
1

Registration with the Point Cloud Library
A Modular Framework for Aligning in 3-D

Dirk Holz, Alexandru E. Ichim, Federico Tombari, Radu B. Rusu, and Sven Behnke

IEEE Robotics & Automation Magazine, Volume 22, Issue 4, pp. 110-124, December 2015.
http://dx.doi.org/10.1109/MRA.2015.2432331

Abstract—Registration is an important step when processing
3D point clouds. Applications for registration range from object
modeling and tracking to simultaneous localization and mapping.
This article presents the open-source Point Cloud Library (PCL)
and the tools therein available for the task of point cloud registra-
tion. PCL incorporates methods for the initial alignment of point
clouds using a variety of local shape feature descriptors as well
as for refining initial alignments using different variants of the
well-known Iterative Closest Point (ICP) algorithm. The article
provides an overview on registration algorithms, usage examples
of their PCL implementations, and tips for their application.
Since the choice and parameterization of the right algorithm for
a particular type of data is one of the biggest problems in 3D
point cloud registration, we present three complete examples of
data (and applications) and the respective registration pipeline in
PCL. These examples include dense RGB-D point clouds acquired
by consumer color and depth cameras, high-resolution laser scans
from commercial 3D scanners, and low-resolution sparse point
clouds captured by a custom lightweight 3D scanner on a micro
aerial vehicle.

Index Terms—PCL, 3D Registration, Point Clouds, ICP

I. INTRODUCTION

3D Registration is the problem of consistently aligning
two or more point clouds, i.e., sets of three-dimensional
points. Often the point clouds are acquired by 3D sensors
from different viewpoints . The registration finds the relative
pose (position and orientation) between views in a global
coordinate frame, such that the overlapping areas between the
point clouds match as well as possible. See Figure 1 for two
examples of registration. The overall objective of registration is
to align individual point clouds and fuse them to a single point
cloud, so that subsequent processing steps like segmentation
and object reconstruction can be applied.

Point cloud registration is a recurring task for a number
of applications related to computer vision, computer graphics,
robotic perception, photogrammetry, cultural heritage model-
ing, digital archaeology, and architecture. This wide applica-
bility motivated intense research in the past years, aimed on
the one hand at obtaining accurate alignments for challenging
3D data such as isotropic or non-distinctive objects, and on

D. Holz and S. Behnke are with the University of Bonn, Bonn, Germany.
A. E. Ichim is with École Polytechnique Fédérale de Lausanne, Switzerland.
F. Tombari is with University of Bologna, Bologna, Italy.
R. B. Rusu is with Open Perception, Inc., CA, USA.
Contact: dirk.holz@ieee.org

This paper is accompanied by a webpage containing the complete datasets
and working applications for all the examples provided in the paper, as well
as other samples: http://pointclouds.org/media/registration-paper.html.

1Data recorded by Dorit Borrmann and Jan Elseberg, Robotic 3D Scan
Repository: http://kos.informatik.uni-osnabrueck.de/3Dscans.

(a) Registered pair of high-resolution 3D laser scans (green and blue) in a city1

(b) Registered RGB-D image sequence of toy cars in a table setting

Fig. 1. Examples of 3D registration in different scales and applications.

the other hand at making the registration process as automatic
as possible.

Publicly available software libraries and data sets are a way
to promote such research and to make results comparable. This
article presents the open-source Point Cloud Library (PCL)
and the tools therein available for the task of point cloud
registration. PCL is a stand-alone, large scale, open project for
3D point cloud processing. It is released under the BSD license
and contains numerous state-of-the-art algorithms for various
applications including filtering, feature estimation, surface
reconstruction, model fitting, segmentation, and visualization,
as well as higher-level tools and applications for performing
mapping and object recognition.

In this article, we focus on the pairwise registration of 3D
point clouds, i.e., aligning two point clouds by estimating
the transformation between the two view poses under which

http://dx.doi.org/10.1109/MRA.2015.2432331
http://kos.informatik.uni-osnabrueck.de/3Dscans

2

Pre-processing

view 2

view 1

Initial Pose

Input Data

Keypoint Estimation

Descriptor Computation

Matching

Sec.III
Initial

Alignment

Correspondence Estimation

Correspondence Rejection

Convergence
and

Validation

Transformation Estimation

Sec.IV.
Iterative
Closest

Point
1

2

Refined
Pose

Fig. 2. Overview of the process of registering a pair of point clouds. After the two views are in memory, a pre-processing sequence is applied in order to
improve the signal to noise ratio or to recover information about the surface (normals) that is lost because of the sampling involved in the scanning procedure.
There are two available paths: the first one consists of computing keypoints and their descriptors and then estimating a relative transformation between the
two clouds. This can be used as a good initial alignment for the dense registration via Iterative Closest Point, represented by the second path.

the point clouds have been acquired. Techniques and tools
for tackling sequences of point clouds in a globally coherent
fashion (i. e., the so called multi-view registration) will be
covered in future publications.

Pairwise registration is usually carried out by means of one
of the several variants of the Iterative Closest Point (ICP)
algorithm. Due to the non-convexity of the optimization, ICP-
based approaches require initialization with a rough initial
transformation in order to increase the chance of ending up
with a successful alignment. Good initialization also speeds
up their convergence. This paper will cover all stages required
for point cloud alignment—from coarse alignment based on
descriptor matching to the ICP-based refinement—illustrating
the tools currently available in PCL to carry out each task.
Moreover, we present three pipelines implemented in PCL
together with typical results for different types of input data,
ranging from small-scale object modeling to outdoor 3D
mapping.

The article is structured as follows: In Section II, we
first introduce typical registration pipelines and a common
scheme for registration approaches. Section III covers ICP-
based registration for input data that is already roughly aligned
and Section IV discusses feature-based registration in case no
such initial alignment is available. Finally, we present three
complete examples of input data and the respective registration
pipelines implemented using PCL in Section V.

II. GENERAL/BASIC REGISTRATION PIPELINES

A. Problem Formulation

A point cloud is a data structure P used to represent a
collection of multi-dimensional points p ∈ Rn. In a 3D
point cloud, the elements usually represent the X , Y , and
Z geometric coordinates of an underlying sampled surface.
When more information is available, e.g., color information
or information about local surface normal n or curvature κ,
the points p ∈ P are represented by a longer vector.

Given a source point cloud P with points p ∈ P , and
a target point cloud Q with points q ∈ Q, the problem of
registration relies on finding correspondences between P and
Q, and estimating a transformation T that, when applied to P ,
aligns all pairs of corresponding points

(
pi ∈ P, qj ∈ Q

)
. One

Listing 1 Example Code Listing and Terminology
// specifying types of input and output data
Algorithm<PointT, NormalT, FeatureT> alg;

// providing input data
alg.setInputCloud (input_cloud);
alg.setInputNormals (input_normals);

// computing output
PointCloud<FeatureT> output_features;
alg.compute(&output_features);

fundamental problem of registration is that these correspon-
dences are usually not known and need to be determined by the
registration algorithm. Given correct correspondences, there
are different ways of computing the optimal transformation
w.r.t. the used error metric, as detailed in the following.

To support processing various types of point clouds, in PCL,
all components are templated. The remainder of the article will
use code snippets in the style of Listing 1.

B. Typical Registration Pipelines

Referring to Figure 2, and following the modularization
of Rusinkiewicz and Levoy [1], the registration of two point
clouds can be split into the following steps:

1) Selection: The sampling of the input point clouds.
2) Matching: Estimating the correspondences between the

points in the subsampled point clouds.
3) Rejection: Filtering the correspondences to reduce the

number of outliers.
4) Alignment: Assigning an error metric, and minimizing it

to find the optimal transformation.
Each of these four stages will be now detailed, with specific
reference to the tools available in PCL.

C. Matching Closest Points vs. Feature-based Registration

Two major classes of registration algorithms can be distin-
guished (see the two paths in Figure 2):

1) Feature-based registration algorithms (path 1) for com-
puting initial alignments, and

2) Iterative registration algorithms (path 2) following the
principle of the ICP algorithm to iteratively register point
clouds (that are already roughly aligned).

