scan line (see Figure 2). We
only add a new quad to the mesh if P (u, v) and its three neighbors are valid
measurements, and if all connecting edges between the points are not occluded.
The first check accounts for possibly missing or invalid measurements in the
organized structure. For the latter occlusion checks, we examine if one of the
connecting edges falls into a common line of sight with the viewpoint v = 0
from where the measurements were taken. If so, one of the underlying surfaces
occludes the other and the edge is not valid:

valid = (|cos θi,j | ≤ cos εθ) ∧
(
di,j ≤ ε2d

)
, (5)

with θi,j =
(pi − v) · (pi − pj)

‖pi − v‖ ‖pi − pj‖
, (6)

and di,j = ‖pi − pj‖2, (7)

where εθ and εd denote maximum angular and length tolerances, respectively. If
all checks pass, we add a new quad. Otherwise, holes arise. After construction,
we simplify the resulting mesh by removing all vertices that are not used in any
quad. A typical result of applying our approximate surface reconstruction to a
3D scan acquired by our MAV is shown in Figure 2b.

For the sparse point clouds acquired by the MAV the occlusion check is,
however, inaccurate since the larger angle ∆θ between scan lines causes that
occluding edges may not get scanned as in dense point clouds. That is, the
scanner may sample the surfaces farther away from the occluding boundaries.
Hence, it is often not possible to directly deduce an occlusion from the raw
measurements. Instead, we adapt the threshold εd for the maximum edge length
to capture the expected distance between neighboring points on the same surface
and the expected angular resolution within and between scan lines:

εd(di) =

{√
2 di tan ∆θ between scan lines, and√
2 di tan ∆φ within scan lines.

(8)

The threshold εd(di) depends on the measured distance to point pi, i.e., di =
‖pi−v‖ and is computed for every point. For neighboring points within a scan
line, we use a different threshold that corresponds to the angular resolution ∆φ
of the range scanner (and taking into account subsampling if applied).

3.4. Approximate Covariance Estimates
To estimate the covariance matrix of a point, we directly extract its local

neighborhood from the topology in the mesh instead of searching for neighbors.
Depending on the desired smoothing level (usually controlled with the search
radius), we can extend the neighborhood of a point to include the neighbors of
neighbors and ring neighborhoods farther away from the point.

Instead of computing the empirical covariances as in [6], we approximate
them using the local surface normals. We compute the normal ni for point pi
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directly on the mesh as the weighted average of the plane normals of the NT
faces surrounding pi:

ni =

∑NT

j=0(pj,a − pj,b)× (pj,a − pj,c)

‖
∑NT

j=0(pj,a − pj,b)× (pj,a − pj,c)‖
, (9)

with face vertices pj,a, pj,b and pj,c. We then compute ΣA
i and ΣB

i as in [6]:

ΣA
i = RA

ni

(
ε 0 0
0 1 0
0 0 1

)
RA

ni

T
, ΣB

j = RB
nj

(
ε 0 0
0 1 0
0 0 1

)
RB

nj

T
(10)

with rotation matrices RA
ni

and RB
ni

so that ε reflects the uncertainty along the
approximated normals nAi and nBi . The intuition behind this is that we assume
the point to lie on the approximated surface while not knowing where the point
is lying on the surface. The lower the ε the more local planarity is assumed
around the point. Consequently, with a low value (ε ≤ 10−3), the registration
error (4) to be minimized converges to a plane-to-plane error metric.

