
Approximate Triangulation and Region Growing for
Efficient Segmentation and Smoothing of Range Images

Dirk Holz and Sven Behnke

University of Bonn, Autonomous Intelligent Systems Group, Friedrich-Ebert-Allee 144,
53113 Bonn, Germany

Abstract

Decomposing sensory measurements into coherent parts is a fundamental prereq-
uisite for scene understanding that is required for solving complex tasks, e.g., in
the field of mobile manipulation. In this article, we describe methods for efficient
segmentation of range images and organized point clouds. In order to achieve
real-time performance in complex environments, we focus our approach on sim-
ple but robust solutions. We present a fast approach to surface reconstruction
in range images and organized point clouds by means of approximate polygonal
meshing. The obtained local surface information and neighborhoods are then
used to 1) smooth the underlying measurements, and 2) segment the image into
planar regions and other geometric primitives. A comparative evaluation using
publicly available data sets shows that our approach achieves state-of-the-art
performance while being significantly faster than other methods.

Keywords: Scene understanding, range image segmentation, approximate
triangulation, multilateral smoothing

1. Introduction

As robots and autonomous systems move away from laboratory setups to-
wards complex real-world scenarios, both the perception capabilities of these
systems and their abilities to acquire and model semantic information must
become more powerful. A key issue for this is the decomposition of sensory
measurements into homogeneous parts that are relevant for the tasks of the
robot. For mobile manipulation in complex environments, for example, the
perception of objects and their surroundings is a key prerequisite. A common
approach [29] in 3D object (and environment) perception is to exploit typical

IThis research has been partially funded by the FP7 ICT-2007.2.2 project ECHORD (grant
agreement 231143) experiment ActReMa and the FP7 ICT-2013.2.2 project STAMINA (grant
agreement 610917).

Email address: {holz, behnke}@ais.uni-bonn.de (Dirk Holz and Sven Behnke)

Preprint submitted to Elsevier December 24, 2013

behnke
Schreibmaschine
Accepted for Robotics and Autonomous Systems, to appear 2014.

(a) Approx. mesh (b) Smoothed mesh (c) Segmentation (d) Polygonalization

Figure 1: Example of surface reconstruction and (plane) segmentation on a
RGB-D point cloud: (a) initial approximate triangulation; (b) smooth mesh af-
ter multilateral filtering; (c) result of segmenting planes in the mesh (red trian-
gles are assigned to multiple planes and lie along borders); (d) polygonalization
as a collection of alpha shapes.

characteristics of man-made environments and to apply the following processing
pipeline:

1.) detect horizontal support planes,

2.) extract and cluster points on top of these planes, and

3.) perform further processing in the found clusters, e.g., recognizing, classifying
or tracking objects.

One of the fundamental challenges in this pipeline is to segment the 3D data into
planes and other geometric primitives—or regions of local surface continuity in
general.

In this paper, we address the problem of segmenting range images and orga-
nized point clouds in real-time using only a single CPU. The central idea of our
approach is to approximately reconstruct the surface and segment the range im-
age by growing regions using the resulting local mesh neighborhoods. Through
the use of easily exchangeable components, our generalized region growing ap-
proach allows for different region models (e.g., planes) to be segmented in the
data. We present models for segmenting planes, regions of local surface conti-
nuity, and simple geometric primitives at high frame rates (see Figure 1).

We further use the same mesh neighborhoods to efficiently compute local
surface normals and curvature estimates, as well as to smooth both the 3D
measurements and the computed normals using a multilateral filter.

This paper is an extended version of our previous work [12]. It is organized as
follows: After a discussion of related work on range image and 3D plane segmen-
tation methods in Section 2, we give an overview on our approach in Section 3.
Our methods for approximate surface reconstruction, efficient computation of
local surface normals and curvature, and filtering of the constructed mesh are
presented in Section 4. In Section 5, we describe our generalized region growing
algorithm as well as different models for plane segmentation and the detection
of other geometric primitives. We investigate different camera noise models that
assist both initial mesh construction and segmentation in Section 6. We eval-
uate efficiency and robustness of our approach on multiple publicly available

2

data sets and summarize the results in Section 7. We show that our approach
achieves state-of-the-art performance while being faster than other methods.

2. Related Work

Research on computer and robot vision has yielded a wide variety of ap-
proaches to range image segmentation—and plane segmentation in particular.
Hoover et al. [16] compiled a survey and performed an evaluation of early work.
For an overview on more recent work, we refer to the survey of Vosselman
et al. [36]. In principle, four different types of approaches can be distinguished
according to the underlying working principle: methods using variants of the
random sample consensus (RANSAC) algorithm [6], 3D Hough transforms, scan
line grouping, and region growing.

2.1. Segmentation based on Sample Consensus

RANSAC-based approaches try to find models for geometric primitives that
best explain a set of points and the set of inliers supporting it. For segment-
ing a complete range image, Lee et al. [18] sequentially find a model using
RANSAC, remove inliers from the original data set, and continue the segmen-
tation with the residual points. Silva et al. [31] first identify connected regions
and apply RANSAC region-wise. Gotardo et al. [8] compute an edge map for
pre-segmentation and fit model parameters using a robust estimator based on
the M-estimator sample consensus (MSAC) by Torr and Zisserman [34].

Another efficient solution to the problem of segmenting even unorganized
point clouds and detecting simple geometric primitives such as planes, cylin-
ders, and spheres has been proposed by Schnabel et al. [30]. They decompose
unorganized point clouds using octree subdivision and apply RANSAC only to
subsets of the original point cloud.

In previous work [14], we adapted the perception scheme from Section 1
as well as the techniques from [29] and [30], and made them applicable to the
measurements of time-of-fight (ToF) cameras. We presented techniques to cope
with the specific error sources of the cameras, and to speed up processing by
exploiting the image-like data organization. After detecting the most dominant
plane, we applied the octree-based primitive detection of Schnabel et al. [30] only
to already extracted and segmented points above that plane. In [13], we further
sped up the segmentation process by using integral images for computing local
surface normals more efficiently, and using the index neighborhood underlying
the 3D data to extract and track segments of points and object candidates,
respectively. The overall approach is applicable in real time on a Microsoft
Kinect RGB-D camera and has been used for real-time object tracking and
grasp planning [33].

2.2. Hough-based Plane Segmentation

The Hough transform is the de-facto standard for finding lines and circles
in 2D images. Various extensions to 3D exist that try to find, respectively,

3

planes and maxima in histograms over the possible space of plane orientations
and distances. For an overview and an evaluation of Hough-based segmentation
approaches, we refer to the works of Vosselman et al. [36] and Borrmann et al. [3].

RANSAC- and Hough-based segmentation share a common disadvantage.
Points belonging to the same segment do not necessarily lie on connected com-
ponents. Both approaches will merge plane segments if they share a common
orientation and distance to the origin. For example, in a shelf with vertical sep-
arators, boards on the same level are merged, although they do not physically
lie on the same surface. In addition, Hough-based segmentation may suffer from
discretization effects.

