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Abstract

In this article, we describe e�cient methods for tackling everyday mobile manipulation
tasks that require object pick-up. In order to achieve real-time performance in complex
environments, we focus our approach on fast yet robust solutions. For 3D perception of
objects on planar surfaces, we develop scene segmentation methods that process depth
images in real-time at high frame rates. We e�ciently plan feasible, collision-free grasps
for the segmented objects directly from the perceived point clouds to achieve fast execu-
tion times. We evaluate our approaches quantitatively in lab experiments and also report
on the successful integration of our methods in public demonstrations at RoboCup@Home
competitions in 2011 and 2012.
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1. Introduction

Mobile manipulation tasks in domestic environments require a vast set of perception
and action capabilities. A service robot not only requires localization, mapping, path
planning, and obstacle avoidance abilities to safely navigate through the environment.
It also needs to integrate object detection, recognition, and manipulation. In addition,
a service robot is not just to achieve a task, but to perform it in reasonable time. While
much research has been invested into the general solution of complex perception and
motion planning problems, little work has been focused on methods that solve such tasks
e�ciently in order to allow for continuous task execution without interruptions.

In this article, we present fast methods to �exibly grasp objects from planar surfaces.
To achieve fast performance, we integrate real-time object perception with e�cient grasp
planning and motion control. For real-time perception, we combine rapid normal esti-
mation using integral images with e�cient segmentation techniques. We segment the
scene into the support plane of interest and the objects thereon. Our perception algo-
rithm processes depth images in real-time at a frame rate of approx. 20Hz. From the
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raw object point clouds, our grasp planning method derives feasible, collision-free grasps
within about 100ms. We consider grasps on objects either from the side or from above.
The planned grasps are then executed using motion primitives. We integrate our ap-
proaches into a system that we evaluate for robustness and e�ciency in lab experiments.
Finally, we report on the public demonstration of our approaches at RoboCup@Home
competitions in 2011 and 2012.

2. Related Work

Many research groups currently develop systems for mobile manipulation in everyday
environments. A very prominent example is the Personal Robot 2 (PR2), developed by
Willow Garage [3]. It is equipped with two 7 DoF compliant arms and a parallel gripper
with touch sensor matrices on the gripper tips. Leeper et al. [11] use the system in a tele-
operated setting. Besides directly controlling the robot's end e�ector, the user can follow
di�erent strategies for grasping objects. In one of the strategies, the user selects a grasp
from a set of feasible poses suggested by a planner [8]. Beetz et al. [1] let a PR2 make
pancakes together with a second robot. This task involves fetch and delivery actions
for a variety of objects which are perceived either based on the raw 3D measurements,
object-speci�c visual appearance models, or 3D CAD models.

Further systems that perform object manipulation in cluttered environments have
been reported by Srinivasa et al. [22, 23]. In [23], the authors present a robotic busboy
system in which a mobile tray delivers mugs to a statically mounted manipulator. The
mobile tray navigates through visual ceiling markers to a prede�ned position. The ma-
nipulator grasps the mugs and loads them into a dishwasher rack. A real-time vision
system that is designed for the mugs estimates the pose of the mugs on the tray. Since
the objects are known, valid grasps on the mug are precomputed. The grasp planner
then selects online a best feasible grasp from several criteria like reachability and col-
lision avoidance. The authors report a total average duration of 51 sec for executing a
grasp and releasing the mug in the dishrack. With the robot HERB [22], the system has
been extended to more general object recognition and motion planning. While object
recognition is aborted after 1 sec, the planning of motions is reported to take several
seconds. Our approach is not restricted to recognizable objects.

Okada et al. [15] demonstrate dishwashing and water-pouring with a humanoid HRP2
robot. They adapt pre-trained motions to actual scene context and verify the behavior
using sensory information. The perception methods are designed for the speci�c appli-
cations. Jain and Kemp develop EL-E [9], a mobile manipulator that shall assist the
impaired. EL-E consists of a Katana manipulator on a vertical linear actuator mounted
on a di�erential drive. The user can draw the robot's attention to objects on tables
and the �oor by pointing on the objects with a laser pointer. The robot then picks the
object up and delivers it to the user. While we extract object information in real-time
from a depth image sensor, they segment measurements of a 3D laser using connected
components labelling to �nd object clusters above table height. Similar to our approach,
they perform top grasps along the object's principal axis. However, side grasps are not
considered. If an object is too high or too wide to �t into the gripper, they also consider
overhead grasps on top-most points of the object. To ensure that the grasping motion is
not in collision, a cuboid volume from the manipulator base to the object is checked for
obstacles.
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Morales et al. [13] propose a system that selects feasible, collision-free grasps on
objects from a database. They determine the set of feasible grasps for the object from its
CAD model in an o�ine phase. After the object has been recognized and localized with
a stereo vision system, a grasp simulation framework (GraspIt! [12]) is used to select a
collision-free grasp among the potential grasps for the object. The authors report 5ms
computation time for the recognition of objects in a database of �ve objects. The time
for planning of collision-free, feasible grasps in GraspIt is reported to range from seconds
to several minutes [12].

