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Demonstrating Everyday Manipulation Skills in

RoboCup@Home
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Abstract—The RoboCup@Home league is a benchmark for
domestic service robot systems. It evaluates approaches to mobile
manipulation and human-robot interaction by testing integrated
systems. In this article, we detail the contributions of our team
NimbRo, with which we won the RoboCup@Home competition
in 2011. We demonstrated novel capabilities in the league such
as real-time tabletop segmentation, flexible grasp planning, and
real-time tracking of objects. We also describe our approach to
human-robot cooperative manipulation using compliant control.
We report on the use of our approaches and the performance of
our robots at RoboCup 2011.

Index Terms—RoboCup@Home, mobile manipulation, real-
time scene perception, benchmarks in robotics.

I. INTRODUCTION

As benchmarking robotics research is inherently difficult,

robot competitions are increasingly popular. They bring to-

gether researchers, students, and enthusiasts in the pursuit of

a technological challenge. Prominent examples for such com-

petitions include the DARPA Grand and Urban Challenges [1],

the International Aerial Robotics Competition (IARC) [2],

the European Land-Robot Trial (ELROB) [3], and—not the

least—RoboCup [4], [5].

Such competitions provide a standardized test bed for dif-

ferent robotic systems. All participating teams are forced to

operate their robots outside their own lab in an uncontrolled

environment at a scheduled time. This makes it possible to di-

rectly compare the different approaches for robot construction,

environment perception, and control.

While the annual RoboCup competitions are best known

for their soccer leagues, they also feature two leagues in other

domains—the RoboCup Rescue league for robots supporting

first responders and RoboCup@Home addressing service robot

applications in domestic environments.

In RoboCup@Home, different disciplines of robotics re-

search such as, for instance, mobile manipulation and human-

robot interaction are tightly coupled. That is, approaches are

integrated systems and benchmarking individual components

becomes less suitable. Instead, benchmarking them is con-

ducted by demonstrating (and comparing) the performance and

reliability of complete systems in a realistic setup and in an

integrated way.

In this article, we present the contributions of our team

NimbRo to the RoboCup@Home league. We describe the

challenges in this league and detail our approaches to the com-

petition. Our team achieved first place in the 2011 competition.
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Science Institute VI, University of Bonn, 53113 Bonn, Germany, e-mail:
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Fig. 1. Cognitive service robot Cosero grasps a spoon and pours milk into
a bowl of cereals at RoboCup GermanOpen 2011.

While we successfully participated in many standard tests,

we also demonstrated novel capabilities in the league such as

real-time tabletop segmentation, flexible grasp planning, and

real-time tracking of objects. We also describe our approach

to human-robot cooperative manipulation using compliant

control.

II. THE ROBOCUP@HOME LEAGUE

The RoboCup@Home league [6], [7] was established in

2006 to foster the development and benchmarking of dex-

terous and versatile service robots that can operate safely in

everyday scenarios. The robots have to show a wide variety of

skills including object recognition and grasping, safe indoor

navigation, and human-robot interaction (HRI). In 2011, 19

international teams competed in the @Home league. It is

currently one of the strongest growing leagues in RoboCup.

A. Competition Design

The competition is organized into two preliminary rounds

or stages and a final [8]. The stages consist of predefined test

procedures as well as open demonstrations.

The predefined tests include skills for domestic service

robots that must be solved with state-of-the-art approaches.

The time to accomplish the tests is limited, which forces the

teams to implement time-efficient approaches. During the tests,

the robots must operate autonomously. Helping with physical

interaction or remote control is not allowed. The rules also
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include extra scores for specific skills that require solutions

to research questions, rewarding scientific solutions that go

beyond the fulfillment of the basic requirements of a test.

In the open demonstrations, the teams can choose their own

task for the robot in order to demonstrate results of their own

research.

The top 50% of the teams (w.r.t. score) after the first stage

advance to the second stage where they have to perform more

complex tasks. The top 50% of the teams (w.r.t. score) after

the second stage (including the points scored in the first stage)

further advance to the Final which is conducted as an open

demonstration.