3.5. Registration with Approximate Covariance Estimates
The actual registration of, respectively, two point clouds and the two ap-

proximated surface meshes does not deviate from the original Generalized-ICP
algorithm or any other ICP variant. Given a source point cloud A and a target
point cloud B (usually the current and the last aggregated 3D point cloud),
we first compute approximate surface reconstructions for both clouds and re-
move all points not contained in any polygon of the mesh. Using the surface
approximations, we compute for all residual points (subsets A′ and B′) approx-
imate covariance estimates using (10). In each iteration, we then search for
closest points in B′ for all points a′ ∈ A′. Each found correspondence pair (ij)
contributes a measurement error to the non-linear optimization problem using
the generalized error metric (4). For finding the optimal transformation min-
imizing (4), we use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
which approximates Newton’s method. The required second-order derivatives
can be efficiently computed analytically due to the simple form of the simplified
likelihood L(T ) in (4). Optimization using Newton’s method with the found
correspondence pairs is stopped when the algorithm converges (usually in 3 to 5
iterations in our experiments) or when the maximum number of iteration steps is
reached (in our implementation 10). We inspect the computed pose change and
stop the iterative alignment if the pose no longer changes. In case of changes,
we apply the computed transformation and start the next iteration with new
correspondence pairs.

A typical example of registering non-uniform density point clouds using both
the original Generalized-ICP and our variant with approximate covariance es-
timates is shown in Figure 3. The low angular resolution in these point clouds
affects the convergence of the original Generalized-ICP. In effect, it aligns the
individual scan lines and not the sensed environmental structures. Hence, it
diverges even from a good initial pose estimate. Our approach accurately aligns
the two 3D point clouds.
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(a) Generalized-ICP (top and detail view) (b) Ours (top and detail view)

Figure 3: Registering non-uniform density point clouds. (a) Generalized-ICP suffers from
inaccurate covariance estimates and incorrectly aligns the two point cloud origins (see detail
view) and the individual scan lines. (b) Our approach correctly aligns the two point clouds.

For a thorough experimental evaluation of the convergence and divergence
behavior of our approach, we refer to the pairwise registration experiments
in Section 5. Overall, the approximate mesh registration can robustly align
sparse point clouds, but shows minimal inaccuracies in the final alignment (e.g.,
deviations in the range of centimeters when compared to ground truth pose
estimates).

4. Mapping with Sparse 3D Laser Scans

Registration of sparse 3D point clouds (Section 3) can be used to compute
the relative transformation between the view poses where two point clouds have
been acquired (or aggregated in our case). Likewise, sequential pairwise scan-to-
scan registration can be used to obtain an initial trajectory estimate. However,
by only using the last point cloud to align a newly acquired one, even small
registration errors accumulate and lead to a drift in the estimated trajectory.
The resulting trajectories are usually locally accurate and smooth but globally
not consistent. The drift can lead to inconsistencies in the map when returning
to a previously visited place (loop closures).

4.1. Graph-Based Simultaneous Localization and Mapping
Graph-based simultaneous localization and mapping (SLAM) aims at com-

puting globally consistent trajectories and maps by building and optimizing a
pose graph in which the edges encode the spatial relation between connected
poses. The graph optimization forms the back-end of the system while a front-
end detects loop closures and computes relative poses to feed the back-end.

In its simplest form, pairwise registration as in Section 3 can be used as a
front-end to determine an initial trajectory estimate and the vicinity of esti-
mated poses determines the connectivity in the graph, e.g., by connecting all
poses within a certain radius and having a similar orientation. Since the laser
scanner of our MAV perceives the environment almost omnidirectionally, we can
neglect the orientation of view poses and instead connect purely based on Eu-
clidean distance (see Figure 4a). In the following, we will present two versions
of vertex connectivity:
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1. a single-edge baseline system: a classic version with a single edge encod-
ing the relative transformation between two view poses and the associated
covariance matrix representing the uncertainty in the relative transforma-
tion, and

2. the proposed multi-edge system: a graph where the connectivity between
vertices is not represented using a single edge encoding a relative trans-
formation but instead using multiple edges each encoding a point-to-point
correspondence.

In both cases, the graph G = (V, E) represents view poses vi as a set of vertices
V and spatial relations between two view poses vi and vj as edges eij in the set
of edges E . Each edge in the graph encodes two entities: a local contribution
to the measurement error e and an information matrix H which represents
the uncertainty of the measurement error. The information matrix is defined
as the inverse of the covariance matrix, i.e., it is symmetric and positive semi-
definite. The difference between the two systems is the type and number of edge
constrains eij , i.e., the choice of e and H. In both cases, however, we model
and optimize the graph using the graph optimization framework g2o [7].