3

For feature-based registration, geometric feature descriptors
are computed and matched in some high-dimensional space.
The more descriptive, unique, and persistent these descriptors
are, the higher is the chance that all found matches are pairs
of points which truly correspond to one another.

In the ICP algorithm by Besl and McKay [2] no feature de-
scriptors are computed, but instead closest points in Cartesian
space are considered to correspond to one another. A transfor-
mation is estimated that minimizes the Euclidean distances
between found pairs of closest points in the least squares
sense. The process of determining corresponding points in the
two data sets and computing the transformation that aligns
them is iteratively repeated. The source point set is expected
to converge towards the target set as the correspondences
increasingly become better and better. Simultaneously, Chen
and Medioni [3] formulated a similar algorithm, but instead
of minimizing the squared Euclidean distances between corre-
sponding points, applied a point-to-plane error metric. In the
following two sections, we discuss both approaches.

III. ITERATIVE REGISTRATION OF CLOSEST POINTS

In contrast to feature-based registration, iterative registration
algorithms do not match salient feature descriptors in order to
find correspondences between source and target point clouds,
but instead 1) search for closest points (matching step) and 2)
align the found point pairs (alignment step). These two steps
are repeated until convergence or until reaching another termi-
nation criterion, thereby iteratively refining the alignment of
the source to the target point cloud. Under various assumptions
such as perfect overlap, the alignment converges to the global
minimum (w.r.t. the error metric used) for optimal alignment.
The main drawback of iterative registration is that the algo-
rithms may get caught in local minima if the assumptions do
not hold, e.g., if the clouds only partially overlap and/or if
the initial alignment is off. In this case, false correspondences
can negatively affect the registration result. However, several
methods exist to sort out false correspondences (rejection
step) and improve convergence. Furthermore, if the clouds are
already roughly aligned, iterative registration provides efficient
and robust means to refine that initial guess and optimally align
the point clouds. In order to speed up registration, another
common extension to the original ICP algorithm [2] is to
register only subsets of the input point clouds sampled in an
initial selection step.

A. Selection — Sampling Representative Subsets

Depending on the application and sensor, point clouds
can become quite large. Consequently, registering large point
clouds is considerably more computationally expensive than
registering clouds of smaller cardinality. However, data is often
redundant or unnecessarily detailed for the task of registration.
Hence, registering only subsets of the original point clouds
can yield sufficient results while saving computation time. In
principle, two methods of data reduction can be distinguished:
automatically extracting a small set of unique and repeatable
keypoints (see Section IV-A) and sampling of the original
data with respect to a desired target distribution. Whereas the

Listing 2 Point Cloud Sampling (Uniform)
PointCloud<int> indices;
UniformSampling<PointT> uniform_sampling;
uniform_sampling.setInputCloud (cloud);
uniform_sampling.setRadiusSearch (0.05f);
uniform_sampling.compute (indices);

Listing 3 Correspondence Estimation
#include <pcl/registration/correspondence_estimation.h>
(...)
CorrespondencesPtr corresps(new Correspondences);
CorrespondenceEstimation<PointT, PointT> est;
est.setInputSource (source_cloud);
est.setInputTarget (target_cloud);
est.determineCorrespondences (*corresps, max_dist);

former is intended for feature-based initial alignment (Sec-
tion IV), the latter can be used to efficiently reduce the amount
of data for iterative registration algorithms. PCL implements
several such sampling methods, most notably, sampling in
index space (simply taking every n-th point), uniform sub-
sampling in the input 3D space (to better capture the sensed
environmental structures), and sampling in the space of local
surface normals (in order to sample points over all surface
orientations). An example of using uniform sampling in PCL
is given in Listing 2.

B. Matching — Closest Points Correspondence Estimation

Correspondence estimation is the process of pairing points
pi from the source point cloud P to their closest neighbors
qj in the target cloud Q. This is a greedy approximation of
finding the ideal correspondences (pi, qĵ) between the two
clouds. A naı̈ve way of searching for the nearest neighbor
is to perform an exhaustive search through all the target
points for the nearest neighbor of each source point. As this
is prohibitively expensive for applications using millions of
points, various data structures for rapid searches have been
proposed, such as octrees and kd-trees. These data structures
have logarithmic search times (as opposed to the linear naı̈ve
variant), but take longer to initialize, e.g., O(N logN) for
kd-trees. For this purpose, PCL depends on FLANN [4], an
open-source library for fast (approximate) nearest neighbor
searches. It has been empirically proven to be one of the best
performing solutions [5].

In order to compute a set of correspondences in our frame-
work, we can use the code in Listing 3. Given source_cloud

and target_cloud as input, determineCorrespondences re-
turns the set of found correspondence pairs. Each pair consists
of the index of the query point in the source cloud and the
index of the found match in the target point cloud. The optional
second argument max_dist can be used to specify a maximum
distance between corresponding points such that pairs with a
larger point-to-point distance are filtered out.

In the case of input data coming from sensors that comply
with the pinhole camera model, the correspondence estimation
procedure can be significantly sped up at the loss of some
precision. Such sensors include popular RGB-D cameras like
the Microsoft Kinect, and collect information from the en-
vironment in the form of depth and color images. In PCL,

4

Listing 4 Correspondence Estimation using Projections
#include <pcl/registration/
correspondence_estimation_organized_projection.h>
(...)
CorrespondenceEstimationOrganizedProjection
<PointXYZ, PointXYZ> est;

est.setInputSource (cloud_source);
est.setInputTarget (cloud_target);
est.setFocalLengths (f_x, f_y);
est.setDepthThreshold (epsilon);
CorrespondencesPtr corresps (new Correspondences ());
est.determineCorrespondences (*corresps);

we refer to point clouds with an image-like structure as being
organized. Instead of using complex data structures such as kd-
trees for nearest neighbor searches in 3D space, we can use the
projective nature of the depth images to obtain a reasonable
approximation. Each point in the cloud corresponds to a pixel
in the depth image, allowing projections from source points
in world coordinates to the camera plane of the target frame
by using the intrinsic and extrinsic camera parameters:fx 0 cx 0

0 fy cy 0
0 0 1 0

 [R|t]

px
py
pz
1

 =

d · ud · v
d

,

(1)

where the first matrix is the intrinsic calibration matrix of the
source camera with (fx, fy) being the focal length (divided by
image width and height respectively) and (cx, cy) the camera
projection center, the matrix [R|t] is the transformation of
the source camera, d is the depth of the projected point
p = (px py pz)

T in the target camera, and u, v are the
coordinates of p in the target camera plane. After projection,
the query point is assigned to its closest point in image space
(if u and v lie within image boundaries) or considered part of
the non-overlapping volume between source and target cloud.

This approach is fast, but imprecise for point clouds with
large depth discontinuities or for frames that are far away
from each other. That is why this method is recommended
to be used only after the two point clouds have been brought
close together, making it good for aligning consecutive point
clouds in a stream recorded at high frame rate. A code snippet
for projection-based correspondence estimation is presented in
Listing 4.

C. Rejecting and Filtering Correspondences

Since invalid correspondences can negatively affect the reg-
istration results, most registration pipelines feature a rejection
step. It consists of filtering the point pairs matched in the
previous stage in order to facilitate the transformation estima-
tion algorithm towards convergence to the global minimum.
This step can take advantage of auxiliary information available
from the input point clouds, such as local surface normals
or statistics about the correspondences. Referring to Figure 3,
the following correspondence rejection methods are commonly
deployed and available in PCL:

1) Correspondence rejection based on distance: This
method filters out point pairs with a distance larger than a
given threshold (see Figure 3a). It is used in [1] and was

pi

qj

(a) Rejection based on the dis-
tance between the points.

pi

qj

nqj

npi

(b) Rejection based on normal
compatibility.

pi

qj

(c) Rejection of pairs with dupli-
cate target matches.

qj

pi

(d) Rejection of pairs that con-
tain boundary points.