In [13], we present a fast plane segmentation approach that uses a similar
parameter space as the Hough transform. We pre-cluster points and segment
planes first in normal space and then, for each cluster, in distance space to ob-
tain individual planes. We compensate for discretization effects by conducting a
post-processing step in which neighboring segments are merged if their param-
eters do not considerably deviate. Still, unconnected planar patches may get
merged into the same cluster (in contrast to scan line grouping and the region
growing-based approaches following).

2.3. Scan Line Grouping

In the context of segmenting 3D laser range scans, another popular approach
is scan line grouping. It aims for computational efficiency by first detecting
lines in planar cuts (and 2D range scans forming a 3D scan), and by merging
neighboring line segments to regions in a second step. The basic idea behind
this principle is the observation that planes in a 3D scan form straight lines
in two-dimensional scan lines and that points on the same line segment belong
to the same 3D plane [17]. Jiang and Bunke [17] store detected line segments
in a link-based data structure that eases region growing for extracting planar
patches from detected lines. Nüchter et al. [24] follow a similar approach but use
RANSAC and ICP for plane detection, and label detected planes as belonging
to floor, ceiling and walls. Gutmann et al. [9] improve various aspects of the
original formulation by computing and analyzing statistics about points on a
scan line for splitting line segments and growing regions. An et al. [1] first cluster
the scan lines and only consider the end points of line segments to speed up line
and plane detection. Recently, Georgiev et al. [7] applied scan line grouping
on data acquired from RGB-D cameras. We include the approach of Georgiev
et al. in our experimental evaluation.

2.4. Segmentation using Region Growing

The idea of region growing-based segmentation is to exploit the image-like
data structure of organized point clouds. Hähnel et al. [10] connect neighboring
points in 3D laser range scans to a mesh-like structure. The scans are then
segmented recursively by merging connected patches that are likely to lie on the
same planar surface. Poppinga et al. [27] apply the same approach to Time-
of-Flight cameras and re-formulate the algorithm in an incremental fashion.

4

They grow planar regions by adding neighboring points whose distances to the
currently grown plane lie below a threshold. The centroid and covariance matrix
for estimating the plane’s parameters are thereby updated incrementally.

Here, we follow a similar approach for segmenting planes. Instead of incre-
mentally computing the covariance matrix however, we compute the normals
for all points beforehand and simply average local surface normals to obtain an
estimate of the plane normal. That is, we only store and incrementally update
the centroids in both Cartesian and normal space.

Other popular region growing approaches to range image segmentation make
use of local surface curvature. Regions are grown until points with a considerably
larger curvature are reached. Just like Gotardo et al. [8] for RANSAC-based
segmentation, Harati et al. [11], first compute an edge map to find connected
regions of local surface continuity. Rabbani et al. [28] approximate local surface
curvature by first fitting planar segments to local point neighborhoods and then
computing, for each point, the distance to that plane. Recently, Cupec et al. [5]
followed a similar approach. They first apply 2.5D Delaunay triangulation on
a range image to obtain an initial triangular mesh and then use the maximum
distance of an examined point to all triangles in a region to determine whether
or not the point is added.

Here, we deduce a surface reconstruction directly from the image-like data
structure, and use the local ring neighborhood around vertices to 1) efficiently
compute local surface normals and curvature estimates, and 2) efficiently smooth
the depth measurements using a multilateral filter. Our framework allows for
using different types of models for region growing, including the approaches of
Rabbani et al. [28], Cupec et al. [5] and Poppinga et al. [27], as well as our fast
approximation (see Section 5.2).

3. Approach

The overall processing pipeline of our approach is composed of the following
components:

1. Deducing an approximate mesh from the image neighborhoods.

2. Using the mesh neighborhoods to compute approximate local surface nor-
mals and curvature estimates.

3. Multilateral filtering to smooth both points and normals.

4. Segmentation based on region growing (using different region models de-
pending on the desired segmentation).

As an optional last step, we replace found segments by the geometric primitives
best fitting the contained points in order to obtain a compact representation.
Planes are replaced by polygons, e.g., the convex hull and the model parameters
for the plane. An overview on our system is presented in Figure 2.

5

Approx. meshing

(Section 4.1)

Computing normals

(Section 4.2)

F
ilte

rin
g

(S
e
ctio

n
4
.3
)

(Section 5.1)

Region segmentation

(Section 5.4)

Computing hulls

Figure 2: Processing pipeline (following the black arrows from top left): for an
input organized point cloud or range image, we first deduce an approximate tri-
angle or quad mesh. We efficiently compute local surface normals and curvature
directly on the mesh and apply a multilateral filter to smooth both the points
and their normals. The smoothed mesh is then segmented into planar regions.
In a last (optional) processing step, detected planes are replaced by polygons.

Compared to related work, our approach is particularly efficient since local
point neighborhoods as well as distances and changes in surface orientations
between neighboring points are not only computed efficiently using the approx-
imate mesh but also cached in the mesh structure for further processing. All
components described in the above list use the same cached neighborhoods.

4. Fast Approximate Surface Reconstruction

4.1. Exploiting Structure for Fast Approximate Meshing

The central idea of our surface reconstruction approximation is to deduce
the desired mesh structure directly from the image-like organization of mea-
surements. In fact, the following algorithms could easily be applied on local
index neighborhoods in range images. However, an approximate mesh allows
for 1) the application of a wide variety of sophisticated algorithms for process-
ing meshes, and 2) the storage of edge weights for caching point attributes or
relations between points, e.g., differences in local surface normal orientations
or the difference vectors for integral image-based normal computation as in our
previous work [13].

We traverse a given range image (or organized point cloud) R once and check
for every point pi = R(u, v):

6

(a) Quad (b) Adaptive (c) Left cut (d) Right cut

Figure 3: Fast approximate meshing using a quad mesh (a) and different trian-
gulations (b-d). Compared to the adaptive approach (b), triangulations using
only left cuts (c) or only right cuts (d) can be obtained slightly faster.

• R(u, v) and its neighbors R(u, v + 1), R(u+ 1, v + 1), and R(u+ 1, v) (in
the next row and the next column) are valid depth measurements.

and

• All edges between R(u, v) and these three neighbors are not occluded.

The first check is necessary because of the structure in the sensory data that
we are exploiting. If the sensor cannot acquire a valid depth measurement for
a certain pixel, it has to store an invalid one, in order to keep the structure
organized.

The latter occlusion checks can be efficiently done by examining the differ-
ence vectors between pi and its three neighbors. If one of the difference vectors
falls into a common line of sight with the viewpoint from where the measure-
ments were taken (the focal point f = 0), then one of the underlying surfaces
occludes the other. The condition for having an occluded edge between point
pi and its neighbor pj can be formulated as

valid = (|cos θi,j | ≤ cos εθ) ∧
(
di,j ≤ ε2d

)
, (1)

with θi,j =
(pi − f) · (pi − pj)

‖pi − f‖ ‖pi − pj‖
, (2)

and d = ‖pi − pj‖2, (3)

where εθ and εd denote maximum angular and length tolerances, respectively.
In the same way, we can check for jump edges [21], i.e., erroneous measure-
ments often induced by range sensors in the vicinity of occlusions and depth
discontinuities.