4.2. Baseline System — Single Edge Connections Encoding Pose & Uncertainty
A straightforward extension of our approximate surface registration ap-

proach to a graph-based mapping system can be achieved by first applying regis-
tration sequentially to pairs of consecutive point clouds (Pi, Pj=i+1) in order to
determine both the relative transforms ijT and the initial graph connectivity. In
this stage, all poses within a radius r get connected in the graph (see Figure 4a).
In the second phase, we register all connected pairs (Pi, Pj 6=i+1) that have not
yet been registered in the initial registration of consecutive point clouds. In
both stages we collect, for every registered pair of point clouds (Pi, Pj), the
estimated transformation i

jT as well as the associated covariance matrix Σi
jT

and its inverse, the information matrix Σ−1i
jT

.
In order to get an estimate of the relative pose uncertainty in the form of

Σi
jT

, we do not only use the estimated transform i
jT but also the set C of found

point correspondences. We compute Σi
jT

using the approximation by Censi [39]:

Σi
jT
≈
(
∂2L

∂x2

)−1
∂2L

∂z∂x
Σ(z)

∂2L

∂z∂x

T (
∂2L

∂x2

)−1
(11)

where L is the simplified likelihood function from Equation (4), z denotes the
individual found correspondences C between the two point clouds Pi and Pj ,
and Σ(z) the covariance of the correspondence pairs. Here, the relative trans-
formation between two view poses is not represented as a homogeneous trans-
formation matrix i

jT , but in a parameterized form x = (t, q)T with translation
t and rotation by the unit quaternion q.
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(a) Graph structure
vi vj

Pi
Pj

i
jT

(pi,m,pj,n)

(b) Connecting edges (one per correspondence)

Figure 4: Graph construction: (a) For each pose, we add a vertex to the graph. We connect a
vertex (green) to all neighboring vertices (red) within search radius r. (b) Instead of adding
a single edge (solid line) encoding the transformation i

jT between two vertices vi and vj

(as in the baseline approach in Section 4.2), we add an edge (dotted lines) for every point
correspondence between the two point clouds Pi and Pj in the proposed multi-edge approach
(Section 4.3).

After registration and covariance estimation, we add a single edge eij with

measurement error eij(T ) = i
jT (12)

and information matrix Hij = Σ−1i
jT

(13)

to G as a spatial constraint between view poses vi and vj .
For the actual optimization, we use sparse Cholesky decomposition and Lev-

enberg Marquardt within the g2o framework [7]. In order to compensate for
loop closures not present in the initial trajectory estimate but introduced by
the optimization, we re-compute the connectivity graph. In case of changes
(added connections, removed connections or changed connections), we optimize
the newly constructed graph again. If no such changes are detected or if a max-
imum number of iteration steps is exceeded (10 in our experiments), we stop
optimizing the graph and compute the final map by aggregating all point clouds
using the updated view poses.

4.3. Our approach — Multi-Edge Connections Encoding Point Correspondences
The acquired point clouds are quite sparse and, consequently, our estimated

transformations are accurate but not as accurate as each laser measurement
itself (see Section 5.1). When connecting view poses using a single edge encoding
transformation and relative pose uncertainty, all the individual correspondence
covariances are merged into a single estimate. The merged covariances provide
adequate information for refining individual transformations when optimizing
over multiple point cloud connections, but can lose the accuracy in individual
point correspondences.

Instead, we do not use a single edge between vertices to encode their rela-
tive pose but connect directly using estimated point correspondences in between
the point clouds (see Figure 4b). In particular, for every pair of neighboring
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vertices (vi,vj) we search for point correspondences between the respective 3D
point clouds Pi and Pj . The central idea behind this decision is three-fold:
1) we maintain local surface-to-surface alignment accuracy (over multiple point
clouds), 2) we gain a second mean for compensating for the non-uniform densi-
ties in our scans and 3) using point correspondences as edges allows iteratively
optimizing the graph and re-estimating the updated correspondences.