Fig. 3. Correspondence rejection. Good correspondence pairs (green) are
kept while outliers (red) are sorted out to improve convergence.

already mentioned in the original formulation of the ICP
algorithm [2] (→ CorrespondenceRejectorDistance).

2) Rejection based on median distance: Unlike the pre-
vious rejector, this one does not use a fixed threshold, but
computes it as the median of all point-to-point distances
in the input set of correspondences. Hence, it considers
the distribution of the distances between the points and
adapts to it, becoming smaller as the two point clouds
get closer during the ICP iterations. Compared to an adap-
tive threshold based on the mean value, the median is
often more effective in reducing the influence of outliers.
(→ CorrespondenceRejectorMedianDistance).

3) Rejecting pairs with duplicate target matches: Usu-
ally, each sampled point in the source cloud is assigned
to a correspondence in the target cloud. Hence, it might
happen that a point in the target cloud is assigned multi-
ple corresponding source points (see Figure 3c). This re-
jector only keeps a single such pair (pimin

, qj), the one
with the minimum distance out of all the pairs {(pi, qj)}
(→ CorrespondenceRejectorOneToOne).

4) RANSAC-based rejection: This method applies Ran-
dom Sample Consensus (RANSAC) [6] to estimate a trans-
formation for subsets of the given set of correspondences
and eliminates the outlier correspondences based on the
Euclidean distance between the points after the computed
transformation is applied to the source point cloud. It is
very effective in keeping the ICP algorithm from converging
into local minima, as it always produces slightly different
correspondences and is good at filtering outliers. In addi-
tion, it provides good initial parameters for the transforma-
tion estimation with all inlier correspondences that follows
(→ CorrespondenceRejectorSampleConsensus).

For the registration of point clouds coming from projective
sensors, there exist correspondence rejectors that exploit the
image-like structure of the input data. Most notably, a special
2D variant (→ CorrespondenceRejectorSampleConsensus2D)

5

Listing 5 Correspondence Rejection (based on distance)
#include <pcl/registration/
correspondence_rejection_distance.h>
(...)
CorrespondenceRejectorDistance rejector;
rejector.setInputSource<PointT> (cloud_src);
rejector.setInputTarget<PointT> (cloud_tgt);
rejector.setInputCorrespondences (corresps_in);
rejector.setMaximumDistance (max_dist);
rejector.getCorrespondences (corresps_filtered);

of the RANSAC-based correspondence rejector discards pairs
based on their pixel distance in the image plane after the source
point is transformed and projected into the target camera plane.

5) Rejection based on normal compatibility: This filter uses
the normal information about the points, and rejects those pairs
that have inconsistent normals, i.e., the angle between their
normals is larger than a given threshold. It can reject erroneous
pairs that seem correct when judged only by the distance
between the points, such as the case depicted in Figure 3b.
(→ CorrespondenceRejectorSurfaceNormal).

6) Rejection based on surface boundaries: Furthermore,
when two point clouds captured by a projective sensor rep-
resent surfaces that have partial overlap, accepting corre-
spondences containing surface boundary points can intro-
duce errors (Figure 3d). In order to detect such points, we
can exploit the organized nature of the depth maps and
eliminate the correspondences that contain points on depth
discontinuities by moving a window across the depth image
and checking if there are enough points in the window
that are within a threshold depth from the center point
(→ CorrespondenceRejectorBoundaryPoints).

7) Rejector pipelines: Most often, not only a single rejector
is applied, but instead several correspondence rejectors are
queued in order to implement a filtering pipeline. For example,
Diebel et al. [7] apply a combination of different solutions for
rejecting point pairs in their active stereo point clouds, empha-
sizing the importance of rejecting points on mesh boundaries
(see the RGB-D example in Section V-C). In addition, they
reject pairs based on their normal compatibility and based on
their point-to-point distance using a distance threshold based
on the median distance. In PCL, multiple rejectors can be
easily concatenated by using the output correspondences of
the previous rejector as input to the next one.

We provide a usage example for PCL correspondence
rejection in Listing 5. Given the input point clouds and a set
of estimated correspondence pairs, getCorrespondences runs
the rejection and returns the vector of filtered correspondence
pairs. Moreover, all correspondence rejection methods in PCL
feature getRejectedQueryIndices to retrieve the indices of
query points of rejected correspondence pairs. This informa-
tion is useful, for example, to determine non-overlapping parts
between the source and target point cloud.

D. Alignment — Error Metrics and Transformation Estimation

Over the years, there have been numerous mathematical
approaches for solving for the rigid transformation T that
minimizes the error of the point pairs. T is composed of a
rotation R and a translation t. Note that, in the following

d

pi

qi

(a) Point to point error

d

pi

qi

nqi

(b) Point to plane error

d
pi

qi

(c) Generalized-ICP

Fig. 4. Error metrics and transformation estimators.

when referring to a transform T and a point p, homogeneous
coordinates will be used.

There are two main error metrics to be minimized that have
been considered in literature: point-to-point (Eq. 2) and point-
to-plane (Eq. 3), where (pk, qk) is the k-th of the N pair
correspondences from the source cloud to the target cloud.

Epoint-to-point (T) =

N∑
k=1

wk||T pk − qk||2, and (2)

Epoint-to-plane (T) =

N∑
k=1

wk

(
(T pk − qk) · nqk

)2
. (3)

The optional wk can be used for weighting the pairs in order
to give them more or less importance in the least squares
formulation (wk = 1 if no weighting is applied):

1) Standard point-to-point error metric: The standard error
metric used in the ICP algorithm is the point-to-point error
metric (Eq. 2). It was first mentioned by Arun [8]; researchers
proposed various ways of minimizing it, followed by the
introduction of the ICP Algorithm [2]. Eggert et al. [9]
evaluated each of these methods in terms of numerical stability
and accuracy reaching the conclusion that they are close
performers.

PCL provides an implementation using a closed-form using
singular value decomposition (SVD) that was first proposed
by Horn [10] (→ TransformationEstimationSVD).

2) Point-to-plane error metric: Chen and Medioni [3] in-
troduced the point-to-plane metric (Eq. 3) and proved it to be
more stable and converge faster than the previous approaches.
It uses the distance between the source point pk and the
plane described by the target point qk and its local surface
normal nqk

. Unlike the point-to-point metric, it does not
have a closed-form solution, so the minimization is done with
non-linear solvers (such as Levenberg-Marquadt, as proposed
by [11]), or by linearizing it [12] (under the assumption of
small rotation angles, i. e., sin θ ∼ θ and cos θ ∼ 1).

Depending on the underlying surface and the distribution
of points, using the point-to-plane error metric can be consid-
erably more robust. A standard procedure for minimizing it
relies on the Levenberg Marquardt non-linear optimizer [11]
(→ TransformationEstimationPointToPlane).

3) Linear least squares point-to-plane: PCL also features
an alternative method that accumulates the point-to-plane
constraints of all the correspondences in a matrix A and
estimates the rotation and translation in the least squares sense
by solving a linear system of the form AT A v = AT b,
with v being a six-dimensional parameterized representa-
tion of the minimizing transformation, as suggested by [12]
(→ TransformationEstimationPointToPlaneLLS).

6

Listing 6 Transformation estimation (weighted point-to-plane)
#include <pcl/registration/
transformation_estimation_point_to_plane_weighted.h>
(...)
TransformationEstimationPointToPlaneWeighted
<PointXYZ, PointXYZ, double> te;

te.setWeights (correspondence_weights);
te.estimateRigidTransformation (*cloud_src, *cloud_tgt,

*corresps_filtered, transform);

4) Weighted point-to-plane error metric: Assigning a dif-
ferent weight to each correspondence can improve conver-
gence. The weighting of the point pairs can be seen as
a soft correspondence rejection, adjusting the influence of
noisy corresponding points in the minimization process. The
weighting can be a function of the point-to-point or point-
to-plane distance between the points, a function of the angle
between the normals corresponding to the points, or a function
of the noise model of the sensor that has been used. Numerous
publications [1, 7, 13, 14] consider the weighting of the point
pairs as a beneficial step for the robustness and convergence
rate of the transformation estimation algorithm.