2.1. Object Perception

In typical household environments, objects are usually constrained to well-de�ned
locations like, for instance, tabletops, shelves and other horizontal support planes. This
natural restriction of space is exploited in the majority of approaches to object perception
and search. A common processing scheme [17, 7] and perception pipeline for detecting
and recognizing objects in depth images and 3D point clouds is to

1. detect the horizontal support planes,

2. extract and cluster the measurements on top of these planes, and

3. perform further processing, e.g., recognizing, classifying or tracking of the found
clusters.

Di�ering in related works are, most notably, the used methods for the individual pro-
cessing steps that determine � amongst others � the robustness, speed, and runtime
requirements of the overall system.

Rusu et al. [17] propose to segment point clouds into objects on planar surfaces.
They suggest to use RANSAC to detect planes and to extract shape primitives on the
objects. Remaining points are described by meshes. Schnabel et al. [21] decompose
noisy point cloud data into geometric shape primitives with an e�cient multi-resolution
approach. In previous work [7], we combined planar pre-segmentation as in [17] with
e�cient object modelling using shape primitives [21], and made the approaches applicable
to the measurements of time-of-�ight (ToF) cameras. We presented techniques to cope
with the speci�c error sources of the cameras, to speed up processing by exploiting the
image-like data organization, and for detecting geometric primitives in the found object
clusters.

In [18], shape primitives are extracted and are used as obstacles for a motion planner.
�ucan et al. [27] extend this approach to identify areas of a scan that are occluded by the
robot. They maintain these areas from a sequence of scans while the robot is moving.
In this way, the robot can still avoid obstacles occluded by itself.

2.2. Grasp Planning

Grasp planning approaches can be divided into empirical methods and approaches
that analyse the mechanical stability of grasps. A recent survey on grasp planning
approaches can be found in [19].

In the latter category, Borst et al. [2] proposed the grasp wrench space to measure the
stability of a grasp for articulated hands. This approach has been incorporated into the
GraspIt! framework [12] which plans grasps on objects composed of shape primitives in

3



simulated scenes. Pelossof et al. [16] �t superquadrics to objects and train support vector
machines to predict the quality of grasps on objects. They train on samples generated
with the GraspIt! simulator.

These approaches, however, require the knowledge and perception of complete 3D
object models. To circumvent this, several methods have been developed that operate
directly on measurements from 3D sensors [8] or color images [20]. Saxena et al. [20]
propose a learning approach that retrieves grasping points from the observation of the
object in 2D color images. Similar to the work in [16], they train on synthetic data
obtained with a grasp simulator.

Similar to our approach, Hsiao et al. [8] derive feasible, collision-free grasps from the
raw object point cloud. They select the best-ranked grasp and plan a collision-free motion
for the arm, taking into account obstacles that are perceived by the robot's 3D sensors.
While the authors demonstrate that the approach can robustly grasp a variety of objects
in a wide range of con�gurations, the execution speed of the system for perception and
grasping is still far slower than human performance.

3. System Overview

3.1. Design of Cognitive Service Robot Cosero

Domestic environments are designed for the speci�c capabilities of the human body.
It is therefore natural to endow the robot with an anthropomorphic upper body scheme
for similar manipulation abilities. The two anthropomorphic arms of our robot Cosero
resemble average human body proportions and reaching capabilities (see Fig. 1). A yaw
joint in the torso enlarges the workspace of the arms. In order to compensate for the
missing torso pitch joint and legs, a linear actuator in the trunk can move the upper body
vertically by approx. 0.9m. This allows the robot to manipulate on similar heights like
humans � also on the ground. To maneuver in the narrow passages found in household
environments, we equipped Cosero with an omnidirectional drive.