For each point correspondence, we add an edge to the graph again using
the information extracted from approximate surface reconstruction. Assuming
that we already computed local surface normals and approximate covariance
estimates as in Equations (9) and (10), the idea is to use the same error metric
in Equation (4) as in the pairwise registration. As a straightforward error mea-
surement between, respectively, two vertices vi and vj and the correspondence
pair (pi,m,pj,n), we use the point-to-point difference vector and approximate
its information matrix using the error metric of our registration algorithm:

measurement error eij,mn(ijT ) = pj,n − i
jTpi,m, (14)

and information matrix Hij,mn(ijT ) =
(
ΣPj
n + RΣPi

mRT
)−1

. (15)

The effect is that every edge contributes its approximate surface-to-surface error
term to the system information matrix—thus automatically giving lower influ-
ence to incompatible or false correspondences and quickly leading to alignment
even for the sparse non-uniform density point clouds.

For the actual optimization, we follow an iterative procedure by 1) esti-
mating correspondence pairs for all (or a subset of) points pi,m ∈ Pi in Pj
for every two vertices (vi,vj) that are to be connected and 2) optimizing the
resulting linearized system for a maximum of ten inner iterations. We repeat
these two steps for a maximum of ten outer iterations. For a fast initial coarse
alignment in early and an accurate refinement in later outer iterations, we use
a linearly decreasing distance threshold between correspondence pairs, starting
with double the distance between the vertices. In every outer iteration step, the
graph is optimized using dense Cholesky decomposition and Levenberg Mar-
quardt within the g2o framework [7]. For both inner and outer iterations, we
stop when the system has converged. Convergence in graph optimization (inner
iterations) can be detected based on the changes in both view poses and sys-
tem error as well as the damping factor applied by Levenberg Marquardt. For
detecting convergence in the overall graph refinement in the outer iterations,
we check whether the view pose connectivity and the correspondences between
connected view poses have changed. When no more changes are found and the
inner optimization has converged, we stop optimizing the trajectory estimate
and build the final map of the environment.

5. Experiments and Results

In order to assess the performance of our approach and the involved com-
ponents, we have run a series of experiments. For making the presented results
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Figure 5: Environment where the dataset was recorded. Shown are snapshots of all aligned
point clouds (dense, ∆θ = 1◦) and a photo of the arena.

both reproducible and comparable, we have recorded different datasets which
we make publicly available1.

5.1. Experiments on Pairwise Registration of Point Clouds
The first series of experiments concerns the robustness of our registration

approach in terms of both the convergence and the divergence behavior under
different resolutions (angles between individual scan lines) and under different
initial conditions (e.g., noise in the initial pose estimates).

Registration problems considerably vary depending on the availability and
quality of initial pose estimates. Assuming an optimal (ground truth) pose es-
timate, the point clouds are already aligned and a correct registration result
is equal to the initial estimate. That is, any transformation applied by the
registration causes the alignment to diverge from the optimal solution. Conse-
quently, a deviation from the ground truth transformation is considered an error
in translation and rotation. The divergence behavior is usually not examined
in related works but is of utmost importance here since the sparse point clouds
acquired by our MAV quickly cause standard registration approaches to diverge
when the angles between individual scan lines increase. We also analyze the
convergence behavior of the registration approach as is done in related works.
Here, the central question is if and how well a registration algorithm converges
to the optimal solution for initial pose estimates that are noisy or considerably
deviate from the optimal alignment.