Referring to Figure 4, PCL offers a multitude of tech-
niques for estimating the transformation between two point
clouds given a set of correspondences. As an exam-
ple for transformation estimators, a code snippet show-
ing how to use the weighted point-to-plane error met-
ric (→ TransformationEstimationPointToPlaneWeighted) is
given in Listing 6.

5) Weighted linear least squares point-to-plane: Simi-
larly to the previous one, the linear least squares point-
to-plane variant can be used with non-constant weights
(→ TransformationEstimationPointToPlaneLLSWeighted).

6) Generalized error metric and Generalized-ICP: Segal et
al. [15] proposed an error metric that generalizes over point-to-
point and point-to-plane. It uses covariances of the local point
neighborhoods (ΣP

k and ΣQ
k) in order to align the underlying

surfaces rather than the points themselves:

EGeneralized-ICP (T) =

N∑
k=1

d
(T)
k

T(
ΣQ

k + TΣP
k T

T
)−1

d
(T)
k

(4)
where d

(T)
k =qk−Tpk are the point-to-point distances of the

correspondences (pk, qk), T is the transformation matrix, and
T T its transpose. In PCL, Generalized-ICP is implemented as
a complete registration component that includes computation
of the covariances ΣP

k and ΣQ
k for all points in source cloud P

and target cloud Q (→ GeneralizedIterativeClosestPoint).

E. Termination Criteria

For iterative registration algorithms, termination criteria for
the transformation refinement process must be defined. In
addition to simply setting a maximum number of iterations,
many other criteria can be specified. Among others, the
following termination criteria are available in PCL. Using a
common interface (→ DefaultConvergenceCriteria), they
can be efficiently combined and configured.

iterations

error
metric

(a) Max. number of iterations.

iterations

absolute
rotation

(b) Absolute transformation thresh-
old.

iterations

absolute
rotation

(c) Relative transformation thresh-
old.

iterations

error
metric

(d) Max. number of similar itera-
tions.

iterations

MSE

(e) Relative MSE threshold.

iterations

MSE

(f) Absolute MSE threshold.

Fig. 5. ICP termination criteria supported in PCL.

1) Maximum number of iterations: Exceeding the number
of iterations means that the optimizer diverged. This threshold
has to be tuned depending on the complexity of the registration
problem; expect that registering a pair of scans that are far
away from each other will require more iterations, than two
scans that have a good initial alignment (Figure 5a).

2) Absolute transformation threshold: The iterations are
stopped when the currently estimated transformation is far
away from the initial transformation. This is an early termi-
nation criteria for registration procedures that diverge. The
intuition behind it is that the two clouds to be aligned are
expected to be within a certain range of distances from each
other, and so transformations that are outside that range need
to be rejected, e.g., two consecutive handheld-Kinect scans
recorded at 30Hz can not be more than 10 cm and 20 degrees
apart from each other (Figure 5b).

3) Relative transformation threshold: It specifies the mini-
mum transformation difference from one iteration to the next
that is considered small enough for the optimizer to have
converged (Figure 5c).

4) Maximum number of similar iterations: The previous
stopping criteria has the downside that a minimizer might
temporarily seem to have converged, but it is actually oscil-
lating in a local minimum and has a chance of escaping from
it and converging into the global minimum or a better local
minimum. For this reason, we allow the optimizer to spend a
certain number of iterations around a minimum point before
considering it converged (Figure 5d).

5) Relative mean square error: This criterion is similar to
the relative transformation threshold, using the mean square
error metric instead of the rotation/translation increment (Fig-

7

Listing 7 Combination of Termination Criteria
#include <pcl/registration/default_convergence_criteria.h>
(...)
DefaultConvergenceCriteria<double> conv_crit (iteration,
transform, *correspondences);

conv_crit.setMaximumIterations (30);
conv_crit.setMaximumIterationsSimilarTransforms (3);
conv_crit.setTranslationThreshold (5e-3);
conv_crit.setRotationThreshold (cos (0.5 * M_PI / 180.0));
conv_crit.setRelativeMSE (0.01);
do
{ (... ICP iterations ...)
} while (!conv_crit.hasConverged ())
ConvergenceState why_conv =
conv_crit.getConvergenceState ();

pi

qj

empty space

valid
correspondences

invalid
correspondences

Fig. 6. Transformation validation: if two surfaces match locally, we need to
make sure that their empty space also matches and that there is no additional
depth information in the overlap region of any of the clouds that does not
have correspondences in the other cloud.

ure 5e).
6) Absolute mean square error: It stops the iterations when

the error between the two aligned clouds is below a certain
value (Figure 5f).

All of these techniques represent ways of balancing between
the quality and the runtime of the registration procedure.
They prove to be essential for tuning algorithms for real-time
performance.

F. Transformation Validation (Optional)

Due to the presence of numerous local minima in the
ICP error function, a series of checks can be performed at
the end of the registration process in order to confirm a
successful convergence. We suggest checking for the per-
centage of the overlapping surface of the two point clouds
(→ TransformationValidationEuclidean). In the case of
sensors that obey the pinhole camera model (RGB-D), this
can be done efficiently in image space by rendering one point
cloud on top of the other with the computed poses. Similarly,
one can check if the overlapping region has enough inliers
(see Figure III-F). Another indicator for the success of the
registration is the condition number of the overlapping region
[16], which tells if the common surface of the point clouds is
stable enough so it does not allow slippage.

IV. COARSE ALIGNMENT VIA DESCRIPTOR MATCHING

As discussed, ICP-based algorithms, due to their greedy
nature, require a reliable initial alignment to avoid converging
to bad local minima. Typical solutions to this problem are
represented by running ICP multiple times, each time with
a different, random initialization—prohibitively slow for most
applications—or by computing an initial transformation from a
hand-chosen set of correspondences inserted by a human user

(semi-automatic approach). A further approach which is fast
and fully automatic is determining point-to-point correspon-
dences between 3D keypoints extracted from both clouds via
matching of the associated keypoint descriptors. This set of
correspondences is then successively pruned of mismatches
by means of an outlier rejection scheme, so that it can be
deployed to obtain the transformation aligning one cloud to the
other. The use of a coarse alignment increases the chance of
successful alignment, as well as making ICP converge faster.
Also, it is a fully automatic approach which does not require
any user intervention. PCL includes several state-of-the-art
tools for carrying out initial alignment via descriptor matching,
which are briefly outlined in the following.

A. Estimating Keypoints

Coarse pairwise alignment can be carried out without an
explicit keypoint selection stage, i. e., by random selection of
points or by uniform sampling of the cloud (see Section III-A).
Nevertheless, several choices are currently available in litera-
ture and in PCL that explicitly aim at extracting salient and
repeatable keypoints given an input cloud. The advantage of
relying on specific 3D detection schemes is that the repeatabil-
ity and robustness of the computed 3D correspondences with
respect to nuisances affecting the data is generally improved,
thus enhancing the robustness of 3D registration schemes.

Due to the topic of 3D keypoint detection being fairly new,
a common approach consists in porting the key criteria of
successful image interest point detectors from the 2D domain
(i. e., images) to the 3D domain. This is, e.g., the case of
the Harris corner detector [17], a popular approach based
on Taylor expansion of the directional intensity variation
computed on an image point. In the 3D extension of this
criterion (→ Harris3D), the directional intensity variation is
substituted by computing the angle between the normal of
the central point and its neighbors: a point yielding big angle
values along several directions will typically denote a corner
in 3D. Two variants of such a detector are also available, one
detecting corners in the intensity domain (→ Harris2D), the
other jointly exploiting the intensity as well as the 3D domain
(→ Harris6D). As for most 3D keypoint detectors [18], a Non-
Maxima Suppression (NMS) stage is applied to retrieve only
local maxima of the saliency measure evaluated at each point
by the detector.