Compared to its predecessor Dynamaid [24], we increased payload and precision of
the robot by stronger actuation. We also improved Cosero's gripper design in 2012.
We actuate two Festo FinRay �ngers on rotary joints (see Fig. 2). These �ngers are
made from lightweight plastics material. When the gripper is closed on an object, the
bionic �n ray structure of the �ngers adapts its shape to the object surface. By this,
the contact surface between �ngers and object is extended signi�cantly, compared to a
rigid mechanical structure. We attached anti-skidding material onto the �nger surface
in order to improve their grip.

Cosero perceives its environment with a variety of complementary sensors. The robot
senses the environment in 3D with a Microsoft Kinect RGB-D camera in its head that is
attached to the torso with a pan-tilt unit in the neck. We also attached infrared distance
sensors to the palm in each gripper to measure the distance to objects directly from the
grippers.

3.2. Mobile Manipulation in Everyday Environments

We develop Cosero to perform a variety of mobile manipulation tasks in everyday
environments. For mobile manipulation, we combine safe navigation of the robot through
the environment with motion control methods for the upper body.
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Figure 1: Cognitive service robot Cosero moves a chair and waters a plant at RoboCup German Open
2012.

3.2.1. Motion Control

We implemented omnidirectional driving for Cosero's eight-wheeled mobile base [24].
The linear and angular velocity of the drive can be set independently and can be changed
continuously. We determine the steering direction and the individual wheel velocities of
the four di�erential drives, which are located at the corners of the rectangular base, from
an analytical solution to the drive's inverse kinematics.

For the anthropomorphic arms, we implemented di�erential inverse kinematics with
redundancy resolution [24]. We also developed compliance control for the arms [26]. For
our method, we exploit that the servo actuators are back-drivable and that the torque
which the servo applies for position-control can be limited. Compliance can be set for
each direction in task- or joint-space separately. For example, the end-e�ector can be kept
loose in both lateral directions while it keeps the other directions at their targets. With
these methods, Cosero can perform a variety of parameterizable motions like opening
doors, handing objects over, and carrying large objects.

Figure 2: Design of Cosero's FinRay grippers.
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3.2.2. Mobile Manipulation

We propose a coarse-to-�ne strategy for aligning the robot to the objects involved
in mobile manipulation. For example, when the robot grasps an object from a table, it
�rst approaches the table roughly within the reference frame of a static map. Then, it
adjusts in height and distance to the table. Finally, it aligns itself to bring the object
into the workspace of its arms.

Cosero grasps objects on horizontal surfaces like tables and shelves in a height range
from ca. 0.3m to 1m [24]. It also carries the object, and hands it to human users. We
also developed solutions to pour-out containers, to place objects on horizontal surfaces, to
dispose objects in containers, to grasp objects from the �oor, and to receive objects from
users using parametrized motion primitives. Semantic knowledge about the location of
objects and persons is either speci�ed in advance or perceived while the robot works on
a task. For instance, in order to deliver objects to speci�c persons, the robot searches for
the persons and recognizes them by their face. To �nd task-speci�c locations for objects
such as shelves and tables, possible approach poses can be annotated in a map.

4. Real-time 3D Perception

Our approach to object detection is focused on processing images of depth cameras
such as the Microsoft Kinect at high frame rates. At a resolution of 160×120, we can
process depth images with up to 20Hz. This enables our system to extract information
about the objects in a scene with a very low latency for further decision-making and
planning stages.

4.1. Overview on the Processing Pipeline

1. Compute normals: For all points, we compute local surface normals. For e�ciency,
we exploit the organized data structure of the underlying data. We approximate
the local point neighborhoods using neighboring image pixels and the normals by
using the approximate tangents to the surrounding surface (see Sec. 4.2).

2. Extract horizontal points: We extract all points with vertical normals (normals
pointing upwards along the z-axis). It can be assumed that the resulting points
are all lying on horizontal surfaces. The pre-computed surface normals do not only
allow for focusing subsequent processing steps on points on horizontal surfaces, but
also for e�ciently segmenting the complete depth image into planes [6].

3. Detect support plane: We apply RANSAC [4] to �nd the most dominant horizon-
tal plane and the points supporting it. By only considering points on horizontal
surfaces, we save computations and �nd the support plane with considerably less
iterations. We further decrease the number of processed points, by limiting the
search space in both height and distance to the robot. Due to the manipulation
constraints of our robot, we neglect points (and support planes) higher than 1m.
In addition, we do not consider points farther away from the robot than 3m.