If all checks pass, R(u, v) and its neighbors are used to extend the so far built
mesh. Otherwise, holes arise. Referring to Fig. 3, we distinguish four types of
meshes:

1. Quad meshes are formed by connecting pixel R(u, v) to R(u, v+1), R(u+
1, v + 1), and R(u+ 1, v).

7

(a) original

(b) filtered

Figure 4: Two views on an adaptive triangular mesh (a) before and (b) af-
ter filtering. The surface is considerably smoothed while preserving edges and
corners.

2. Fixed left cut and right cut meshes are formed by cutting quads either
from top right to bottom left (left cut) or from top left to bottom right
(right cut).

3. Adaptive triangulation cuts the quad along the diagonal that has a smaller
length. Compared to the fixed triangulations, it achieves a higher accuracy
in the vicinity of edges.

For triangulations, a single invalid neighbor causes that only one triangle is
added. After construction, we simplify the resulting mesh by removing all ver-
tices that are not used in any polygon. Example triangulations are shown in
Figures 1 and 2.

4.2. Fast Computation of Surface Normals and Curvature

We compute the local surface normal ni for point pi as the weighted average
of the plane normals of the NT faces surrounding pi. Using the cross product
between the difference vectors of the bounding vertices to compute the face
normals and choosing the weights to be proportional to the area of triangles
removes the need of normalizing the face normals beforehand. Thus, we can
obtain ni as:

ni =

∑NT

j=0(pj,a − pj,b)× (pj,a − pj,c)

‖
∑NT

j=0(pj,a − pj,b)× (pj,a − pj,c)‖
, (4)

where pj,a, pj,b and pj,c form triangle j. In the actual implementation, we
simply iterate over the faces, compute the difference vectors and their cross
products, and add them to the normals of the involved points. Finally, we

8

normalize all point normals at once. An example of computed local surface
normals (color coded) can be seen in Figure 2.

Since we compute local surface normals on the mesh deduced from the range
image and not on the range image itself (as in the case of integral image-based
normal estimation [13, 15]) we get proper normal estimates even in the vicinity
of depth discontinuities whereas image-based methods tend to smooth over edges
and depth discontinuities. We approximate the local surface curvature of a point
by the standard deviation of the normal directions of its neighbors [19].

4.3. Multilateral Filtering

Naturally, sensor measurements are affected by noise. Since this noise may
hinder further processing, e.g. segmentation, we apply a filter for smoothing
both the points and their normals while preserving edges in the sensed geo-
metric structures. The formulation of our filter is motivated by the concept of
multilateral filtering [4] and measures the similarity of points w.r.t. their posi-
tion, surface orientation, and appearance. As for the other components in our
pipeline, we directly extract the neighborhood of a point from the mesh instead
of searching for nearest neighbors. We filter both a point pi and its normal ni
over its 1-ring-neighborhood Ni, i.e., all points that are directly connected to
pi by an edge in the mesh:

pi =
∑
j∈Ni

wijpj/
∑
j∈Ni

wij , and ni =
∑
j∈Ni

wijnj/
∑
j∈Ni

wij , (5)

with wij = eα‖pi−pj‖︸ ︷︷ ︸
distance term

eβ‖ni−nj‖1︸ ︷︷ ︸
normal term

eγ(Ii−Ij)/cI︸ ︷︷ ︸
intensity term

, (6)

where the optional intensity term is only evaluated for colored point clouds
and range images where also an intensity image is available. The normalization
constant cI is used to scale the intensity differences to lie in the interval [0, 1].
Weights α, β, and γ can be used to adjust the behavior of the filter. Equally
weighting distance and surface normal deviation term already achieves consid-
erable smoothing while preserving edges and corners. Depending on the desired
smoothing level, we can extend a point’s neighborhood to include the neighbors
of neighbors and ring neighborhoods farther away from the point. An example
of filtering an input mesh (weights α = 1, β = 1, γ = 0) can be seen in Figure 4.

5. Region Models and Segmentation

For being able to efficiently segment 3D data of various types, e.g., range
images as well as both organized and unorganized point clouds, we have im-
plemented a generalized segmentation framework. It allows the involved com-
ponents such as the underlying region model (e.g., planes or non-planar locally
smooth surfaces), the module for estimating the sensor noise, and the method
for obtaining the local neighborhoods of query points (and the corresponding
distances and surface normal deviations) to be easily switched. Whereas for or-
ganized data, we only require a look-up in the initially constructed and smoothed

9

mesh, for unorganized data we need to either apply the greedy projection-based
surface reconstruction algorithm by Marton et al. [20] or search for the neigh-
bors for all points using fast approximate neighbor search [22] and cache the
neighbors for later use.

5.1. Region Growing-based Segmentation

Despite the generalization over different neighborhood searches and region
models, the implementation of our segmentation algorithm does not consider-
ably deviate from other region growing algorithms in literature. Given is a set
of seed points (and a priority queue of seeds) or simply the array of all points.

Outer loop, until all points are processed:

1) Select the next seed point,

2) initialize the region model of interest, and

3) put the seed point onto the empty processing queue.

Inner loop, while the processing queue is not empty:

4) Take the next point from the processing queue (and go back to 1) if it is
empty),

5) check the compatibility of the point with the region model, and

6) add it in case of compatibility. If necessary, update the region model
w.r.t. the new point.

7) Add the neighbors of the point to the processing queue if they pass a
neighbor compatibility check.

5.2. Different Region Models for Segmentation

We have encapsulated the processing steps 2) initialization, 5) point compat-
ibility, 6) model update, and 7) neighbor compatibility in exchangeable region
models allowing the behavior of the segmentation to be configured and con-
trolled. Note that we distinguish two types of compatibility checks—one for
points determining whether or not they belong to the currently grown region
and one for a point’s neighbors determining whether or not they are added to
the processing queue at all.

We have implemented several region models for plane segmentation—a prob-
abilistic incremental formulation based on [27] and an approximate variant us-
ing local surface normals—as well as for segmenting regions of local surface
continuity as a pre-segmentation for further processing. In addition, we added
models that reproduce the behavior of other segmentation algorithms found in
the literature, amongst others, the approaches of Rabbani et al. [28] and Cupec
et al. [5].

10

5.3. Probabilistic Plane Segmentation

In order to reliably detect planes even in noisy data, we use a probabilistic
region model that is based on the incremental plane fitting algorithm of Pop-
pinga et al. [27]. Aimed at time-of-flight cameras, their approach exploits the
sequential structure of the data and uses incremental updates of both the cen-
troid and covariance matrix of the inliers. The centroid and covariance matrix
are not only used to determine the plane parameters, but also the uncertainty
of the estimated plane parameters. A point is added to the probabilistic region
model if the incrementally updated mean square error of the plane fit and the
point’s distance to the estimated plane model do not exceed a threshold. De-
spite the efficient incremental updates to centroid, covariance and mean square
error, the probabilistic model is computationally more demanding than other
region models in our framework, but achieves reliable plane detection results
(Section 7).