While the rules and the tests are announced several months

prior to the competition, the details of the competition envi-

ronment are not known to the participants in advance. During

the first two days of the competition, the teams can map

the competition arena, which resembles an apartment, and

train object recognition on a set of about 20 smaller objects

which are used as known objects with names throughout the

recognition and manipulation tests. The arena is subject to

minor and major changes during the competition and also

contains previously unknown objects.

B. Performance Evaluation

In the predefined tests, each sub-task is assigned a cer-

tain number of points which are awarded upon successful

completion. This allows for an objective evaluation of the

overall system’s performance, as well as for the assessment

of individual components.

The performances of the teams in the open demonstra-

tions vary greatly and are hence harder to compare. Open

demonstrations are evaluated by juries for their technical and

scientific merits. In order to provide a fair assessment, these

juries are formed from leaders of other teams or from members

of the technical and executive committees of the league. The

jury in the Final is formed from members of the league’s

executive committee and distinguished external representatives

of science, industry, and the media.

The juries evaluate the teams by specific criteria that are

defined in the rules of the competition. In the Final, for ex-

ample, the external jury assesses originality and presentation,

usability of human-robot interaction, difficulty and success,

and relevance for daily life.

C. Tests and Skills

The tests in the RoboCup@Home league are designed to

reflect (and test for) the large diversity of problems addressed

in service robotics research.

1) Tests in Stage I: All teams participate in the first stage

which tests basic mobile manipulation and HRI capabilities. In

the Robot Inspection and Poster Session test, the robots have

to navigate to a registration desk, introduce themselves, and

get inspected by the league’s technical committee. Meanwhile,

the team gives a poster presentation that is evaluated by the

leaders of the other teams. In Follow Me, the robots must

demonstrate person tracking and recognition capabilities in an

unknown environment. The robot is guided by a previously

unknown user who can command the robot either by speech

or by gestures. At several checkpoints, the robustness of the

approaches is tested by applying different disturbances. Mobile

manipulation and HRI capabilities have to be integrated for

GoGetIt. Here, the robot has to retrieve the correct object

among others from a room. The room is specified to the

robot by a human user using speech input. Person detection

and recognition in the home environment is tested within

WhoIsWho. The robot has to learn the identity of two persons

and must later find the persons among others in a different

room. In the General Purpose Service Robot I test, the

robots must understand and act according to complex speech

commands that consist of three sub-tasks such as moving to

a location, retrieving a specific object, and bringing it back to

the user. The last test in this stage is the Open Challenge in

which the teams can demonstrate their system in a five minute

slot.

2) Tests in Stage II: The teams that advance to the sec-

ond stage are tested in more complex scenarios. Enhanced

WhoIsWho extends WhoIsWho towards a robotic butler sce-

nario. A user tells the robot to bring beverages to three out

of five persons. The robot has to fetch the beverages and

to deliver them to the correct person. Again, the robot is

introduced to the persons at the beginning. This test has to be

solved within 10 min. In General Purpose Service Robot II,

commands with missing or erroneous information are given to

the robot. The robot has to ask for missing information, or, if

it detects erroneous task specifications during the execution of

the task, it must react accordingly, report back to the user, and

propose alternative solutions. Shopping Mall tests the abilities

of the robots to operate in previously unknown environments.

A human user guides the robot through a real shopping mall

and shows it the location of several objects. Afterwards, the

robot must fetch a subset of the objects as specified by the

human user. Stage II concludes with the Demo Challenge.

This 7 min open demonstration follows a theme that is defined

prior to the competition. In 2011, the theme was “Cleaning the

House“.

III. RELATED RESEARCH ON INTEGRATED SYSTEMS

The lean rules in the RoboCup@Home league facilitate

diverse approaches. Some teams construct new and innovative

robot hardware, while others resort to off-the-shelf hardware

in order to focus on algorithmic problems.

The Chinese team WrightEagle [9] has competed in the

@Home league since 2009. In 2011, they introduced the

KeJia-2 robot platform that supports omni-directional driving

and is equipped with two 7-DOF manipulators for human-

like reach, similar to our robots. In the competition, KeJia

made popcorn in a microwave oven. For this demonstration,

the robot had to press buttons to open and close the microwave

door.