4. Detect object candidates: For all points that do not belong to the most dominant
horizontal support plane, we extract those that are above the plane and whose
projections lie within the plane's convex hull. The resulting points are likely to
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(a) Example table scene (b) Colored point cloud (c) Detected objects

Figure 3: (a) Example tabletop setting. (b) Raw point cloud from the Kinect with RGB information.
(c) Each detected object is marked with a random color.

(a) Basic principle (b) Example (left: top view, right: side view)

Figure 4: Principle of fast normal computation using integral images. (a) Two vectors tangential to the
surface at the desired position are computed using the red points. The local surface normal is computed
by applying the cross product to them. (b) Typical result of an acquired point cloud with surface
normals.

have been measured on the surface of an object on top of the support plane. We
then apply a simple Euclidean clustering to obtain individual sets of points and
object candidates, respectively. In case of grasping objects in shelves, we slightly
shrink the convex hull in order to neglect points at a side or back wall of the shelf.

A typical segmentation result of the processing described so far, is shown in Fig. 3.

5. Track objects: Our fast segmentation approach gives us the possibility of detecting
objects in depth images at high frame rates. In particular, it allows for tracking de-
tected object clusters over several frames in order to obtain good estimates of their
position on the support plane. We also compute the principal axes and oriented
bounding boxes for all object candidates for subsequent processing steps.

4.2. Fast Computation of Local Surface Normals

A common way for determining the normal to a point on a surface is to approximate
the problem by �tting a plane to the point's local neighborhood. Less accurate, but
considerably faster is to consider pixel neighborhoods instead of spatial neighborhoods [7].
That is, the organized structure of the point cloud as acquired by time-of-�ight or RGB-D
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cameras is used instead of searching through the 3D space spanned by the points in the
cloud. By using a �xed pixel neighborhood and, in addition, neglecting pre-computed
neighbors outside of some maximum range as in [7], one can avoid the computationally
expensive neighbor search, but still needs to compute and analyze the local covariance
matrix. Here, we use an approach that directly computes the normal vector over the
neighboring pixels in x and y image space.

The basic idea of the normal estimation method [6] is to determine local surface
normals from the cross product of two tangents to the surface. For each pixel in the
depth image, the tangents are estimated from local pixel neighbors. In the simplest
case, both tangents could be calculated from just the horizontal and vertical neighbors,
respectively. However, this approach would be highly prone to measurement noise. The
tangent estimates should therefore be averaged in an image neighborhood. By using
integral images, such averaging operations can be computed in constant time independent
of the neighborhood size.

We �rst create two maps of tangential vectors, one for the rows and one for the
columns in the depth image. For each map, we compute the di�erence vectors between
the corresponding 3D points. That is, we have a total of 2×3 channels holding the
Cartesian x, y, and z coordinates for the di�erence vectors. For each of the channels, we
then compute an integral image, which leads to a total number of six integral images. By
using integral images, we can compute the average tangential vectors with only 2× 4× 3
memory accesses, independent of the size of the smoothing area. The overall runtime
complexity of this approach is linear in the number of points for which normals are
computed.

4.3. Tracking Detected Objects

We make the perceptions of 3D object segments in the individual frames persistent
in a multi-hypotheses object tracker. For each hypothesis, we estimate 3D position and
velocity in the reference frame of the mobile base through Kalman Filters (KFs). In the
KF prediction step, we use odometry information to compensate for the motion of the
robot. The tracks are corrected with the observations of their 3D position and extents.
We use the Hungarian method [10] to associate the detections in an image uniquely with
existing hypotheses.

5. E�cient Grasp Planning

Objects in everyday manipulation scenarios are highly variable in shape and appear-
ance. Furthermore, the con�guration of objects and obstacles in a scene is strongly
unstructured. It is therefore challenging to develop a grasp planning method that can
cope with any encountered situation. Our approach is speci�cally suited for rigid objects
whose shape is symmetric along the vertical axes of the object, or for objects that pro-
vide ridge-like shapes in horizontal directions. We also assume that the center of gravity
roughly coincides with the center of the object. While many objects meet these assump-
tions, our approach can also yield robust grasps for objects that violate the constraints.

We developed �exible grasping motions to grasp objects from the side or from above.
When the robot encounters a new situation, it plans and executes a feasible collision-free
grasp for the object of interest. The robot perceives the scene with its depth camera.
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Figure 5: Left: We extract object pose and shape properties from the object points. The arrows mark
the bounding box of the objects by the principal axes. Right: We rank feasible, collision-free grasps
(red, size prop. to scores) and select the most appropriate one (larger RGB-coded coordinate frame).