Other 3D keypoint detector approaches were specifically
designed for the 3D or 2.5D domain. This is the case of
Intrinsic Shape Signature (ISS) [19], which is based on the
eigenvalue decomposition (EVD) of the 3 × 3 scatter ma-
trix computed between each point and all neighbors within
a spherical support. Non-distinctive points are rejected by
thresholding the ratios of the three eigenvalues. The smallest
eigenvalue is used as the keypoint saliency, which is subject
to the NMS stage. Thus, keypoints retained by this method
exhibit a distinct variance of the point coordinates along
one direction with respect to the other two. As an example,
Listing 8 shows how to compute keypoints using ISS.

Another recent interest point detector is NARF [20], a
method specifically designed to extract salient keypoints on

8

Listing 8 Keypoint Estimation (Intrinsic Shape Signatures)
ISSKeypoint3D<PointT, PointT> iss_detector;
iss_detector.setSalientRadius (salient_radius);
iss_detector.setNonMaxRadius (non_max_radius);
iss_detector.setInputCloud (input_cloud);

PontCloud<PointT>::Ptr keypoints (PontCloud<PointT>());
iss_detector.compute (*keypoints);

range images. It focuses on detecting points along object depth
borders. Specifically, a subset of border points is selected such
that they exhibit substantially different dominant directions
of the surface in the local neighborhood, so that they can
be stable and repeatable with respect to viewpoint changes
(→ NarfKeypoint).

For more details on other relevant proposals in the field,
as well as for a recent performance evaluation, we refer the
reader to [18].

B. Describing Keypoints — Feature Descriptors

For each detected keypoint a descriptor is computed for
being able to determine correspondences between the two
point clouds. A local descriptor is a compact representation
of a point’s local neighborhood. In contrast to global de-
scriptors describing a complete object or point cloud, local
descriptors try to resemble shape and appearance only in a
local neighborhood around a point and thus are very suitable
for representing it in terms of matching. Among the several
approaches currently available in literature, we report here a
brief outline of the main solutions available in PCL for the
registration of 3D clouds. Apart from the outlined descriptors,
PCL includes several other methods: we refer the interested
reader to [21], a survey focused on the 3D descriptors available
in PCL (including related code snippets), and to [22], focusing
on a performance evaluation of PCL 3D descriptors.

The Spin Image descriptor [23] rotates a plane section
around the normal of the keypoint. The plane section accumu-
lates over a 2D histogram the number of points of the cloud
intersected while doing a complete spin around the normal
(see Fig. 7a). One advantage of this approach is that only a
repeatable normal - rather than a full Local Reference Frame
(LRF) - is required to compute the descriptor.

The FPFH descriptor [24] stores the relative orientation of
normals and distances between point pairs falling within the
spherical neighborhood of a keypoint. Point pairs are formed
by the keypoint and its nearest neighbors, as well as by
the nearest neighbors of each keypoints’ neighbor. For each
pair (pi,pj), a repeatable LRF is constructed by means of a
Darboux frame coordinate system [24]. Then, three angles α,
φ and θ are computed out of different comparisons between the
unit vectors composing the LRF and the normals of (pi,pj),
as depicted in Fig. 7b. These three angles are accumulated
over three separate histograms for all point pairs, which are
in turn juxtaposed so to yield the final descriptor. Listing 9
shows how to compute FPFH feature descriptors for a given
set of keypoints.

3D Shape Context (3DSC) [25] relies on a spherical grid
centered on the keypoint and quantized along its three domains

Listing 9 Feature Estimation (FPFH)
FPFHEstimation<PointT, NormalT, FPFHSignature33> fpfh;
fpfh.setSearchSurface (cloud);
fpfh.setInputNormals (normals);
fpfh.setRadiusSearch (radius);
fpfh.setInputCloud (keypoints);

PointCloud<FPFHSignature33> features;
fpfh.compute (&features);

radius, azimuth, and elevation (see Figure 7c for a visual ex-
ample). This quantization defines a 3D histogram, where each
bin is represented by a volume of the grid, and the accumulated
value is the number of points falling therein and weighted by
the volume size and the local point density. The final descriptor
orderly stores all bins of the histogram, by aligning the north
pole of the grid with the normal of the central point, and by
shifting the grid over the normal plane as many times as the
number of azimuth subdivisions. Multiple grid orientations in
turn yield multiple descriptions for the same point, so to obtain
rotation invariance (→ ShapeContext3DEstimation).

The USC [26] descriptor has been proposed as an extension
of 3DSC, where an LRF is associated to each point being de-
scribed. The LRF provides two repeatable principal directions
over the normal plane which uniquely orient the 3D grid as-
sociated with each descriptor, thus yielding a single descriptor
at each keypoint rather than multiple ones. This reduces mem-
ory footprint and matching ambiguities during the successive
correspondence estimation stage (→ UniqueShapeContext).

The SHOT descriptor [27] relies on a 3D grid centered on
the keypoint and oriented according to a repeatable LRF (see
Fig. 7d for a visual example). Each unit vector making up
this LRF coincides with a principal direction obtained via
eigenvalue decomposition of the scatter matrix of the points
falling within the grid, and its sign is disambiguated according
to a specific procedure relying on the relative density of the
cloud [27]. For each grid sector, a histogram is computed by
accumulating the angles between the normal of the keypoint
and the normal of each point falling within that sector. The
final descriptor is formed by orderly juxtaposing all computed
histograms (→ SHOTEstimation).

C. Correspondence Estimation and Filtering

The simplest approach to establish point-to-point corre-
spondences between the keypoints extracted from the two
clouds is to associate to each descriptor computed on one
cloud its nearest neighbor in the descriptor space among
the descriptor set computed on the other cloud. Obviously,
several correspondences are going to be erroneous due to the
presence of non-overlapping areas between the two clouds, as
well as due to spurious matches caused by noise, geometry
deformations and non-distinctive descriptors. Correspondence
estimation thus needs to match only a subset of keypoints
and to reject found correspondences respectively (see Sec-
tion III-C). One of the most common approaches is to use
RANSAC, where the generative model is the 6-Degree-of-
Freedom (6DOF) transformation between the two clouds built
over three randomly chosen correspondences (Section III-C4).

9

(a) Spin Images (b) FPFH Descriptor (c) 3DSC Descriptor (d) SHOT Descriptor

Fig. 7. Functional principles of feature descriptors: (a) The Spin Image descriptor spins a plane section around the keypoint normal to compute its 2D
histogram. (b) The local reference frame and the three angles α, φ and θ computed by FPFH at each point pair. (c) The 3D spherical grid deployed by 3DSC.
Two grid sectors, yielding each a bin in the 3D histogram, are depicted respectively in green and red. (d) The 3D grid deployed by SHOT, which is repeatably
oriented by the local reference frame denoted by the blue arrows.

D. Transformation Estimation

Once outlier-free correspondences are reliably estimated, an
Absolute Orientation algorithm is used to estimate the 6DOF
transformation between the two clouds based on all remaining
correspondences. Among the several algorithms available in
literature, PCL includes an implementation of the method
based on the Singular Value Decomposition (SVD) of the
matrix representation of the 6DOF transformation proposed
in [8, 10] (→ TransformationEstimationSVD).

Note that this is the same type of transformation estimation
used in iterative registration where correspondences are not
known but instead iteratively refined by always using closest
points. A code sample showing how to use this transformation
estimator has already been presented in Listing 6.

V. EXPERIMENTS AND EXAMPLES

A whole range of diverse applications benefits from reliable
pairwise alignment between 3D point clouds. These applica-
tions differ in terms of: i) characteristics of the acquired data,
e.g., high resolution polygonal mesh as opposed to low resolu-
tion point clouds; ii) working scale, e.g., large scale as in most
urban and photogrammetry scenarios, as opposed to small
scale, such as typically required for reverse engineering and
object modeling; iii) a-priori knowledge, which depends on
whether estimates of the acquisition viewpoints are available
(in which case the initial estimate only needs to be refined)
as opposed to the situation where they are unknown (in which
case an initial alignment needs to be computed solely using
the acquired data).