The German team b-it-bots [10] introduced their robot Jenny

in the 2011 competition. Jenny consists of a modified Care-

O-Bot 3 platform from Fraunhofer IPA with a 7-DOF Kuka

lightweight robot arm and a three-finger Schunk hand.

The Australian team RobotAssist [11] competes with a

robot that combines a Segway RMP 100 base with an Exact
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Fig. 2. Domestic service robot Dynamaid opens and closes the fridge during
the RoboCup@Home Final 2010 in Singapore.

Dynamics iArm manipulator. For manipulator control, they

apply an optimization method that finds collision-free arm

configurations for the object to manipulate. RobotAssist also

demonstrated person detection, identification, and social skills

with their robot.

Besides RoboCup@Home, many research groups currently

develop integrated systems for mobile manipulation in ev-

eryday environments. Demonstrations of these systems are

performed in isolated settings in labs or at trade fairs.

A prominent example is the Personal Robot 2 (PR2) devel-

oped by Willow Garage. Bohren et al. [12] demonstrate an

application in which a PR2 fetches drinks from a refrigerator

and delivers them to human users. Both the drink order and

the location at which it has to be delivered are specified

by the user in a web form. In Beetz et al. [13] a PR2

and a custom-built robot cooperatively prepare pancakes. In

the healthcare domain, Jain and Kemp [14] present EL-E,

a mobile manipulator that assists motor impaired patients

by performing pick and place operations to retrieve objects.

Srinivasa et al. [15] combine object search and retrieval in

different demonstrations in their lab. Their autonomous service

robot HERB navigates around a kitchen, searches for mugs

and brings them back to the kitchen sink. Xue et al. [16]

demonstrated grasping and handling of ice cream scoops with

a two-armed robot standing at a fixed position. The DLR robot

Rollin’ Justin prepared coffee in a pad machine [17]. The robot

grasped coffee pads and inserted them into the coffee machine,

which involved opening and closing the pad drawer.

In the RoboCup 2011 competition, our team NimbRo par-

ticipated with the robot Dynamaid and its successor Cosero.

In the tests, the robots showed their human-robot interaction

and mobile manipulation capabilities. We introduced many

new developments, like grasp planning to extend the range

of graspable objects, real-time scene segmentation and object

tracking, and human-robot cooperative carrying of a table.

IV. SYSTEM OVERVIEW

A. Robot Design

We focused the design of our robots Dynamaid [18] and

Cosero [19] (see Figs. 1, 2) on typical requirements for au-

tonomous operation in everyday environments. While Cosero

still retains the light-weight design principles of Dynamaid,

we improved its construction and appearance significantly

and made it more precise and stronger actuated. Cosero’s

mobile base has a small footprint of 59×44 cm and drives

omnidirectionally. This allows the robot to maneuver through

the narrow passages found in household environments. Its

two anthropomorphic arms resemble average human body

proportions and reaching capabilities. A yaw joint in the torso

enlarges the workspace of the arms. In order to compensate

for the missing torso pitch joint and legs, a linear actuator in

the trunk can move the upper body vertically. This enables the

robot to manipulate on similar heights like humans, even on

the floor.

We constructed our robots from light-weight aluminum

parts. All joints are driven by Robotis Dynamixel actuators.

These design choices allow for a light-weight and inexpen-

sive construction, compared to other domestic service robots.

While each arm of Cosero has a maximum payload of 1.5 kg

and the drive has a maximum speed of 0.6 m/sec, the low

weight (in total ca. 32 kg) requires only moderate actuator

power. The robot’s main computer is a quadcore notebook

with an Intel i7-Q720 processor.

Both robots perceive their environment with a variety of

complementary sensors. The robots sense the environment in

3D with a Microsoft Kinect RGB-D camera in their pan-tilt

head. For obstacle avoidance and tracking in farther ranges and

larger field-of-views than the Kinect, the robots are equipped

with multiple laser-range scanners, from which one can be

pitched and one can be rolled. The sensor head of the robots

also contains a shotgun microphone for speech recognition.

By placing the microphone on the head, the robots point the

microphone towards human users and at the same time direct

their visual attention to them.

B. Perception and Control Framework

The autonomous behavior of our robots is generated in a

modular control architecture. We employ the inter process

communication infrastructure and tools of the Robot Operating

System (ROS) [20].