It interprets the raw point representation of the objects on the grasp surface which is
provided by our real-time 3D perception method (see Sec. 4).

5.1. Grasp Motion Primitives

We distinguish two kinds of grasps for which we apply parametrizable motion primi-
tives. Side-grasps are designed to approach the object along its vertical axis by keeping
the parallel grippers aligned horizontally. To grasp objects from the top, we pitch the
end-e�ector by 45◦ downwards to grasp objects with the �nger tips.

Both kinds of grasps are �exible in the orientation around the vertical upward direc-
tion. However, we limit the yaw orientation to a range between 0◦ and 90◦ (for the right
arm) due to kinematic constraints of the robot arm and torso. Orientations beyond this
range are grasped in the closest limit angle. Alternatively, the robot can simply choose
its left arm to grasp within the reachable range.

The motion primitives approach the pre-grasp poses on a direct line with open gripper.
We establish the yaw orientation at the pre-grasp pose by smooth interpolation along the
reaching trajectory. Once the pre-grasp pose is reached, the side-grasp motion primitive
simply approaches the object and closes the gripper. For the top-grasp motion, we do
not establish the pitch orientation of the pre-grasp pose until the pre-grasp position has
been reached. We assume that the pre-grasp positions are placed at a �xed distance
behind the grasp position along the grasp direction (0.1m in our case). We use the IR
distance sensors in the gripper to determine premature contact with the object or the
support plane. In such a case, the approach of the object is stopped. After the object
has been grasped, the end-e�ector moves back to its initial pose.

5.2. Planning of Collision-Free Grasps

The grasp planner selects a feasible collision-free grasp for the object of interest. It
samples grasp candidates, removes infeasible and colliding grasps, and ranks the remain-
ing grasps to �nd the most promising one.

The planner outputs a pre-grasp pose to parametrize the grasping motion. A grasp
pose directly corresponds to the pose of the end-e�ector which we de�ne as follows: We
place the grasp at the center of the gripper. The x-axis and y-axis of the grasp pose align
with the direction from wrist to �nger tips and the direction from the right to the left
�nger, respectively.
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5.2.1. Sampling of Grasp Candidates

We sample grasp candidates depending on pose and shape properties of the object.
In order to determine these properties, we project the raw points of the object into the
horizontal plane and measure the principal axes of the point distribution. In addition,
we determine height, center, and bounding box (aligned with the principal axes) of the
object.

Once the shape and pose of the object are known, we determine feasible grasps for
the object. For the side-grasps, we sample pre-grasp poses on an ellipse in the horizontal
plane in equally-sized angular intervals. The center and axes of the ellipse directly
correspond to the properties of the object's bounding box. The diameters of the ellipse
add the distance towards the grasp point to the diameters of the bounding box (0.1m
in our implementation). We grasp the objects as low as possible above the surface at
a speci�c height. This makes the grasping more robust for measurement and control
inaccuracies. Higher grasps could easily topple the object over, when the robot touches
it while moving in grasping direction. We set the grasp height to half the height of the
gripper plus a safety padding of 0.03m.

We sample the top-grasps on all points in a speci�c height range (set to 2 cm) be-
low the highest point of the object. In order to merge similar grasps, we downsample
the points in a voxel grid (at 1 cm resolution). We then determine at each point in the
remaining set the local 3D neighborhood in the object segment using e�cient kd-tree
queries. We set the radius of this query to the maximum graspable width. From the dis-
tribution of these local neighbors, we determine the principal direction in the horizontal
plane. We align the gripper in x-direction along the principal axis. In this way, we can
plan grasps on object shapes with ridges such as bowls, or curved objects. To account
for kinematic constraints of Cosero's anthropomorphic arms, we constrain the pitch of
the grasp to 45◦ in downward direction. We place the pre-grasp pose 0.1m above the
height of the considered sample point, but at least 0.1m above the support plane.

5.2.2. Filtering for Feasible and Collision-Free Grasps

Since the sampling stage does not consider any feasibility constraints or collisions, we
�lter the grasp candidates in a post-processing step. We take the following criteria into
account:

• Grasp width. We reject grasps if the object's width orthogonal to the grasp direction
does not �t into the gripper.

• Object height. Side-grasps are rejected if the object is too low.