In addition to these differences which often require adopting
ad-hoc solutions, one can also exploit certain characteristics
of the data in order to improve speed or robustness. Since a
fundamental problem of registration is to find the most suitable
algorithm together with an appropriate parameterization, in
this section we detail three different examples ranging from
dense RGB-D image sequences for object modeling to high-
resolution and low-resolution laser range scans for outdoor
mapping of buildings and cities.

A. Large-scale 3D Laser Scans

Commercially available 3D laser scanners, as those used
by surveying technicians, acquire high-resolution large-scale

scans that usually consist of several million points. With a
comparably ample maximum measurement range, these sen-
sors can be used to capture large scenes such as buildings and
streets. In order to create a complete model (e.g. a whole city,
or an urban district), the acquired scans need to be aligned and
aggregated. Frequently, surveying technicians use additional
means such as special reflectors that assist in obtaining a fine
alignment of the data. In our example, we assume that such
information is not available and that we want to 1) compute
an initial alignment for a pair of large-scale 3D laser scans,
and 2) refine the initial estimate to obtain a perfect overlay of
the acquired data.

1) Initial Alignment: As already mentioned in Section IV,
PCL provides implementations for a variety of 3D descriptors
that can be used for initial alignment. Here, the key issue is not
only to find an appropriate descriptor for the problem at hand,
but also an appropriate scale, i.e., the support size on which to
compute each descriptor. Of particular interest in this context is
the distinctiveness of each descriptor that influences the num-
ber of possible ambiguities in the matching stage as well as
the repeatability such that the descriptor computed on the same
scene point over different scans looks the same. A particularly
robust approach is to compute the same class of descriptor at
various scales and to focus the registration on points and asso-
ciated descriptors that prove to be distinctive at the same scale,
as well as to be persistent over multiple scales. PCL provides
a joint estimation components that finds such keypoints and
descriptors (→ MultiScaleFeaturePersistence).

Listing 10 shows an example for computing keypoints for
an input point cloud together with the respective persistent
feature descriptors. First, the selected descriptor (in our ex-
ample we use FPFH [24]) is fetched to an instance of the
MultiScaleFeaturePersistence class together with a vector of
pre-selected scales and a distance metric. The class computes
the descriptors with the given estimator for all desired scales
and uses the provided distance metric to compute similarity. It
returns the indices of all selected interest points that can then
be used for an initial alignment.

In order to compute an initial alignment for a pair
of target and source point clouds, we first match the
estimated descriptors (CorrespondenceEstimation in List-
ing 11). We then reject false correspondences by find-
ing a consistent set (in a RANSAC-like fashion) using

10

Listing 10 Multi-scale keypoint and descriptor computation
#include <pcl/features/fpfh.h>
#include <pcl/features/multiscale_feature_persistence.h>
(...)
FPFHEstimation<PointXYZ, Normal, FPFHSignature33>::Ptr
fest (new (...));

fest->setInputCloud (cloud);
fest->setInputNormals (normals);

MultiscaleFeaturePersistence<PointXYZ, FPFHSignature33>
fper;

std::vector<int> keypoints;
std::vector<float> scale_values = { 0.5f, 1.0f, 1.5f };
fper.setScalesVector (scale_values);
fper.setAlpha (1.3f);
fper.setFeatureEstimator (fpfh_estimation);
fper.setDistanceMetric (pcl::CS);
fper.determinePersistentFeatures (*features, keypoints);

Listing 11 Initial alignment using keypoints and descriptors
#include <pcl/registration/correspondence_estimation.h>
#include <pcl/registration/

correspondence_rejection_sample_consensus.h>
#include <pcl/registration/transformation_estimation_svd.h>
(...)
Correspondences::Ptr correspondences (new Correspondences);
CorrespondenceEstimation<FPFHSignature33, FPFHSignature33>
cest;

cest.setInputSource (source_features);
cest.setInputTarget (target_features);
cest.determineCorrespondences (*correspondences);

Correspondences::Ptr corr_filtered (new Correspondences);
CorrespondenceRejectorSampleConsensus<PointXYZ> rejector;
rejector.setInputSource (source_keypoints);
rejector.setInputTarget (target_keypoints);
rejector.setInlierThreshold (2.5);
rejector.setMaximumIterations (1000000);
rejector.setRefineModel (false);
rejector.setInputCorrespondences (correspondences);;
rejector.getCorrespondences (*corr_filtered);

TransformationEstimationSVD<PointXYZ, PointXYZ> trans_est;
trans_est.estimateRigidTransformation (*source_keypoints,

*target_keypoints, *corr_filtered, transform);

CorrespondenceRejectorSampleConsensus. It samples from
the estimated correspondences, computes a candidate trans-
formation and then determines all inliers as correspondences
where the respective source and target point are sufficiently
close after applying the candidate transformation (parameter
set using setInlierThreshold). The transformation yielding
the highest number of inliers is the most likely initial align-
ment. All inliers are then used to compute the transformation
by means of TransformationEstimationSVD.

2) Fine Registration: After the initial alignment, the source
and target point clouds are already roughly registered. An
iterative algorithm is used to correct the estimated viewpoints
and to accurately align the point clouds.

In Figure 8 we show the results of the proposed pipeline
on typical large-scale 3D laser scans (from the “Bremen” data
set) in the 3D Scan Repository2.

B. Sparse low-resolution 3D Laser Scans

In the previous example, the 3D point clouds were not only
very accurate but also very dense. We now focus attention on
problems that arise when the data is particularly sparse and
how to compensate for the resulting effects.

23D Scan Repository: http://kos.informatik.uni-osnabrueck.de/3Dscans

(a) Target point cloud with estimated keypoints (visualized with
larger radii)

(b) Estimated
correspondences

(c) Filtered
correspondences

(d) Aligned point clouds

Fig. 8. Registration result: shown are the target point cloud with persistent
keypoints (a), detail views of estimated correspondences (b) and filtered
correspondences (c), as well as source and target point clouds after initial
and refined alignment (d).

A particular characteristic of custom built 3D scanners com-
posed of a rotating 2D laser range finder is that the acquired
point clouds have non-uniform point densities: usually a high
density within each scan line and a certain angle between
scan lines which depends on the rotation speed of the scanner.
Rotating the scanner fast increases the frequency with which
the surroundings can be perceived (important for collision
avoidance, e.g., as in our example of an autonomous micro
aerial vehicle), but reduces the angular resolution and thus
the point density in the acquired point clouds (see Figure 9
for an example). The resulting non-uniform point densities
affect classic neighborhood searches in 3D and cause problems
in local feature estimation and registration. For example, the
Generalized ICP algorithm by Segal et al. [15] uses local
surface information in the form of covariance matrices to
align surfaces rather than individual points. However, as can
be seen in Figure 9, inaccurate estimates (as caused by the
non-uniform point densities) degrade the performance of the
algorithm and negatively affect the registration result.

In order to compensate for these effects, we can approxi-
mately reconstruct the underlying surface and then compute
the covariances directly on the reconstructed mesh [28]. We
thereby exploit the topological information in the organized
data and can accurately register such pairs of sparse point
clouds. In this example, we show, how to approximate the
surface reconstruction and the covariances, and how to use
custom covariances with Generalized-ICP.

11

MAV

20m0m

(a) Perspective view of an example scan with MAV and building. Point
colors encode height. A photo highlights the scanned region.

(b) Original Generalized-ICP (top and detail view)

(c) Generalized-ICP w. approximated covariances (top and detail view)

Fig. 9. Registration of sparse laser scans: (a) example of a point cloud
acquired while flying close to a building and trees. (b) The standard imple-
mentation of Generalized-ICP suffers from inaccurate covariance estimates
and incorrectly aligns the two point cloud origins and the individual scan lines.
(c) When approximating the underlying surface, computing the covariances
on the reconstruction, and using these externally computed covariances for
Generalized-ICP, we can accurately align the clouds.