5.4. Approximate Plane Segmentation

In order to further speed up plane segmentation while preserving reliable
plane detections, we have developed an approximate variant of the probabilistic
plane segmentation model. For approximate plane segmentation, we initialize
the centroid and the normal of the region model using the seed point and its nor-
mal. Both can be taken directly from the smoothed approximate mesh instead
of computing an initial centroid and covariance matrix using an initial set of
points as in the probabilistic approach. In order to determine the compatibility
of a point pi with the model, we simply check the angle between its normal ni

and the normal of the plane model, as well as pi’s distance to the plane. To
incorporate pi in the model, we incrementally update the plane’s centroid, but
instead of incrementally updating a covariance matrix to derive a plane normal
from it, we incrementally update its centroid in normal space. That is, by pre-
computing the surface normals on the mesh neighborhood, and approximating
the plane normal by averaging over point normals, we can reduce the number
of required computations considerably. Note, for assessing the uncertainty in
the determined plane parameters (e.g., for the registration of planar segments
as in [26]), we can compute the necessary Hessian and covariance matrices after
region growing using the final sets of inliers.

In order to obtain full polygonalizations such as the one shown in Figure 2, we
compute the convex or concave hulls (using alpha shapes) for all planar patches.
In case a triangulation is required for further processing, we decompose result-
ing polygons again using ear clipping (which is fast and produces satisfactory
results in most cases). This post-processing step allows for the creation of highly
efficient scene representations—thousands of triangles or quads are replaced by
a fraction as many polygons, while still representing all dominant planes.

5.5. Extracting Locally Smooth Surfaces and Detecting Geometric Primitives

For detecting geometric primitives, we need a rough pre-segmentation of
the scene. This can easily be accomplished within the neighbor compatibility

11

Figure 5: Examples of detecting planes (yellow), cylinders (cyan), and spheres
(magenta). Points and polygons belonging to multiple segments are colored red.
All points are projected onto the found models.

check of the models by, e.g., examining changes in the local surface curvature
or comparing a point’s surface normal with either the region’s mean surface
normal or the surface normal of the seed point. A typical result of applying a
segmentation that uses the latter model is shown in Fig. 5. Points on the same
physical (locally smooth) surface end up in the same segment.

For every locally smooth segment, we try to find the geometric primitive
that best explains the underlying point set. Whereas we can directly compute
a least squares plane fit to all the points in a segment, we use RANSAC to
find the best sphere and cylinder model. Here, the computational efficiency
of our approach comes from applying RANSAC only if the computed planar
model does not fully explain the segment. Typical results of applying the rough
pre-segmentation and primitive detection are shown in Fig. 5.

Since we still stick to the RANSAC-based primitive detection for spheres and
cylinders, we focus the experimental evaluation to plane segments directly ob-
tainable from region segmentation and extracted using our approximate model.

6. Camera Noise Models

The key to both the initial construction of the approximate mesh and its
segmentation is to know whether or not neighboring points in the range image
are close to each other and lie on the same physical surface.

For all of the aforementioned region models, parameters such as, for instance,
the distance to the model and the deviation between surface normals play an
important role. Whereas the latter can (almost) be neglected after applying the
multilateral filter, the distance to the model is a parameter that is crucial for
the quality of the segmentation. It resembles the amount of noise hindering a
measurement from lying on the ideal model.

In order to obtain a rough estimate of the amount of noise at a given point,
we use a simple isotropic noise model. As suggested in [2], we assume Gaussian
noise N (0, σ2) and use a simple quadratic polynomial as a function of distance
to determine σ, since noise in range sensors usually increases quadratically with

12

the measured distance. Since the primary sensor used in our work is a Microsoft
Kinect RGB-D camera, we have computed a simple error model for this sensor.
In 10 different scenes (ranging from scenes with only close range measurements
to views of wide open space), we have collected 100 range images each. For
each of the locations, we compute the mean and standard deviation per pixel
and perform a least squares fit to find appropriate coefficients for the quadratic
model; resulting in:

σFIT(z) = 0.00263z2 − 0.00519z + 0.00755. (7)

This simple model considers only the expected measurement noise but already
provides a good estimate (see Section 7.2) although it neglects both the char-
acteristic camera errors induced by the quantization of measurements, and the
angle to the surface that measurements are acquired on. Measurements taken
at extreme angles (e.g., on walls while traversing a corridor) are considerably
more affected by noise. Nguyen et al. [23] measure both lateral and axial noise
distributions as a function of both distance and angle to the sensed surfaces.
They report an (almost) angle independent error when neglecting spurious data
measured under extreme angles (smaller than 10◦ or larger than 60◦). For this
regular case their approximation is:

σNguyen(z) = 0.0019 (z − 0.4)
2

+ 0.0012. (8)

Holzer et al. [15] neglect the angle-dependent error and provide a noise model
solely based on the quantization effect induced by the measurement principle:

σHolzer(z) = 0.0028z2. (9)

Smisek et al. [32] conduct a similar set of experiments and assess the quantiza-
tion effect in a Microsoft Kinect camera as being

σSmisek(z) = 0.00273z2 + 0.00074z − 0.00058. (10)

We have conducted a set of experiments (see Section 7.2) to evaluate the in-
fluence of the noise model used for both approximate meshing and region seg-
mentation. Although the final segmentation performance does not considerably
deviate for the different noise models, the best results can be achieved with a
combination of the quantization-based models (Holzer et al. [15] and Smisek
et al. [32]) and the fitting-based models (Nguyen et al. [23] and our σFIT):

σHolz(z) =

{
σFIT(z) if z ≤ 0.85 m where σFIT(z) = σHolzer(z)

σHolzer(z) if z > 0.85 m.
(11)

The different natures of the two model types are reflected by the two curve
clusters in Figure 6.

13

 0

 0.05

 0.1

 0.15

 0.2

 1 2 3 4 5 6 7

σ
z

(i
n
 m

)

z (in m)

Data = measured standard deviations
σHolz (Ours)
FIT: σ0(z) = 0.00195z2

FIT: σ1(z) = 0.00188z2 + 0.00178
FIT: σ2(z) = 0.00187z2 + 0.00044z
FIT: σ3(z) = 0.00263z2 + -0.00519z + 0.00755 (σFIT)
σNguyen = 0.0019 (z-0.4)2 + 0.0012 (10°≤θ≤60°)
σHolzer = 0.0028z2

σSmisek = 0.00273z2 + 0.00074z - 0.00058

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.6 0.8 1 1.2 1.4

z (in m)

Figure 6: Isotropic noise models as estimated for Microsoft Kinect cameras
(left). The detail view (right) shows that most models underestimate the noise
in close ranges, compared to our fitted σ3 model.