• Reachability. We do not consider grasps that are outside of the arm's workspace.

• Collisions. We check for collisions during the reaching and grasping motion.

Fig. 5 shows an example for grasps that satisfy our criteria.
One possible solution for collision checking would be to search for collisions of all

robot limbs during the complete trajectory of the grasping motion. However, we propose
to use simple geometric constraints to �nd all possible collisions (see Fig. 6). While our
method is more conservative, we can �nd collisions with only little computational e�ort.

We �rst project all points on obstacles into the horizontal plane. In order to avoid
collisions of the upper arm, we search for collisions within a circle around the shoulder
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Figure 6: For each sampled grasp (�nal position: black dot, pre-grasp at frame origin, x-direction: red
arrow, y-direction: green arrow), we check for collisions that may occur during the execution of the grasp
motion primitive. All points on obstacles are projected into the horizontal plane. We require the region
around the shoulder (right yellow circle) within upperarm length distance ru to contain no obstacles.
We further require that the gripper and the forearm can move towards the object by checking a cone
with opening angle α and forearm length rf behind the grasping pose. We extend the cone towards the
robot's center position to cover the area swept during the reaching motion. At the �nal grasp position
(black circle), the gripper is not in collision if there is no obstacle within a distance of rg .

with a radius ru equal to the upperarm length. We further require that the gripper and
the forearm can move towards the object by checking a cone with opening angle α and
forearm length rf behind the grasping pose. We extend the cone towards the robot's
center position to cover the area swept during the reaching motion. Finally, we search
for collisions within a small circle at the �nal grasp position. The radius rg of this circle
is set to the maximum diameter of the open gripper.

5.2.3. Ranking of Grasps

We rank the feasible and collision-free grasps for several criteria such as

• Distance to object center. We favor grasps with a smaller distance to the object
center.

• Grasp width. We reward grasp widths closer to a preferred width (0.08m).

• Grasp orientation. Preference is given to grasps with a smaller angle between the
line towards the shoulder and the grasping direction.

• Distance from robot. We support grasps with a smaller distance to the shoulder.

Fig. 5 illustrates this process with example rankings.
From the ranked grasps, we �nd the best top- and side-grasps and select the most

appropriate one. This decision depends on the relation of the object height to the largest
extent of the object in the horizontal plane. We implement a small bias towards the
faster side grasps by scaling up the score of side grasps with a constant factor.
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Figure 7: Measured runtime in a tabletop scene for the individual processing steps in the proposed
perception pipeline. For the scene, 10.000 range images (160× 120) have been acquired and segmented.
Both minimum and average total runtime are slighly below the optimal 30Hz.

6. Experiments

6.1. Quantitative Results

6.1.1. Runtime E�ciency

We summarize average runtimes of several stages of our perception and grasp planning
pipeline in Fig. 7 for a tabletop scene. For a depth image resolution of 160×120, our
segmentation approach achieves an average frame rate of approx. 20Hz. The experiments
have been carried out on a Lenovo X200s notebook with an Intel Core 2 Duo P8400
processor at 2.26GHz. Using the integral image approach, normals can be estimated
rapidly for the 19,200 image pixels within approx. 11msec in average. The extraction of
horizontal points takes in average 2msec. Limiting the search space does not consume
signi�cant runtime. A more costly step is the application of RANSAC to �nd the support
plane. It amounts to about 8msec in average. Extracting the points in the support plane,
constructing the convex hull of the plane, and extracting the points on objects above the
support polygon again require low runtimes of about 2 to 3msec. The clustering of
the points into objects takes about 12msec (avg.). The computation time in this step
depends on the number of objects in the scene. Our approach to grasp planning requires
computation time in the same magnitude as the segmentation, i.e., 98msec (avg.). The
timings demonstrate that our approaches are very performant and yield results in short
computation times. Fig. 8 shows the average runtime on di�erent scenes. It can be seen
that our method yields low runtimes irrespective of the scene content.

We also measured the time for the complete object pick-up process. The robot has
already approached the table. It perceives the objects on the table and plans a grasp
on the closest object in front. It executes the grasp and moves the gripper back to its
starting pose. The overall process takes approx. 15 sec for a side-grasp and 25 sec for a
top-grasp.
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Figure 8: Measured runtimes in ten di�erent scenes for the individual processing steps in the proposed
perception pipeline. The scenes range from an empty room, over a close empty support plane to a table
being farther apart (2.5m away from the robot) and a cluttered table scene with ten objects. For each
scene, 10 000 range images have been acquired and segmented. Shown here, are the average runtimes
with minimum and maximum over all ten settings and all acquired range images (160×120).