Listing 12 shows the main parts of the implementation
using PCL. We first approximate the surface for both source
and target point cloud (→ OrganizedFastMesh), and then
compute estimates of the local surface normals and the covari-
ances directly on the reconstructed meshes. We then use the
standard Generalized-ICP algorithm (Section III-D6) with the
covariances estimated on the reconstructed surface information
(→ GeneralizedIterativeClosestPoint).

Listing 12 Generalized-ICP using approximated covariances.
#include <pcl/surface/organized_fast_mesh.h>
#include <pcl/registration/gicp.h>
#include <pcl/features/from_meshes.h>
PointCloud<PointT>::Ptr cloud;
PolygonMesh::Ptr mesh;
(...)
// reconstruct meshes for source and target
OrganizedFastMesh<PointT> fast_mesh;
fast_mesh.setInputCloud(cloud);
fast_mesh.reconstruct(*mesh);
(...)
// compute normals and covariances for source and target
PointCloud<Normal>::Ptr normals;
boost::shared_ptr< std::vector<Eigen::Vector3d> > covs;
pcl::features::computeApproximateNormals(

*cloud, mesh->polygons, *normals);
pcl::features::computeApproximateCovariances(

*cloud, normals, *covs);
(...)
// setup Generalized-ICP
GeneralizedIterativeClosestPoint<PointT, PointT> gicp;
gicp.setMaxCorrespondenceDistance(1);
gicp.setInputSource(source_cloud);
gicp.setInputTarget(target_cloud);
gicp.setSourceCovariances(source_covariances);
gicp.setTargetCovariances(target_covariances);

// run registration and get transformation
PointCloud<PointT> output;
gicp.align(output);
Eigen::Matrix4f transform = gicp.getFinalTransformation();

C. Registering Sequences of RGB-D Images

In the last example, we present a complete pipeline for
aligning scans coming from a Microsoft Kinect, which is
an example of an RGB-D camera, i.e., a 3D sensor that
simultaneously acquires color and depth images at high frame
rates (e.g., 30Hz). These sensors have both data sources
synchronized and registered, thus resulting in point clouds
where each point has an associated RGB color and lies on
a 2D grid structure. As mentioned earlier, in PCL we refer to
such image-like 3D representations as organized point clouds.

It is assumed that consecutive clouds acquired from the
sensor are temporally (and, thus, spatially) close to each
other. For this to hold, not only the device must have a
sufficiently high frame rate, but also the pipeline must process
frames at a comparable speed. This is the working assumption
of cloud registration algorithms deployed within SLAM and
Kinect Fusion-like frameworks [29]. Under these conditions,
the point clouds are close enough to allow ICP to reach a good
local minimum in most cases without the need for the initial
alignment procedure and with just a few iterations. We will
briefly walk through all steps of the pipeline.

1) Preprocessing — Filtering and Fast Feature Estimation:
This type of cameras exhibits various forms of noise. Hence,
initial filtering becomes necessary when the cameras are used
to acquire accurate 3D models. There are multiple ways in
which noise can be efficiently eliminated from generic point
clouds, but none of them takes into account the difficult quanti-
zation effects seen in this new type of data. An edge-preserving
filtering method—bilateral filter—has been adapted from the
field of 2D image processing (→ FastBilateralFilter).
It smooths more when neighboring pixels are similar (flat
regions), and less when there are jumps, thus not affecting
the edges. Listing 13 provides a usage example.

12

Listing 13 Filtering (and Upsampling) for RGB-D Data
#include <pcl/filters/fast_bilateral.h>
(...)
FastBilateralFilter<PointXYZ> filter;
filter.setInputCloud (cloud_in);
filter.setSigmaS (5);
filter.setSigmaR (0.005f);
bilateral_filter.filter (*cloud_out);

Fig. 10. Typical result of registering a sequence of RGB-D frames.

Accelerating the computation of normals can also be done
by using the grid structure of the RGB-D data. The rasterized
depth images can be used to speed up the normal estimation
process by using integral images [30]. The advantage of
this method is that it requires only a linear pre-processing
stage while allowing for computing mean vectors and nor-
mals within a rectangular area of the image in constant
time (→ IntegralImageNormalEstimation).

2) Registration Pipeline: For aligning a sequence of
RGB-D images, we present a hybrid registration pipeline.
Because of the high data rate of these sensors (640 × 480 =
307 200 points at 30Hz), the measurements need to be sam-
pled, e.g., such that the registered point clouds contain only
10% of the original data. As described in Section III-A, there
are many approaches available for sampling the point cloud.

a) Normal space subsampling: A particularly robust way
to register RGB-D point clouds is to perform normal space
sampling (→ NormalSpaceSampling). It consists in binning
each point into M3 bins based on the normal angle around
each of the x, y, and z-axis, respectively. Next, a fixed number
of samples are extracted randomly from each bin. This ensures
that the resulting point cloud has samples at locations from
all the differently oriented surfaces in the scene, increasing
the probability that the registration will converge to the global
minimum.

b) Correspondence estimation and filtering: Having only
a fraction of the points left, using a complex search data
structure is not that prohibitively slow anymore. Consequently,
we apply the correspondence estimation based on kd-trees
(Section III-B) rather than the projection-based estimation.

In order to reject misleading correspondences,
we employ a combination of two correspondence
filters (Section III-C): a filter based on normal compatibility
(→ CorrespondenceRejectorSurfaceNormal) to reject
point pairs with mismatched normals, and a distance filter
using the median distance between correspondence pairs

(→ CorrespondenceRejectorMedianDistance to eliminate
the pairs with outlying distances.

c) Transformation estimation and weighting: Using
the resulting small set of robust correspondences, the
transformation between the two point clouds is com-
puted using the weighted point-to-plane distance metric
(→ TransformationEstimationPointToPlaneWeighted). Be-
cause our normals have been computed on the original point
clouds, they approximate the underlying surface well. As a
result, the point-to-plane error metric is preferred as a better
estimation of the distance between the source and target
surfaces, as opposed to point-to-point measurements. The
weighting of the correspondences can be done by using a
sensor noise model. One such example was proposed by [13]
and considers the standard deviation of the depth to increase
quadratically with the distance of the scanned surfaces from
the image plane. As such, the weight for the correspondence
between points p and q is taken as the maximum of the
standard deviation of the two points under the noise model:

w(p, q) = max (σz (pz) , σz (qz)) , (5)
with σz(z) = 0.0012 + 0.0019 ∗ (z − 0.4)2. (6)

As convergence criteria for the ICP algorithm (Sec-
tion III-E), a good configuration is to use the number of
iterations (chosen based on the time we have allocated for
registration) and the length of the incremental translation and
rotation from the last iteration (chosen to be lower than the
expected camera movement between frames).

d) Typical registration results: For the purpose of the
experiment, we recorded sequences of RGB-D frames at
30Hz. Each frame is registered in a pairwise fashion against
the previous one. Results are shown in Figure 10 and Figure 1.
Note that if a large number of frames are registered pairwise,
individual alignment errors accumulate. There are numerous
techniques in the literature to solve this issue, such as loop
closing via graph optimization or forms of global registration.

VI. CONCLUSION

In this article, we have presented the modular registra-
tion framework implemented in the open-source Point Cloud
Library (PCL). Following the usual scheme of registration
algorithms, we explained different modules available in PCL
and presented code snippets showing how to use them. Finally,
we presented three examples of registration approaches, each
tailored to a specific type of input data so as to show how the
different components in PCL can be efficiently combined to
solve various registration problems.

A sequel to this tutorial focusing on global multi-view reg-
istration is planned. The complete example implementations
have been made available together with the used datasets at:
http://pointclouds.org/media/registration-paper.html.

REFERENCES

[1] S. Rusinkiewicz and M. Levoy, “Efficient variants of
the ICP algorithm,” in International Conference on 3-D
Digital Imaging and Modeling (3DIM), 2001.

http://pointclouds.org/media/registration-paper.html

13

[2] P. J. Besl and N. D. McKay, “A method for registration of
3-D shapes,” IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), vol. 14, no. 2, pp. 239–
256, 1992.