7. Experiments and Results

In order to assess the performance of our approach and the influence of the
individual components, we perform a set of experiments. We evaluate the cor-
rectness and efficiency of our approach using two publicly available data sets
for which ground truth plane (and cylinder) segmentations are available: the
SegComp data set1 by Hoover et al. [16], and the recently published Kinect data
set2 by Oehler et al. [25]. The latter follows the same file formats and conven-
tions as the SegComp data sets. From the SegComp data set, we have used
the ABW and the PERCEPTRON parts. For the evaluation, we follow (and
refer to) the scheme of Hoover et al. [16]. The two SegComp parts consist of
10 training and 30 test images. For all images ground truth segmentations and
plane parameters are available. The evaluation tool averages over all test images
correctly segmented planes, oversegmented planes, undersegmented planes and
false detections (labeled as “noise”). In addition, the tool assesses the average
deviation of the estimated plane orientations from ground truth. The Kinect
data set by Oehler et al. [25] consists of two parts—one for planes and one for
cylinders—with 30 organized RGB-D point clouds each. Training and test data
is not distinguished and the evaluation includes all point clouds. Ground truth
plane orientations are not available for the Kinect data set. However, Oehler
et al. provide a modified evaluation tool2 that neglects plane orientations. The
following comparative evaluations include segmentation results gathered by Go-
tardo et al. [8] and Oehler et al. [25], achieved results using publicly available im-
plementations of Georgiev et al. [7] and Trevor et al. [35], our previous work [13],
and the plane and cylinder segmentation models used in this work.

1The SegComp data set is available at: http://marathon.csee.usf.edu/seg-comp.
2The data set of Oehler et al. is available at: http://www.ais.uni-bonn.de/download/

segmentation/kinect.html.

14

Table 1: Measured runtimes for the individual processing steps for Kinect frames
(160×120, 320×240, 640×480), and training and testing images from the SegComp
ABW and PERCEPTRON data sets (512×512).

Resolution 160×120 320×240 512×512 640×480

Approximate meshing 6.1ms 17.2ms 40.4ms 48.4ms
Computation of normals 1.5ms 3.6ms 12.2ms 14.1ms

Filtering 4.5ms 11.6ms 27.4ms 33.5ms
(Plane) segmentation 3.2ms 11.3ms 26.3ms 32.9ms

Overall frequency ≈65Hz ≈23Hz ≈10Hz ≈7.7Hz
*Runtimes measured over 10 000 runs on an Intel Core i7 CPU @ 2.7GHz
(no parallelization), approximate plane segmentation (5.4)
of a mesh constructed using adaptive triangulation (4.1).

7.1. Runtime Evaluation

In order to assess the runtime of the overall approach and of the involved
components, we have defined a baseline system consisting of the following com-
ponents: adaptive triangular meshing, our noise model σHolz, the multilateral
filter with weights α = 1, β = 1, γ = 0, and the region model for approximate
plane segmentation. The baseline system is applied to all training and test im-
ages of both the SegComp and the Kinect data sets. The Kinect data set has
been downsampled to assess the runtimes for all resolutions offered by the cam-
era (see Table 1). We can segment all dominant planes with roughly 7.7 Hz at
VGA resolution, and more than two times faster than the camera measurement
frequency at the downsampled 160×120 resolution.

Compared to the approach of Oehler et al. [25], we obtain better segmen-
tation results while being faster by a factor of eight (they report runtimes of
>100 ms for 160×120, and >2 s for 640×480). The approach of Trevor et al. [35]
achieves roughly 10 Hz (VGA) at the cost of inferior segmentation results, just
as with the approach of Georgiev et al. [7] with roughly 8 Hz (VGA). For both
implementations parameters yielding the best results have been chosen. Slightly
faster than the approach of Trevor et al. [35] is our clustering method from pre-
vious work [13] with roughly 15 Hz (VGA), again at the cost of segmentation
performance. Using the probabilistic plane segmentation model (instead of our
approximate one), the runtime for the segmentation step in Table 1 increases
to approximately 95 ms leading to an overall computation frequency of roughly
5 Hz at VGA resolution.

7.2. Segmenting Organized Point Clouds and the Influence of the Noise Model

We have conducted a set of experiments to assess the influence of the ap-
plied noise model on both approximate meshing and segmentation. Using the
Kinect planes data set by Oehler et al. [25], we evaluated the average plane
detection results for the same baseline system as in the runtime evaluation (see
Section 7.1), but with different noise models.

The data set comprises two different parts with corresponding ground truth
segmentations—one for plane segmentation and one for cylinder segmentation.

15

(a) 5/9,
2 over, 2 miss

(b) 11/14,
2 over, 1 miss

(c) 9/13,
2 over, 2 miss

(d) 5/8,
3 over

Approach
correctly
detected

over-
seg-

mented

under-
seg-

mented

missed
(not de-
tected)

noise
(nonex-
istent)

Oehler et al. [25] 4.50 (36.3%) 0.60 0.40 6.80 16.20

N
o
is
e
m
o
d
el σFIT 7.10 (57.2%) 3.63 0.10 1.46 13.20

σNguyen [23] 7.10 (57.2%) 3.63 0.10 1.46 13.20
σHolzer [15] 7.20 (58.0%) 3.67 0.10 1.33 13.00
σSmisek [32] 7.20 (58.0%) 3.67 0.10 1.33 13.00
σHolz 7.23 (58.3%) 3.70 0.10 1.27 12.90

(e) Overall plane segmentation results for all 30 point clouds (80% pixel overlap).

Figure 7: Plane segmentation on the Kinect planes data set by Oehler et al. [25].
Larger cylinders are segmented into multiple planes. Overall, about 58% of the
12.4 planes are correctly segmented using the baseline system (assuming 80%
pixel overlap). The performance does not considerably deviate with the different
noise models.

Naturally, we obtain a larger amount of oversegmentations here, since larger
cylinders in the planes part are labeled as noise, while unconnected regions
belonging to a single plane are labeled as one segment. However, visually in-
specting the segmentation results reveals that all dominant planes are reliably
segmented.

Typical plane segmentation results (for the baseline system with model
σHolz) as well as the detailed segmentation results are shown in Figure 7. Al-
though the final segmentation performance does not considerably deviate for
the different noise models under consideration, visual inspection of the triangu-
lation results showed that the quantization-based models (Holzer et al. [15] and
Smisek et al. [32]) underestimate the noise in close ranges (leading to overseg-
mentations) while the fitting-based models (Nguyen et al. [23] and our σFIT)
underestimate at larger distances (causing missed detections). In the data set
this does not further affect the overall detection results and is only reflected by
missing or not missing few very small planes and oversegmenting or not over-
segmenting a few very close planes. Combining the two classes in the new noise
model with σHolz yields the best results.