6.1.2. Robustness

We evaluate the robustness of our perception and grasp planning pipeline in a series of
experiments. In a tabletop setting, we chose eight typical household objects and executed
12 grasps with the right arm at 30◦ orientation intervals. Fig. 9 shows an example grasp
for each object. Fig. 10 and Table 1 summarize the grasping success obtained in the
experiment. The robot could grasp the objects reliably within its kinematic constraints.
For the tea box and the banana, it would have to perform top-grasps for orientations
that are kinematically infeasible with the right arm. Instead, the robot tries the closest
kinematically feasible grasp possible. In some of these orientations, it fails to grasp
the object. Note that the robot could better grasp the object with the left arm in these
cases, since the range of achievable end-e�ector orientations is symmetric around the end-
e�ector's yaw axis. Despite the fact that the clothes strongly violate our assumptions on
the rigidity of objects, our method succeeds in 11 out of 12 cases in grasping this object.

We further evaluated the robustness of our approach in a shelf (see Fig. 11 and
Table 2). We placed a tea box, a cup, a bowl, and a pen in 30◦ orientation intervals in
the left and right shelf corners. By this, the grasp planner needs to consider collisions
with the walls of the shelf. The object centers had a distance of 20 cm to the left or right
wall and were placed 15 cm in front of the backside wall. In the left corner, the planner for
the right arm yields collision-free grasps for all object orientations and succeeds in all but
one trial. For the tea box, the execution of one grasp failed due to kinematic limitations
of the right arm in this orientation of the object, similar to the tabletop setting. On the
right side of the shelf, the situation is more challenging. Some orientations of the tea box
and the pen were not feasible for our planner. In these orientations, no side-grasps are
possible, and the right arm would collide with the outer wall during the execution of the
top-grasp motion primitive. Please note that the situation would be easier with the left
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Figure 9: Example grasps and grasp planning results for each of the eight household objects used in
the experiments. For each object, we visualize the best grasp that is executed (larger RGB axes) and
sampled grasps (smaller red axes) by their pre-grasp pose.

arm. For one orientation of the pen, the grasp planner yielded a top-grasp on the left
tip of the pen, but failed to grasp it due to small kinematic inaccuracies. Our approach
successfully executed 37 out of 38 planned grasps.

6.2. Public Demonstration

In recent years, competitions such as the DARPA Grand and Urban Challenges and
RoboCup play an important role in assessing the performance of robot systems. While
one can assess the quality of individual system components in the laboratory, it is often
di�cult to compare between di�erent robot systems. In many competitions, details on
the setup are not known in advance, such that the participants have to develop robust
methods that perform well under many conditions.

The international RoboCup competitions include the @Home league for domestic
service robots. In this competition, the robots have to perform tasks de�ned by the
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Figure 10: Grasping success (solid blue arrow) and failure (dashed red arrow) with the right arm from
a tabletop (s: side-grasp, t: top-grasp). We placed the objects in 30◦ orientation intervals. The object
orientation is indicated by arrows. The upward direction corresponds to the forward facing direction of
the robot.

object side-grasp top-grasp

banana 0 / 0 10 / 12
�lter box 12 / 12 0 / 0
tea box 5 / 5 6 / 7
cup 12 / 12 0 / 0
glue 12 / 12 0 / 0
bowl 0 / 0 11 / 12
cloth 0 / 0 11 / 12
pen 0 / 0 12 / 12

Table 1: Success rates (success / trials) when grasping objects 12 times in various orientations with the
right arm from a tabletop.

rules of the competition, in a given environment at a predetermined time. In addition,
there are open challenges and the �nal demonstration, where the teams can highlight the
capabilities of their robots in self-de�ned tasks. The simultaneous presence of multiple
teams allows for a direct comparison of the systems by measuring objective performance
criteria, and by subjective judgment of the scienti�c and technical merit by a jury.