We implement task execution, mobile manipulation, and

motion control in hierarchical finite state machines. The task

execution level is interweaved with human-robot interaction

modalities. For example, we support the parsing of natural

language to understand and execute complex commands.

Tasks that involve mobile manipulation trigger and

parametrize sub-processes on a second layer of finite state

machines. These processes configure the perception of objects

and persons, and they execute motions of body parts of

the robot. The motions themselves are controlled on the

lowest layer of the hierarchy and can also adapt to sensory

measurements.

V. EVERYDAY MANIPULATION SKILLS

One significant part of the competition in the @Home

league tests mobile manipulation capabilities. The robots shall
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be able to fetch objects from various locations in the environ-

ment. To this end, they must navigate through the environment,

perceive objects, and grasp them.

We implement navigation with state-of-the-art methods.

Cosero localizes and plans paths in a 2D occupancy grid

map of the environment ([21], [22], [23]). For 3D collision

avoidance, we integrate measurements from any 3D sensing

device, such as the tilting laser in the robot’s chest. Due to the

limited on-board computing power of our robots, we focused

on efficient and light-weight implementations.

In mobile manipulation, the robot typically estimates its

pose in reference to the walls, objects, or persons. For example,

when the robot grasps an object from a table, it first approaches

the table roughly within the reference frame of a static map.

Then, it adjusts in height and distance to the table. Finally, it

aligns itself to bring the object into the workspace of its arms.

Our robots grasp objects on horizontal surfaces like the

floor, tables, and shelves in a height range from the floor

to ca. 1 m. They carry the objects and hand them to human

users. We also developed solutions to pour-out containers,

to place objects on horizontal surfaces, to dispose objects in

containers, and to receive objects from users. We implemented

these capabilities by parametrized motion primitives and also

account for collisions during grasping motions.

A. Compliance Control

From differential inverse kinematics, we derived a method

to limit the torque of the joints depending on how much they

contribute to the achievement of the motion in task-space [24].

Our approach not only allows to adjust compliance in the null-

space of the motion, but also in the individual dimensions

of the task-space. This is very useful when only specific

dimensions in task-space shall be controlled in a compliant

way.

We applied compliant control to the opening and closing

of doors that can be moved without the handling of an

unlocking mechanism. Refrigerators or cabinets are commonly

equipped with magnetically locked doors that can be pulled

open without special manipulation of the handle. See Fig. 2

for an example. Several approaches exist to manipulate doors

when no precise articulation model is known ([25], [26]).

Our approach does not require feedback from force or tactile

sensors. Instead, the actuators are back-drivable and measure

the displacement due to external forces.

To open a door, our robot drives in front of it, detects

the door handle with the torso laser, approaches the handle,

and grasps it. The drive moves backward while the gripper

moves to a position to the side of the robot in which the

opening angle of the door is sufficiently large to approach

the open fridge or cabinet. The gripper follows the motion

of the door handle through compliance in the lateral and the

yaw directions. The robot moves backward until the gripper

reaches its target position. For closing a door, the robot has

to approach the open door leaf, grasp the handle, and move

forward while it holds the handle at its initial grasping pose

relative to the robot. When the arm is pulled away from this

pose by the constraining motion of the door leaf, the drive

(a) (b) (c)

Fig. 3. Tabletop segmentation. (a) Example setting. (b) Raw colored point
cloud from Kinect. (c) Each detected object is marked with a distinct color.

corrects for the motion to keep the handle at its initial pose

relative to the robot. The closing of the door can be detected

when the arm is pushed back towards the robot.

B. Real-Time Tabletop Segmentation

In household environments, objects are frequently located

on planar surfaces such as tables. We therefore base our object

detection pipeline on fast planar segmentation of the depth

images of the Kinect [19]. Fig. 3 shows an exemplary result for

a tabletop scene. Our approach processes depth images with a

resolution of 160×120 at frame rates of approx. 20 Hz on the

robot’s main computer. This enables our system to extract in-

formation about the objects in a scene with a very low latency

for further decision-making and planning stages. For object

identification, we utilize texture and color information [18].