16

7.3. Plane Segmentation using the SegComp Data Sets

In the following, we present our plane detection results for the publicly avail-
able SegComp data sets PERCEPTRON and ABW by Hoover et al. [16]. Since
our noise model σHolz has been developed for RGB-D cameras, and the Microsoft
Kinect in particular, we have computed a simple noise model for the SegComp
data sets by fitting a quadratic polynomial to the mean square distance of the
measurements in the PERCEPTRON and ABW training images to the underly-
ing ground truth planes. The resulting noise model can be approximated by:

σSegComp(z) = 0.0036z2. (12)

We use the same noise model for both PERCEPTRON and ABW .
Typical results of applying the presented approximate plane segmentation on

range images of the two data sets can be seen in Figures 8 and 9. Considering our
goal of obtaining a fast decomposition into dominant planes and other objects
of interest, the obtained results are more than satisfying. Moreover, as it can
be seen in the detailed comparisons in the result tables of Figures 8 and 9,
the proposed approximate plane segmentation method and the probabilistic
model achieve state-of-the-art range image segmentation performance, while
providing very efficient means to compute—within milliseconds—rough scene
segmentations.

On the ABW data set [16], our approximate plane segmentation approach
tends to oversegment the range image. This is caused by a special characteristic
of the used camera that is not explicitly handled here, resulting in inconsistent
normal orientations. Besides oversegmented planar patches, both plane detec-
tion models correctly detect more than 80% of the planes. The approach of
Georgiev et al. [7] considerably undersegments planes meeting at obtuse angles,
while the approach of Trevor et al. [35] misses smaller planar patches.

In the PERCEPTRON data set, no special sensor characteristics cause errors
and our approach yields similar results as the work by Gotardo et al. [8]. Refer-
ring to the detailed result tables in Figures 8 and 9, oversegmentations are rare
for our approach. Instead, a considerable number of ground truth planes are
not perceived. These planes are formed by only a small number of points and
are neglected here due to a minimum region cardinality |R|= 200 that we use
to eliminate outliers and very small planar patches. The approach of Georgiev
et al. [7] considerably oversegments in particular smaller planar patches. Insuf-
ficient pixel overlap causes a considerable amount of missed planes (especially
the dominant support planes) in the approach of Trevor et al. [35].

Our previous approach [13] suffers from the same inconsistent normal ori-
entations in the ABW data set and tends to oversegment. Furthermore, it does
not consider models of the underlying noise, but uses fixed distance-independent
thresholds. As a consequence, the algorithm tends to oversegment in both the
ABW and the PERCEPTRON data set. Although it merges neighboring plane
clusters to compensate for discretization effects in the histograms, not all over-
segmentations are resolved. In addition, since the approach does not consider
the neighborhood of a pixel, larger normal deviations in noisy regions can lead

17

to individual pixels not belonging to the same planar segment as its neighbors.
Since the evaluation considers an 80% pixel overlap with the ground truth seg-
mentations, the pixels left out cause some planes to be missed. Overall, our pre-
vious approach [13] achieves similar performance as the algorithms of Georgiev
et al. [7] and Trevor et al. [35], but ranks behind state-of-the-art segmentation
performance. However, it was the fastest in our experiments (15 Hz at VGA),
roughly 20 % to 25 % faster than the proposed approach.

7.4. Cylinder Segmentation

In order to assess the reliability of our approach to detect simple geometric
primitives, we have used the Kinect cylinder data set by Oehler et al. [25]. As
described in Section 5.5, we first segment the recorded RGB-D point clouds
into regions of local surface continuity and then fit plane, cylinder, and sphere
models to each region and select the model best supporting the underlying point
set. Both detected planes and spheres (no spheres were detected in the data
set) are marked as belonging to the background, since the data set contains
only ground truth pixels for cylinders whereas all other pixels are labeled as
noise. Typical results of cylinder detection as well as the overall segmentation
performance on the Kinect cylinder data set are shown in Figure 10.

All larger cylinders in the data set are reliably detected. Cylinders being
sensed from above, i.e., where both outer and inner part are visible, reveal a
systematic effect of our approach. In the segmentation of regions with local
surface continuity, the two parts are split since the outer part occludes the
inner part and is unconnected in the mesh, and the small connected regions
to the sides show discontinuities in the surface normal orientations. Currently,
cylinders found twice are not merged until we replace the regions with cylinder
models in the final polygonalization step. This causes, on average, one cylinder
to be oversegmented in every second point cloud. In contrast, not a single
cylinder was undersegmented. With respect to missed detections, some of the
cylinders in the data set are rather small (radius < 10 cm) and far away from
the sensor (distance > 2 m). All cylinders missed in the evaluation—on average
one in every three point clouds—belong to this class.

8. Conclusion

We have presented a fast yet robust approach for segmenting range images
and organized point clouds. Using an approximate polygonal mesh reconstruc-
tion directly deduced from the image-like structure, we are able to efficiently
compute point features such as local surface normals, smooth the measured data
using a multilateral filter, and detect planes and other geometric primitives.

Experimental evaluation has shown that our approach achieves state-of-the-
art range image segmentation performance. To achieve real-time processing,
we proposed several simplifications and approximations that make the overall
segmentation (and primitive detection) algorithm run within milliseconds on a
CPU for point clouds acquired by typical RGB-D cameras.

18

(a) 6/6 (b) 5/5 (c) 9/11,
2 misses

(d) 9/10,
1 miss

(e) 8/8

(f) 10/14,
4 misses

(g) 18/24,
6 misses

(h) 10/13,
2 over, 1 miss

(i) 12/13,
1 over

(j) 22/22

Approach
correctly
detected

orien-
tation
devia-
tion

over-
seg-

mented

un-
der-
seg-

mented

missed
(not
de-

tected)

noise
(nonex-
is-

tent)

L
it
.
re
fe
re
n
ce
s

USF [8] 8.9 (60.9%) 2.7◦ 0.4 0.0 5.3 3.6
WSU [8] 5.9 (40.4%) 3.3◦ 0.5 0.6 6.7 4.8
UB [8] 9.6 (65.7%) 3.1◦ 0.6 0.1 4.2 2.8
UE [8] 10.0 (68.4%) 2.6◦ 0.2 0.3 3.8 2.1
UFPR [8] 11.0 (75.3%) 2.5◦ 0.3 0.1 3.0 2.5
Oehler
et al. [25]

7.4 (50.1%) 5.2◦ 0.3 0.4 6.2 3.9

Im
p
le
m
en
t. Georgiev

et al. [7]
6.5 (44.2%) 3.4◦ 2.3 0.03 5.8 5.0

Trevor
et al. [35]

8.3 (57.0%) 2.9◦ 0.6 0.13 5.2 2.1

Previous
work [13]

7.9 (54.1%) 2.3◦ 1.4 0.8 5.9 3.5

O
u
rs

Approx.
plane seg.

11.0 (75.3%) 2.6◦ 0.4 0.2 2.7 0.3

Prob.
plane seg.

11.0 (75.3%) 2.6◦ 0.4 0.2 2.7 0.3

(k) Overall segmentation results on all 30 test images assuming 80% pixel overlap as in [8].