In order to evaluate convergence and divergence behavior for different angu-
lar resolutions, we have created a dataset of organized point clouds containing
ground truth pose information. It was recorded using the same rotating laser
scanner but on a mobile ground robot standing still while acquiring 3D point
clouds—thus avoiding inaccuracies in laser scan aggregation. The dataset con-
tains point clouds from eight different poses with a total of 6890 2D laser scans
acquired over multiple full rotations at each pose. The total trajectory length
between the eight poses is roughly 50 m. It was recorded by Schadler et al. [40]
in the arena of the DLR SpaceBot Cup2 competition for semi-autonomous ex-

1We have made all datasets in this article publicly available. They can be obtained from
our MAV Laser Mapping Dataset Repository: http://www.ais.uni-bonn.de/mav_mapping

2NimbRo Centauro, DLR SpaceBot Cup: http://www.ais.uni-bonn.de/nimbro/Centauro
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Figure 6: Divergence behavior for decreasing density (increasing angles ∆θ between scan
lines) of our approximate surface registration approach compared to Generalized-ICP for the
alignment of two pairs of point clouds (left and right). Translation errors et,i increase with
an increasing angle ∆θ between scan lines. Our approach can compensate for non-uniform
densities and achieves fairly acceptable results even for larger angles between scans.

ploration and mobile manipulation in rough terrain (see Figure 5). For the
dataset, we collected all 2D scan lines acquired at each of the poses, sorted
them by rotation angle and re-organized the data to obtain eight full resolution
organized point clouds (∆θ ≈ 0.3◦). We annotated each point cloud with the
ground truth pose estimate obtained from an accurate multi-resolution surfel
mapping approach for dense point clouds [40]. For the experimental evalua-
tion, we generated thinned out versions of these eight original point clouds with
different angular resolutions and angles ∆θ ∈ [1◦, 90◦].

For both convergence and divergence behavior, we measure registration suc-
cess in terms of the registration error. In particular, for consecutive point clouds
acquired at times i and i+ 1, we inspect the relative deviations Ei with

Ei :=
(
Q−1i Qi+1

)−1 (
P−1i Pi+1

)
(16)

between ground truth poses Q and estimated poses P. As suggested in [41], we
focus on the translation error

et,i = ‖trans (Ei) ‖2, (17)

i.e., the Euclidean distance between the estimated (relative) pose estimates
(trans (·) extracts the translation component). In case of P i = Qi and P i+1 =
Qi+1, Ei is the identity matrix and et,i = 0.

Divergence Behavior. In order to evaluate the divergence behavior, we have
chosen pairs of consecutive point clouds from the data set and registered the
respective thinned out copies. In a comparative evaluation, we registered the
point clouds of each pair using both the original Generalized-ICP algorithm and
our variant with approximate surface registration. Figure 6 shows the results of
this comparison with decreasing angular resolution (increasing angle ∆θ).

The presented results include only two of the seven pairs of consecutive
point clouds; all results are available online together with the data set. Both
algorithms achieve optimal registration results for the dense point clouds with
deviations from ground truth of only few centimeters. In fact, it is hard to tell
whether the pose estimate used as ground truth is better or worse than the
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Figure 7: Convergence behavior of our approach for poor initial pose estimates at ∆θ = 10◦

(using the same pairs of points clouds as in Figure 6). Registration success is measured
w.r.t. the translation error et,i using a strict threshold (green) and a weaker threshold (yel-
low). Exceeding the weaker threshold is considered a failure (red). Each subplot encodes
translation errors along the x and y axes with seven initial orientations from −80◦ to 80◦ ro-
tation error with 0◦ pointing along the horizontal axis. For comparison, despite few exceptions
Generalized-ICP fails in all cases.

achieved alignment. For increasing angles between scan lines, the Generalized-
ICP algorithm quickly starts to fail showing the aforementioned behavior of
dragging individual scan lines (and the scan origins) onto another instead of
aligning sensed environmental structures. In its extreme, both scan origins co-
incide and the maximum error in the registration results reflects the Euclidean
distance between the ground truth poses. Our approach achieves fairly ac-
ceptable results even for very low angular resolutions (angles between scans of
∆θ > 15◦). For smaller angles (∆θ ≤ 10◦), the resulting alignments are very
accurate.