Similar to Rusu et al. [27], we segment point clouds into

objects on planar surfaces. In order to process the depth

images efficiently, we combine rapid normal estimation with

fast segmentation techniques. The normal estimation method

utilizes integral images to estimate surface normals in a

fixed image neighborhood in constant time [28]. Overall, the

runtime complexity is linear in the number of pixels for which

normals are calculated. Since we search for horizontal support

planes, we find all points with vertical normals. We segment

these points into planes using RANSAC [29]. We find the

objects by clustering the measurements above the convex hull

of the points in the support plane.

C. Efficient Grasp Planning

We investigated grasp planning to enable our robots to grasp

objects that they typically encounter in RoboCup. In order to

grasp objects flexibly from shelves and in complex scenes, we

consider obstructions by obstacles [19].

(a) (b) (c)

Fig. 4. Grasp planning. (a) Object shape properties. The arrows mark the
principal axes of the object. (b) We rank feasible, collision-free grasps (red,
size prop. to score) and select the most appropriate one (large, RGB-coded).
(c) Example grasps on box-shaped objects.
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Related approaches measure grasp quality, e. g., in the grasp

wrench space [30], and virtually test grasps in physical sim-

ulation [31] in a time-costly process. We observed, however,

that a well designed gripper, simple grasp strategies, and a

compliant robot mechanism often suffice to grasp a large

variety of household objects. Most related to our method is

the approach by Hsiao et al. [32]. They use a time-consuming

sampling-based motion planner to find collision-free reaching

motions. In many situations, though, the direct reach towards

the object is collision-free, or only few obstacles obstruct

the motion. We thus apply parametrized motion primitives

and take a conservative but efficient approach that checks

simplified geometric constraints to detect collisions.

In our approach, we assume that the object is rigid and

symmetric along the planes spanned by the principal axes of

the object, e. g., cylindrical or box-shaped. We found that our

approach also frequently yields stable grasps when an object

violates these assumptions. Fig. 4 illustrates the main steps in

our grasp planning pipeline and shows example grasps.

We consider two kinds of grasps: A side-grasp that ap-

proaches the object horizontally and grasps the object along

the vertical axis in a power grip. The complementary top-

grasp approaches the object from the top and grasps it with

the finger tips along horizontal orientations. Our approach

extracts the object’s principle axes in the horizontal plane

and its height. We sample pre-grasp postures for top- and

side-grasps which we examine for feasibility under kinematic

and collision constraints. In detail, we consider the following

feasibility criteria:

• Grasp width. We reject grasps, if the object’s width

orthogonal to the grasp direction does not fit into the

gripper.

• Object height. Side-grasps are likely to fail if the object

height is too small.

• Reachability. We do not consider grasps that are outside

of the arm’s workspace.

• Collisions. We check for collisions during the reaching

and grasping motion.

The remaining grasps are ranked according to efficiency and

robustness criteria:

• Distance to object center. We favor grasps with a smaller

distance to the object center.

• Grasp width. We reward grasp widths closer to a preferred

width (0.08m).

• Grasp orientation. Preference is given to grasps with a

smaller angle between the line towards the shoulder and

the grasping direction.

• Distance from robot. We prefer grasps with a smaller

distance to the shoulder.

The best grasp is selected and finally executed with a

parametrized motion primitive.

D. Real-Time Object Tracking

The location of many household objects such as tables or

chairs is subject to frequent changes. A robot must hence be

able to detect objects in its current sensor view and estimate

the relative pose of the objects.

(a) (b) (c)

Fig. 5. Learning object models. (a) During training the user selects points (red
dots) to form a convex hull around the object. (b) Color and shape distribution
modeled at 5 cm resolution. Lines indicate surface normals (color-coded by
orientation). (c) Color and shape distribution modeled at 2.5 cm resolution.

We developed methods for real-time tracking of objects

with RGB-D cameras [33]. We train full-view multi-resolution

surfel maps of objects (see Fig. 5), and track these models in

RGB-D images in real-time. Our method operates on 160×120

images at frame-rates of ca. 20 Hz on the robot’s on-board

computer.

Our maps represent the normal distribution of points includ-

ing their color in voxels at multiple resolutions using octrees.

Instead of comparing the image pixel-wise to the map, we

build multi-resolution surfel maps with color information from

new RGB-D images.