[3] Y. Chen and G. Medioni, “Object modelling by registra-
tion of multiple range images,” Image Vision Comput.,
vol. 10, no. 3, pp. 145–155, 1992.

[4] M. Muja and D. G. Lowe, “Fast approximate nearest
neighbors with automatic algorithm configuration,” in
International Conference on Computer Vision Theory
and Application (VISAPP), 2009, pp. 331–340.

[5] J. Elseberg, S. Magnenat, R. Siegwart, and A. Nüchter,
“Comparison on nearest-neigbour-search strategies and
implementations for efficient shape registration,” Journal
of Software Engineering for Robotics (JOSER), vol. 3,
no. 1, pp. 2–12, 2012.

[6] M. A. Fischler and R. C. Bolles, “Random sample
consensus: a paradigm for model fitting with applications
to image analysis and automated cartography,” Commun.
ACM, vol. 24, no. 6, pp. 381–395, 1981.

[7] J. Diebel, K. Reutersward, S. Thrun, J. Davis, and
R. Gupta, “Simultaneous localization and mapping with
active stereo vision,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2004, pp.
3436–3443.

[8] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-
squares fitting of two 3-D point sets,” IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI),
vol. 9, no. 5, pp. 698–700, 1987.

[9] D. W. Eggert, A. Lorusso, and R. B. Fisher, “Estimating
3-D rigid body transformations: a comparison of four
major algorithms,” Mach. Vision Appl., vol. 9, no. 5-6,
pp. 272–290, 1997.

[10] B. K. P. Horn, “Closed-form solution of absolute ori-
entation using unit quaternions,” Journal of the Optical
Society of America A, vol. 4, no. 4, pp. 629–642, 1987.

[11] A. W. Fitzgibbon, “Robust registration of 2D and
3D point sets,” in British Machine Vision Conference
(BMVC), 2001, pp. 411–420.

[12] K.-L. Low, “Linear least-squares optimization for point-
to-plane ICP surface registration,” in Technical Report
TR04-004, Department of Computer Science, University
of North Carolina at Chapel Hill, 2004.

[13] C. V. Nguyen, S. Izadi, and D. Lovell, “Modeling Kinect
sensor noise for improved 3D reconstruction and track-
ing,” in 3D Imaging, Modeling, Processing, Visualization
and Transmission (3DIMPVT), 2012, pp. 524 –530.

[14] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox,
“RGB-D mapping: Using Kinect-style depth cameras for
dense 3D modeling of indoor environments,” Interna-
tional Journal of Robotics Research (IJRR), vol. 31,
no. 5, pp. 647–663, 2012.

[15] A. V. Segal, D. Haehnel, and S. Thrun, “Generalized-
ICP,” in Robotics: Science and Systems, 2009.

[16] N. Gelfand and S. Rusinkiewicz, “Geometrically stable
sampling for the ICP algorithm,” in International Con-
ference on 3D Digital Imaging and Modeling, 2003, pp.
260–267.

[17] C. Harris and M. Stephens, “A combined corner and
edge detection,” in 4th Alvey Vision Conference, 1988,
pp. 147–151.

[18] F. Tombari, S. Salti, and L. D. Stefano, “Performance
evaluation of 3D keypoint detectors,” Int. Journal of
Computer Vision, vol. 102, no. 1-3, pp. 198–220, 2013.

[19] Y. Zhong, “Intrinsic shape signatures: A shape descriptor
for 3D object recognition,” in ICCV Workshop on 3D
Representation for Recognition (3dRR), 2009.

[20] B. Steder, R. Rusu, K. Konolige, and W. Burgard,
“NARF: 3D range image features for object recognition,”
in IROS Workshop on Defining and Solving Realistic
Perception Problems in Personal Robotics, 2010.

[21] A. Aldoma, Z. Marton, F. Tombari, W. Wohlkinger,
C. Potthast, B. Zeisl, R. Rusu, S. Gedikli, and M. Vincze,
“Point Cloud Library: Three-dimensional object recog-
nition and 6 DOF pose estimation,” IEEE Robotics and
Automation Magazine, vol. 19, no. 3, pp. 80–91, 2012.

[22] L. Alexandre, “3D descriptors for object and category
recognition: a comparative evaluation,” in IROS Work-
shop on Color-Depth Camera Fusion in Robotics, 2012.

[23] A. Johnson and M. Hebert, “Using spin images for
efficient object recognition in cluttered 3D scenes,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence (PAMI), vol. 21, no. 5, pp. 433–449, 1999.

[24] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point
feature histograms (FPFH) for 3D registration,” in IEEE
International Conference on Robotics and Automation
(ICRA), 2009, pp. 1848–1853.

[25] A. Frome, D. Huber, R. Kolluri, T. Bülow, and J. Malik,
“Recognizing objects in range data using regional point
descriptors,” in European Conference on Computer Vi-
sion (ECCV), 2004, pp. 224–237.

[26] F. Tombari, S. Salti, and L. Di Stefano, “Unique shape
context for 3D data description,” in ACM Workshop on
3D Object Retrieval (3DOR), 2010, pp. 57–62.

[27] F. Tombari, S. Salti, and L. Di Stefano, “Unique signa-
tures of histograms for local surface description,” in Eu-
ropean Conference on Computer Vision (ECCV), 2010,
pp. 356–369.

[28] D. Holz and S. Behnke, “Mapping with micro aerial
vehicles by registration of sparse 3D laser scans,” in
International Conference on Intelligent Autonomous Sys-
tems (IAS), 2014.

[29] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux,
D. Kim, A. J. Davison, P. Kohli, J. Shotton, S. Hodges,
and A. Fitzgibbon, “KinectFusion: real-time dense sur-
face mapping and tracking,” in IEEE International Sym-
posium on Mixed and Augmented Reality (ISMAR), 2011,
pp. 127–136.

[30] S. Holzer, R. B. Rusu, M. Dixon, S. Gedikli, and
N. Navab, “Adaptive neighborhood selection for real-
time surface normal estimation from organized point
cloud data using integral images,” in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), 2012, pp. 2684–2689.

	I Introduction
	II General/Basic Registration Pipelines
	II-A Problem Formulation
	II-B Typical Registration Pipelines
	II-C Matching Closest Points vs. Feature-based Registration

	III Iterative Registration of Closest Points
	III-A Selection — Sampling Representative Subsets
	III-B Matching — Closest Points Correspondence Estimation
	III-C Rejecting and Filtering Correspondences
	III-C1 Correspondence rejection based on distance
	III-C2 Rejection based on median distance
	III-C3 Rejecting pairs with duplicate target matches
	III-C4 RANSAC-based rejection
	III-C5 Rejection based on normal compatibility
	III-C6 Rejection based on surface boundaries
	III-C7 Rejector pipelines

	III-D Alignment — Error Metrics and Transformation Estimation
	III-D1 Standard point-to-point error metric
	III-D2 Point-to-plane error metric
	III-D3 Linear least squares point-to-plane
	III-D4 Weighted point-to-plane error metric
	III-D5 Weighted linear least squares point-to-plane
	III-D6 Generalized error metric and Generalized-ICP

	III-E Termination Criteria
	III-E1 Maximum number of iterations
	III-E2 Absolute transformation threshold
	III-E3 Relative transformation threshold
	III-E4 Maximum number of similar iterations
	III-E5 Relative mean square error
	III-E6 Absolute mean square error

	III-F Transformation Validation (Optional)

	IV Coarse Alignment via Descriptor Matching
	IV-A Estimating Keypoints
	IV-B Describing Keypoints — Feature Descriptors
	IV-C Correspondence Estimation and Filtering
	IV-D Transformation Estimation

	V Experiments and Examples
	V-A Large-scale 3D Laser Scans
	V-A1 Initial Alignment
	V-A2 Fine Registration

	V-B Sparse low-resolution 3D Laser Scans
	V-C Registering Sequences of RGB-D Images
	V-C1 Preprocessing — Filtering and Fast Feature Estimation
	V-C2 Registration Pipeline

	VI Conclusion