Convergence Behavior. In order to evaluate the convergence behavior, we have
used the same pairs of point clouds as in the evaluation of the divergence behav-
ior. Instead of using all available angular resolutions, we focus on the expected
angular resolution of our scanner when flying (i.e., ∆θ ≈ 9◦). For each scan pair,
we registered the respective point clouds under different initial conditions and
quality of initial pose estimates. In particular, we simulate inaccuracies using
translation errors of up to 2 m along the x and y axes (i.e., the plane the robot
is moving on) and rotation errors of up to 80◦ about the z axis (i.e., affecting
the robot’s heading estimate).

In order to measure registration success for the different initial conditions,
we have chosen two thresholds for the final translation error et,i (17): a stricter
one (0.25 m) and a weaker one (1 m) similar to the evaluation of registration
algorithms by Magnusson et al. [42]. The intuition behind the two thresholds
is that poses within the stricter translation threshold are difficult to tell apart
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for a human observer; poses within the weaker threshold are inaccurate but still
fairly well aligned. We consider a registration as failed if the translation error
exceeds the weaker threshold. Figure 7 presents the results of the evaluation
with different initial conditions for the same two scan pairs as used in the eval-
uation of the divergence behavior. As can be seen, our approach fails in only
very few cases (with high initial rotational error and/or high translation error).
In the majority of registrations (even with high initial rotational and transla-
tion errors), our approach achieves an acceptable alignment even with the strict
threshold. With very few exceptions, where the translation error stays within
the weaker threshold, the Generalized-ICP algorithm fails in almost all cases.

5.2. Experiments on Simultaneous Localization and Mapping
In order to evaluate the performance of our complete mapping pipeline, we

recorded a dataset with the flying MAV in a smaller indoor scenario equipped
with a motion capture system. It contains a total of 1772 laser range scans in
82 aggregated point clouds. The overall trajectory length is 18.10 m. In a com-
parative evaluation, we process the complete dataset with different approaches:
the original Generalized-ICP algorithm vs. our approximate mesh registration
and the baseline SLAM approach with single edge connections vs. the proposed
multi-edge approach. We also compare the two SLAM variants without prior
registration, i.e., optimizing the initial vehicle trajectory. In order to evaluate
the performance of the approaches under different initial conditions (quality of
initial pose estimates), we run three series of experiments: with visual odometry
estimates as initial pose estimates, without initial pose estimates (all transfor-
mations being identity), and with pose estimates considerably affected by noise
(translation errors of up to 2 m and rotation errors of up to 45◦).

For evaluating the accuracy of the pose estimates, we use an error metric
proposed in [41]: the absolute trajectory error (ATE). The ATE focuses on
global consistency by aligning and directly comparing absolute pose estimates
(and trajectories):

ATE (Fi:n) :=

(
1

m

m∑
i=1

‖trans (Fi (∆)) ‖2
)1/2

(18)

with Fi(∆) := Q−1i SPi, where S is the rigid-body transformation mapping the
estimated trajectory Pi:n to the ground truth trajectory Qi:n. The operator
trans (F) extracts the 3× 1 translational component of F.

For evaluating the quality of the resulting map (aggregated point map of all
aligned point clouds), we use a measure of mean map entropy. For every point
pi in the resulting point map P , we compute the local entropy h by:

h(pi) =
1

2
ln |2πeΣ(pi)| , (19)

where Σ(pi) is the covariance of the points in a radius r around pi. The mean
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map entropy H(P ) is then averaged over all points pi in the map:

H(P ) =
1

|P |

|P |∑
i=1

h(pi), (20)

where |P | is the number of points in P . The intuition behind this metric is the
following: the sharper a map region is the lower is the value of the local point
entropies in this region. That is, it encodes how planar the region appears in the
final map. Consequently, a high-quality map with flat walls, floor and ceiling as
well as sharp corners and edges will have a lower map entropy compared to a map
resulting from a globally consistent but slightly inaccurate trajectory estimate.
However, the metric assumes that the maps to be compared are roughly globally
consistent for a fair comparison. Because of that, we also visually inspect the
resulting maps and mark those that show inconsistencies.