We register these maps to the object map with an effi-

cient multi-resolution strategy. To this end, we measure the

observation likelihood of the current image under the normal

distributions of the surfels in both maps, and determine the

most likely pose through optimization of this likelihood. In

order to cope with illumination changes, we ignore minor

luminance and color differences.

We associate surfels between maps using efficient nearest

neighbor look-ups in the octree. In order to determine the

correspondences between surfels in both maps, we apply a

coarse-to-fine strategy that selects the finest resolution pos-

sible. We only establish a correspondence, if the surfels also

match in the color cues. Our association strategy not only saves

redundant comparisons on coarse resolution. It also matches

surface elements at coarser scales if shape and color cannot

be matched on finer resolutions. By this, our method allows

the object to be tracked from a wide range of distances.

VI. HUMAN-ROBOT INTERACTION

A service robot in everyday environments not only needs

mobile manipulation abilities—it closely interacts with hu-

mans, even physically. This interaction should be natural and

intuitive such that laymen can operate the robot and understand

its actions.

In order to be aware of potential interaction partners, our

robots detect and keep track of the persons in their surround-

ings [34]. Users can utter complex sentences to the robots,

which the robots recognize and parse for semantics. Our robots

also synthesize human-like speech. Furthermore, we equipped

our robots with non-verbal communication cues. The robots

can perform several gestures like pointing or waving. They can

also perceive gestures such as pointing, showing of objects, or

stop gestures [35] with the RGB-D camera.
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Fig. 6. Left: Cosero and Dynamaid register themselves for the
RoboCup@Home 2011 competition. Right: Cosero opens a bottle of milk
during the Open Challenge at RoboCup 2011.

A. Semantic Speech Interpretation

We rely on the commercial Loquendo system for speech

recognition and synthesis. Loquendo’s speech recognition is

grammar-based and speaker-independent. Its grammar defini-

tion allows rules to be tagged with semantic attributes. For

instance, one can define keywords for actions or attributes

like “unspecific” for location identifiers such as “room”. When

Loquendo recognizes a sentence that fits to the grammar, it

provides the recognized set of rules together with a semantic

parse tree. Our task execution module then interprets the

resulting semantics and generates appropriate behavior.

B. Human-Robot Cooperative Manipulation

We compiled mobile manipulation, object perception, and

human-robot interaction capabilities in a cooperative manip-

ulation task [33]. In our scenario, the human and the robot

cooperatively carry a table. For successful performance of this

task, the robot must keep track of the table and the actions of

the human. In order to accurately approach the table, the robot

tracks its pose in real-time. The user can then lift and lower

the table, which the robot simply perceives through the motion

of the table. The robot follows the pulling and pushing on the

table by the user through compliant control of its arms.

VII. EXPERIENCES AT ROBOCUP 2011

With Dynamaid and Cosero, we competed in the

RoboCup@Home 2011 competition in Istanbul. Our robots

participated in all tests of Stage I and II, and performed very

well. We accumulated the highest score of all 19 teams in

both stages. Our final demonstration was also awarded the best

score. Hence, we achieved the first place in the competition.

A. Competition Performance

In Stage I, Cosero and Dynamaid registered themselves

in the Robot Inspection and Poster Session test, while we

presented our work in a poster session. The robots generated

speech and gestures and handed over the registration form. The

leaders of the other teams awarded us the highest score in this

test. In Follow Me, Cosero met a previously unknown person

and followed him reliably through an unknown environment.

Cosero could show, that it distinguishes this person from

Fig. 7. Cosero cooperatively carries a table with a user and cooks omelet
during the 2011 RoboCup@Home Final in Istanbul.

others, and that it recognizes stop gestures. In the Who Is Who

test, two previously unknown persons introduced themselves to

Cosero. Later in the test, our robot found one of the previously

unknown persons, two members of our team, and one unknown

person and recognized their identity correctly. In the Open

Challenge, Cosero fetched a bottle of milk, opened it, and

poured it into a cereal bowl. Then, Cosero grasped a spoon

using our approach to grasp planning and placed it next to the

bowl. Cosero understood a complex speech command partially

and went to the correct place in the General Purpose Service

Robot I test. In GoGetIt, Cosero found a correct object and

delivered it. After Stage I, we were leading the competition.