Figure 8: Plane segmentation examples for the SegComp PERCEPTRON data
set (a-j, segments randomly colored) and detailed results (k) as given in lit-
erature (top), reproduced using available implementations (middle) and our
approach (bottom). Our approach achieves state-of-the-art performance by cor-
rectly segmenting 75.3% of the 14.6 planes. Not correctly found are very small
plane segments, e.g., the inner parts of the objects in (f) and (g). In addition,
some planes are oversegmented due to noise, e.g., the support plane in (h). The
estimated plane normals deviate from ground truth by roughly (2.5± 1.6)◦.

19

(a) 10/11,
2 over

(b) 9/10,
2 over

(c) 9/9 (d) 8/8 (e) 8/10,
1 over, 1 miss

Approach
correctly
detected

orien-
tation
devia-
tion

over-
seg-

mented

un-
der-
seg-

mented

missed
(not
de-

tected)

noise
(nonex-
is-

tent)

L
it
er
a
tu
re

re
fe
re
n
ce
s

USF[8] 12.7 (83.5%) 1.6◦ 0.2 0.1 2.1 1.2
WSU [8] 9.7 (63.8%) 1.6◦ 0.5 0.2 4.5 2.2
UB [8] 12.8 (84.2%) 1.3◦ 0.5 0.1 1.7 2.1
UE [8] 13.4 (88.1%) 1.6◦ 0.4 0.2 1.1 0.8
OU [8] 9.8 (64.4%) – 0.2 0.4 4.4 3.2
PPU [8] 6.8 (44.7%) – 0.1 2.1 3.4 2.0
UA [8] 4.9 (32.2%) – 0.3 2.2 3.6 3.2
UFPR [8] 13.0 (85.5%) 1.5◦ 0.5 0.1 1.6 1.4
Oehler
et al. [25]

11.1 (73.0%) 1.4◦ 0.2 0.7 2.2 0.8

Im
p
le
m
en
t. Georgiev

et al. [7]
6.9 (45.4%) 2.3◦ 0.6 1.9 3.6 2.1

Trevor
et al. [35]

9.7 (63.8%) 1.9◦ 0.8 0.4 3.9 2.8

Previous
work [13]

8.4 (55.1%) 1.8◦ 1.2 0.5 4.2 2.3

O
u
rs

Approx.
plane seg.

12.2 (80.1%) 1.7◦ 1.8 0.1 0.9 1.3

Prob.
plane seg.

12.8 (84.2%) 1.4◦ 0.5 0.1 1.7 2.1

(f) Overall segmentation results on all 30 test images assuming 80% pixel overlap as in [8].

Figure 9: Plane segmentation examples for the SegComp ABW data set (a-
e, segments randomly colored) and detailed results (f) as given in literature
(top), reproduced using available implementations (middle) and our approach
(bottom). Our approach (using approximate plane segmentation tends to over-
segment the planes in this data set. On average, 12.2 planes out of 15.2 planes
are correctly segmented, while roughly 2 per image are oversegmented. This is
primarily caused by the types of occlusions in the ABW data set [16].

20

(a) 2/2 (b) 3/3, 1 non-existent (c) 4/4 (d) 4/6, 2 over,
1 missed

Approach
correctly
detected

over-
seg-

mented

under-
seg-

mented

missed
(not de-
tected)

noise
(nonex-
istent)

Oehler
et al. [25]

1.13 (34.2%) 0.007 0 2.100 6.300

Ours 2.33 (71.4%) 0.667 0 0.366 0.100

(e) Overall cylinder detection results on all 30 point clouds (80% pixel overlap).

Figure 10: Cylinder detection and segmentation in the Kinect cylinder data
set by Oehler et al. [25]. Shown are cylinder detections (random colors) and
plane detections (random gray tones). A systematic effect of our segmentation
approach can be seen in the oversegmentation in (d) where outer (front) and
inner (back) part of the cylinder are separate regions.

It remains a matter of future work to exploit the extracted segmented planar
patches (and geometric primitives) in further processing steps for purposes such
as registration. Further speeding up the approach by parallelizing individual
components is also expected to considerably increase efficiency. The implemen-
tations of all of the components presented in this paper are (or are going to be)
publicly available within the open source Point Cloud Library PCL3.

Acknowledgments

The authors gratefully acknowledge the financial support from the EU FP7
project ECHORD under Grant No. 231143 and the EU FP7 project STAMINA
under Grant No. 610917. We would like to thank Kristiyan Georgiev, Ross T.
Creed, and Rolf Lakaemper as well as Alex J. B. Trevor, Suat Gedikli, Radu B.
Rusu, and Henrik I. Christensen for providing the implementations of their plane
segmentation algorithms. Furthermore, our thanks go to Bastian Oehler and
Jörg Stückler for providing the Microsoft Kinect data sets as well as to Adam
Hoover, Gillian Jean-Baptiste, Xiaoyi Jiang, Patrick J. Flynn, Horst Bunke,
Dimitry B. Goldgof, Kevin Bowyer, David W. Eggert, Andrew Fitzgibbon, and
Robert B. Fisher for providing the SegComp data sets and the corresponding

3The latest stable release of PCL is available at http://pointclouds.org.

21

evaluation framework.

[1] An, S.-Y., Lee, L.-K., Oh, S.-Y., 2012. Fast incremental 3D plane extraction
from a collection of 2D line segments for 3D mapping. In: Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Vilamoura, Portugal, pp. 4530–4537.

[2] Anderson, D., Herman, H., Kelly, A., 2005. Experimental characterization
of commercial flash ladar devices. In: Proceedings of the International Con-
ference of Sensing and Technology. Palmerston North, New Zealand.

[3] Borrmann, D., Elseberg, J., Lingemann, K., Nüchter, A., 2011. The 3D
Hough transform for plane detection in point clouds: A review and a new
accumulator design. 3D Research 2, 1–13.

[4] Butt, I. T., Rajpoot, N. M., 2009. Multilateral filtering: a novel framework
for generic similarity-based image denoising. In: Proceedings of the IEEE
International Conference on Image Processing (ICIP). Cairo, Egypt, pp.
2945–2948.

[5] Cupec, R., Nyarko, E. K., Filko, D., 2011. Fast 2.5D mesh segmentation
to approximately convex surfaces. In: Proceedings of the European Con-
ference on Mobile Robots (ECMR). Örebro, Sweden, pp. 49–54.

[6] Fischler, M. A., Bolles, R. C., 1981. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated car-
tography. Communications of the ACM 24 (6), 381–395.

[7] Georgiev, K., Creed, R. T., Lakaemper, R., 2011. Fast plane extraction in
3D range data based on line segments. In: Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). San
Francisco, CA, USA, pp. 3808–3815.

[8] Gotardo, P. F. U., Bellon, O. R. P., Silva, L., 2003. Range image segmenta-
tion by surface extraction using an improved robust estimator. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Madison, WI, USA, pp. 33–38.