In Figure 8, we report both the mean map entropy of the resulting point
maps and the absolute trajectory errors (with root mean square error (RMSE),
mean, standard deviation (stdev), min. and max. translation error). The most
important finding here is that the proposed multi-edge graph-based approach
with the approximate surface registration error metric outperforms the baseline
approach with standard single-edge connections. Moreover, our approach yields
exactly the same optimal results for all initial conditions.

Approximate Mesh Registration vs. Generalized-ICP algorithm. As can be ex-
pected from the direct comparison on pairwise registration in Section 5.1, our
variant with approximate surface information clearly outperforms the origi-
nal Generalized-ICP algorithm. The more accurate covariance estimates com-
puted directly on the approximated surfaces allow correcting local alignments.
Naturally, the estimated trajectory still drifts away from the ground truth esti-
mate since smaller inaccuracies are accumulated in pairwise registration. Con-
sequently, the resulting point map is globally not consistent.

SLAM with Multi-Edge vs. Single-Edge Connectivity. Both approaches can ad-
equately compensate for the drift and produce globally consistent trajectories
and maps. Still, by using locally very accurate correspondence covariances in
the edges of the graph, the multi-edge variant achieves more accurate alignments
and scores better in both absolute trajectory error and mean map entropy. Even
in case of large simulated errors in the pose estimates, the initial registration
with approximate surface information allows both variants converging to a glob-
ally consistent estimate.

SLAM without initial registration. In addition to the proposed pipelines of ini-
tial registration and subsequent pose graph optimization, we also evaluated the
performance of pose graph optimization without initial registration, i.e., di-
rectly on the initial trajectory estimates. Here, the multi-edge variant quickly
converges to its solution (within at most 5 outer iterations), regardless of the
quality of the initial pose estimates. In fact, the resulting trajectories and maps
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(b) Absolute trajectory error and map entropy under different initial conditions

Figure 8: Results for the Motion Capture Dataset: (a) Top views of the aligned scans using
our approach and (b) absolute trajectory error and map quality for the different approaches
under different initial conditions: visual odometry as initial pose estimates, no initial pose
estimates, and noise-affected pose estimates simulating errors (±200 cm,±45◦, uniformly dis-
tributed).
Legend: GICP (Generalized-ICP), MR (Mesh Reg., Generalized-ICP with approximate covari-
ances), BL (single edge connections, Section 4.2), OPT (multi-edge connections, Section 4.3).
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are almost identical. The baseline approach converges considerably slower (es-
pecially for large errors in the initial pose estimates) and does not find a globally
consistent trajectory estimate in 10 iterations.

5.3. Results of Complete Mapping Missions with the Micro Aerial Vehicle
The small indoor environment in the previous experiment series does not

pose major challenges. In fact, since it is only a single room where all environ-
mental structures can be sensed from every view pose, the data set constitutes
the best case for registration algorithms.

As a proof-of-concept for the complete system, we conducted two outdoor
mapping missions. In these missions, the micro aerial vehicle autonomously
navigated to a set of predefined waypoints in order to map a building of Gut
Frankenforst—a research station operated by the Institute for Veterinary Re-
search at the University of Bonn (see Figure 9a). Not only at the predefined
waypoints but over the whole trajectory, the MAV collected laser range scans
which where then processed offline by our approximate mesh registration and
multi-edge pose graph optimization approach. This environment poses far more
challenges than the indoor scenario: most notably a larger part of the measure-
ments do not lie on the distinctive structures of the building but on vegetation
around the building, thus forming rather random measurements when seen in
individual sparse point clouds. Moreover, the point clouds only capture parts of
the environment making it necessary to correctly detect and align loop closures.