In the second stage, Cosero participated in Shopping Mall.

It learned a map of a previously unknown area and navigated

to a shown location. Taking a shopping order was hindered

by speech-recognition failures in the unknown acoustic en-

vironment. In the General Purpose Service Robot II test,

Cosero first understood a partially specified command and

asked questions to obtain missing information about an object

and its location. It executed the task successfully. In the second

part of the test, it worked on a task with erroneous information.

It detected that the ordered object was not at the specified

location, went back to the user, and reported the error. In

the Demo Challenge, we demonstrated pointing gestures by

showing the robot in which baskets to put colored and white

laundry. The robot then cleaned the apartment, picked white

laundry from the floor, and put it into the correct basket. It

then picked carrots and tea boxes from a table. The objects

could be chosen and placed by a jury member. The technical

committee awarded us the highest score. We reached the Final

with 8,462 points, followed by Wright Eagle from China with

6,625 points.

In the Final, we demonstrated the cooperative carrying of a

table by Cosero and a human user (see Fig. 7). Then, a user

showed Cosero where it finds a bottle of omelet mixture. Our

robot went to the cooking plate to switch it on. It succeeded

partially in turning the plate on. Then, it drove to the location

of the mixture and grasped it. At the cooking plate, it opened

the bottle and poured it into the pan. We applied our real-

time object tracking method in order to approach the cooking

plate. Meanwhile, Dynamaid opened a refrigerator and grasped

a bottle of orange juice out of it, which it then placed on the

breakfast table. Our performance received the best score from

the high-profile jury.
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B. Lessons Learned

The experiences made at RoboCup 2011 clearly demon-

strate our success in designing a balanced system that incor-

porates navigation, mobile manipulation, and intuitive human-

robot interaction. The development of the system gave us

many insights into the requirements and future steps towards

complex domestic service scenarios.

Since the competition setting is unknown in advance, we

have to develop methods that robustly work in a wide range

of environments. We are also forced to implement means to

adapt our approaches to new scenarios easily and in a fast

way. For example, it is important to develop tools that allow

maps, objects, and persons to be enrolled quickly. Such robust

and fast-adaptable methods will be enablers for practical use.

In the typical manipulation scenarios that we encounter in

the competition, our efficient grasping strategy seems more

practical than traditional planning approaches w.r.t. time-

efficiency and robustness in the presence of uncertainty. For

complex manipulation settings such as grasping objects out

of drawers and boxes, it will be necessary to develop effi-

cient grasp and motion planning techniques that reason about

uncertainties.

We have demonstrated that quite complex high-level behav-

ior can be generated by semantic parsing of natural language

and by a well designed hierarchical state-machine. It will be

fruitful to push the complexity of the tasks with the versatility

in skills. Then, new requirements will arise on reasoning

capabilities for task execution and on semantic perception.

VIII. CONCLUSION

The RoboCup@Home league is a competition for service

robots in domestic environments. It benchmarks mobile ma-

nipulation and HRI capabilities of integrated robotic systems.

In this article, we presented the contributions of our winning

team NimbRo. We detailed our methods for real-time scene

segmentation, object tracking, and human-robot cooperative

manipulation. In the pre-defined tests, we could demonstrate

that our robots Cosero and Dynamaid solve mobile manipula-

tion and HRI tasks with high reliability. Our advanced mobile

manipulation and HRI skills have been well received by juries

in the open demonstrations and the Final.

In future work, we aim to further advance the versatility of

the skills of our robots. We constantly enhance our approaches

to object and person perception. In order to extend the ma-

nipulation skills of our robots, we will improve the design of

the grippers. We plan to construct thinner fingers with touch

sensors. Then, we can devise new methods to grasp smaller

objects or to use tools.
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M. Wise, L. Mösenlechner, W. Meeussen, and S. Holzer, “Towards
autonomous robotic butlers: Lessons learned with the PR2,” in Proc. of

the IEEE Int. Conf. on Robotics and Automation (ICRA), Shanghai,
China, 2011, pp. 5568–5575.

[13] M. Beetz, U. Klank, I. Kresse, A. Maldonado, L. Mösenlechner,
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