With our robots Cosero and Dynamaid, we won the RoboCup@Home competitions at
GermanOpen 2011 and 2012, and at RoboCup 2011 in Istanbul, Turkey. In the �nals of
the 2011 RoboCup@Home competition at GermanOpen, Cosero and Dynamaid prepared
breakfast within the 10min demonstration slot. Dynamaid fetched orange juice out of
the refrigerator, which it opened and closed successfully, and brought it to the breakfast
table. In the meantime, Cosero grasped a bottle of milk, opened the bottle, and poured
the milk into a cereal bowl. Cosero disposed the empty bottle into the trash bin. It
then moved to another table and successfully grasped a spoon with a top-grasp. A
jury member placed the spoon in an arbitrary orientation. Cosero put the spoon next
to the cereal bowl and �nally waited for an instruction to leave the room. Another
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Figure 11: Grasping success (solid blue arrow) and failure (dashed red arrow) with the right arm from
the left and right corners of a shelf (s: side-grasp, t: top-grasp). We placed the objects in 30◦ orientation
intervals. The object orientation is indicated by arrows. The upward direction corresponds to the forward
facing direction of the robot. Dashed black lines indicate in which orientations no feasible grasps could
be found by the planner due to possible collisions.

left corner right corner

object side-grasp top-grasp no grasp side-grasp top-grasp no grasp

tea box 7 / 7 4 / 5 0 6 / 6 1 / 1 5
cup 12 / 12 0 / 0 0 12 / 12 0 / 0 0
bowl 0 / 0 12 / 12 0 0 / 0 12 / 12 0
pen 0 / 0 12 / 12 0 0 / 0 6 / 7 5

Table 2: Success rates (success / trials) when grasping objects 12 times in various orientations with the
right arm from the left and right corners of a shelf. In some situations, no valid grasp could be found
by the planner due to possible collisions.

jury member pointed towards one of two exit doors using a pointing gesture. Cosero
successfully recognized the pointing gesture and left the room through the correct door.
The jury awarded us the highest score for the �nals.

In the Open Challenge of the @Home competition at RoboCup 2011 in Istanbul,
Cosero demonstrated to prepare cereal in front of a jury of team leaders. In the Demo
Challenge, Cosero cleaned up the appartement by picking up laundry from the ground
and putting it into the correct laundry basket. A human user could before show in which
baskets to put colored and white laundry using gestures. Afterwards, Cosero picked up
three objects from a table using the perception and grasping pipeline proposed in this
paper. In the �rst attempt to pick up a carrot, it had to choose a grasp perpendicular to
the carrot's principal axis and failed to keep grip of the object. However, in the second
attempt, it picked up the carrot successfully along its principal axis. Finally, it grasped
a tea-box with a top-grasp. The objects have been placed randomly. We could convince
the jury with this demonstration and achieved the highest score.

At RoboCup GermanOpen 2012, our robot Cosero demonstrated the described grasp
planning with our new gripper design in the Demo Challenge. Cosero received the highest
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score in this test. Overall, we won the RoboCup@Home competition at GermanOpen
2012. 1

7. Conclusion

In this article, we proposed highly e�cient means to perceive objects on planar sur-
faces and to plan feasible, collision-free grasps on the object of interest. We integrate
our methods into a mobile manipulation system that robustly executes object pick-up
in reasonable time without longer processing delays, i.e. interruptions in the seconds, as
they often occur with state-of-the-art motion planning approaches.

For object perception, we segment depth images in real-time at a frame rate of up to
20Hz. We demonstrated that our perception and planning modules yield their results in
a very short time. In the integrated system, this allows for short and steady execution of
the task. In experiments, we demonstrate that our method is fast yet robust. We found
that our perception and grasping pipeline in combination with a compliant gripper design
is suitable to pick-up a large variety of typical household objects.

We experienced from our integration e�orts that our method is easy to set up. Most
parameters have an intuitive meaning and can be set empirically. Automatic re�nement
of the parameters from success and failure could further improve the usability of our
approach. We already detect rare failures to grasp the object from IR sensor readings in
the gripper. In such a case the robot tries to grasp the object again.

Our approach is well suited for situations in which the object of interest is spacially
well distinguishable from others and the support plane is visible. It also provides grasps
in constrained spaces such as shelves. Our collision-checking method would reject grasps
that are not directly reachable with the implemented motion primitives. For such cases,
we integrate more time-expensive motion planning [14]. To grasp objects in highly clut-
tered scenes, like piles of objects on tables or in bins, further segmentation cues such as
top-down object knowledge [25] or curvature and color-contrast could be used [5].

In future work, we will study how to transfer concepts from our approach to the
grasping and manipulation with strong task constraints, such as tool-use or placing ob-
jects in a speci�c way. This will a�ord the incorporation of information about the object
and the task into perception and planning.
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