The first mission aims at mapping the front facade of the building. The
MAV captured a total of 2409 laser range scans over a trajectory of 30.43 m
along the facade of the building. On a single core of an Intel Core i7-3740QM
CPU, our approach took 92 s to construct a globally consistent point map out
of the 118 aggregated point clouds. Most of this time was spent on the pose
graph optimization while aggregating and pre-processing point clouds as well
as registering consecutive point clouds was a matter of only few milliseconds
per cloud. The pose graph optimization converged after four iterations. The
resulting point map and trajectory estimate are shown in Figure 9b.

In the second mission, waypoints were distributed around the complete build-
ing. The MAV traveled a total of 307.13 m to reach all waypoints and collected
21 475 laser range scans. The scans were aggregated to 859 point clouds. Our
approach took roughly 200 s to align all point clouds and construct a globally
consistent map of the building and the surrounding vegetation. The resulting
point map and trajectory estimate are shown in Figure 9c. Finally, we construct
an OctoMap [17] as a memory-efficient representation of the environment, e.g.,
for being able to plan paths for future missions. It is shown in Figure 9d.

6. Conclusions and Future Work

We have presented a complete pipeline for registration and mapping with
particularly sparse laser scans acquired by an autonomous MAV. The non-
uniform point densities within and between individual laser range scans in the
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(a) Photo of the building (b) Mapping the front facade: point map and trajectory

(c) Mapping the building: point map and trajectory (d) Final OctoMap of the building

Figure 9: Results of two complete missions for mapping a building (a): a shorter mission
for mapping the front facade (b) and a longer mission for mapping the complete building
(c). Shown are both the resulting map as an aggregation of all aligned point clouds and the
estimated vehicle trajectory. The constructed OctoMap [17] is shown in (d).

aggregated point clouds negatively affect standard approaches to registration as
well as neighborhood searches and local feature estimation. In order to com-
pensate for the non-uniform point densities in the point clouds, we exploited
the organized data structure and computed an approximate surface reconstruc-
tion. Point features such as local surface normals and covariances were then
deduced from the topology in the resulting mesh in order to obtain proper esti-
mates of the underlying surface even in regions where the measurement density
is particularly sparse.

We presented a registration approach—a variant of the Generalized-ICP
algorithm—that makes use of the approximated surface information. It is able
to adequately align aggregated point clouds regardless of the quality of initial
pose estimates. Moreover, experiments have shown that the proposed approach
clearly outperforms the original Generalized-ICP algorithm for the sparse point
clouds acquired by our MAV. It is very likely that the combination of approx-
imate surface reconstruction and deducing surface statistics from the resulting
mesh can also improve the performance of other surface-based registration al-
gorithms, e.g., the one of Magnusson et al. [23].

For being able to construct globally consistent 3D environment maps, we
have presented an approach to pose graph optimization again making use of
the approximated surface information. Instead of representing relative pose
estimates in single edges between connected vertices in the graph, it uses one
edge per point correspondence between the acquired point clouds. Each of
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these edges encodes the same error metric as in the registration approach. Our
experiments indicate that this multi-edge variant shows superior performance
compared to a baseline system following the single-edge approach with robust
covariance estimates.

In a final experiment, we could demonstrate that our approach is able to ad-
equately align point clouds aggregated in real mapping missions and to provide
both globally consistent environment maps and reliable trajectory estimates.

In this paper, the presented approach was only used offline to process the
data after it had been acquired in a mapping mission. Furthermore, our ap-
proach adequately aligns the aggregated point clouds but does not change the
pose of individual laser range scans within an aggregated point cloud. That
is, our approach can compensate for pose estimation errors between view poses
where point clouds have been aggregated but not for errors in the motion esti-
mation during point cloud aggregation. In the worst case, a single point cloud
may become ill-formed and not correctly aligned to the other point clouds (i.e.,
an outlier point cloud in the resulting map). It is a matter of future work to
apply the registration and pose graph optimization pipeline online and also to
correct the pose of individual laser range scans once the neighboring aggregated
point clouds are aligned.
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