[9] Gutmann, J.-S., Fukuchi, M., Fujita, M., 2008. 3D perception and envi-
ronment map generation for humanoid robot navigation. The International
Journal of Robotics Research 27 (10), 1117–1134.

[10] Hähnel, D., Burgard, W., Thrun, S., 2003. Learning compact 3D models
of indoor and outdoor environments with a mobile robot. Robotics and
Autonomous Systems 44 (1), 15–27.

[11] Harati, A., Gächter, S., Siegwart, R., 2006. Fast range image segmenta-
tion for indoor 3D-SLAM. In: Proceedings of the IFAC Symposium on
Intelligent Autonomous Vehicles (IAV). Toulouse, France.

22

[12] Holz, D., Behnke, S., 2012. Fast range image segmentation and smoothing
using approximate surface reconstruction and region growing. In: Proceed-
ings of the International Conference on Intelligent Autonomous Systems
(IAS). Jeju Island, Korea.

[13] Holz, D., Holzer, S., Rusu, R. B., Behnke, S., 2011. Real-time plane seg-
mentation using RGB-D cameras. In: Proceedings of the RoboCup Inter-
national Symposium. Istanbul, Turkey.

[14] Holz, D., Schnabel, R., Droeschel, D., Stückler, J., Behnke, S., 2010. To-
wards semantic scene analysis with time-of-flight cameras. In: Proceedings
of the RoboCup International Symposium. Singapore.

[15] Holzer, S., Rusu, R. B., Dixon, M., Gedikli, S., Navab, N., 2012. Real-time
surface normal estimation from organized point cloud data using integral
images. In: Proceedings of the IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS). Vilamoura, Portugal, pp. 2684–2689.

[16] Hoover, A., Jean-Baptiste, G., Jiang, X., Flynn, P. J., Bunke, H., Goldgof,
D. B., Bowyer, K., Eggert, D. W., Fitzgibbon, A., Fisher, R. B., 1996. An
experimental comparison of range image segmentation algorithms. IEEE
Transactions on Pattern Analysis and Machine Intelligence 18, 673–689.

[17] Jiang, X., Bunke, H., 1994. Fast segmentation of range images into planar
regions by scan line grouping. Machine Vision and Applications 7, 115–122.

[18] Lee, K.-M., Meer, P., Park, R.-H., 1998. Robust adaptive segmentation of
range images. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 20, 200–205.

[19] Magid, E., Soldea, O., Rivlin, E., 2007. A comparison of Gaussian and
mean curvature estimation methods on triangular meshes of range image
data. Computer Vision and Image Understanding 107 (3), 139–159.

[20] Marton, Z. C., Rusu, R. B., Beetz, M., 2009. On fast surface reconstruction
methods for large and noisy datasets. In: Proceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA). Kobe, Japan,
pp. 3218–3223.

[21] May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A.,
Hertzberg, J., 2009. Three-dimensional mapping with time-of-flight cam-
eras. Journal of Field Robotics 26 (11-12), 934–965.

[22] Muja, M., Lowe, D. G., 2009. Fast approximate nearest neighbors with
automatic algorithm configuration. In: Proceedings of the International
Conference on Computer Vision Theory and Application (VISSAPP). Lis-
bon, Portugal, pp. 331–340.

23

[23] Nguyen, C. V., Izadi, S., Lovell, D., 2012. Modeling Kinect sensor noise for
improved 3D reconstruction and tracking. In: Proceedings of the Interna-
tional Conference on 3D Imaging, Modeling, Processing, Visualization and
Transmission (3DIMPVT). Zürich, Switzerland, pp. 524–530.

[24] Nüchter, A., Surmann, H., Hertzberg, J., 2003. Automatic model refine-
ment for 3D reconstruction with mobile robots. In: Proceedings of the
International Conference on 3-D Digital Imaging and Modeling (3DIM).
Banff, Canada, pp. 394–401.

[25] Oehler, B., Stückler, J., Welle, J., Schulz, D., Behnke, S., 2011. Efficient
multi-resolution plane segmentation of 3D point clouds4. In: Proceedings
of the International Conference on Intelligent Robotics and Applications
(ICIRA). Aachen, Germany, pp. 145–156.

[26] Pathak, K., Vaskevicius, N., Birk, A., 2009. Revisiting uncertainty anal-
ysis for optimum planes extracted from 3D range sensor point-clouds. In:
Proceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA). Kobe, Japan, pp. 1631–1636.

[27] Poppinga, J., Vaskevicius, N., Birk, A., Pathak, K., 2008. Fast plane de-
tection and polygonalization in noisy 3D range images. In: Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Nice, France, pp. 3378–3383.

[28] Rabbani, T., van den Heuvel, F. A., Vosselman, G., 2006. Segmentation
of point clouds using smoothness constraint. International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences 36,
248–253.

[29] Rusu, R. B., Blodow, N., Marton, Z. C., Beetz, M., 2009. Close-range
scene segmentation and reconstruction of 3D point cloud maps for mobile
manipulation in human environments. In: Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). St.
Louis, MO, USA, pp. 1–6.

[30] Schnabel, R., Wahl, R., Klein, R., 2007. Efficient RANSAC for point-cloud
shape detection. Computer Graphics Forum 26 (2), 214–226.

[31] Silva, L., Bellon, O., Gotardo, P., 2002. A global-to-local approach for ro-
bust range image segmentation. In: Proceedings of the IEEE International
Conference on Image Processing (ICIP). Rochester, NY, USA, pp. 773–776.

4Note: not all results referenced here have been published in the paper but all results
can be found in Oehler’s diploma thesis at http://www.ais.uni-bonn.de/theses/Bastian_

Oehler_Diplomarbeit_08_2011.pdf

24

[32] Smisek, J., Jancosek, M., Pajdla, T., 2011. 3D with Kinect. In: Workshop
Proceedings of the IEEE International Conference on Computer Vision
(ICCV Workshops). Barcelona, Spain, pp. 1154–1160.

[33] Stückler, J., Steffens, R., Holz, D., Behnke, S., 2011. Real-time 3D percep-
tion and efficient grasp planning for everyday manipulation tasks. In: Pro-
ceedings of the European Conference on Mobile Robots (ECMR). Örebro,
Sweden, pp. 177–182.

[34] Torr, P., Zisserman, A., 2000. MLESAC: A new robust estimator with
application to estimating image geometry. Computer Vision and Image
Understanding 78, 138–156.

[35] Trevor, A. J. B., Gedikli, S., Rusu, R. B., Christensen, H. I., 2013. Effi-
cient organized point cloud segmentation with connected components. In:
Proceedings of the 3rd Workshop on Semantic Perception, Mapping and
Exploration (SPME) at ICRA. Karlsruhe, Germany.

[36] Vosselman, G., Gorte, B. G. H., Sithole, G., Rabbani, T., 2004. Recognising
structure in laser scanner point clouds. Information Sciences 46 (8), 1–6.

25

