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OMCL: Open-vocabulary Monte Carlo Localization
Evgenii Kruzhkov1, Raphael Memmesheimer1, and Sven Behnke1

Abstract—Robust robot localization is an important prereq-
uisite for navigation, but it becomes challenging when the map
and robot measurements are obtained from different sensors.
Prior methods are often tailored to specific environments, relying
on closed-set semantics or fine-tuned features. In this work, we
extend Monte Carlo Localization with vision-language features,
allowing OMCL to robustly compute the likelihood of visual
observations given a camera pose and a 3D map created from
posed RGB-D images or aligned point clouds These open-
vocabulary features enable us to associate observations and map
elements from different modalities, and to natively initialize
global localization through natural language descriptions of
nearby objects. We evaluate our approach using Matterport3D
and Replica for indoor scenes and demonstrate generalization
on SemanticKITTI for outdoor scenes. The code is accessible at
https://github.com/AIS-Bonn/omcl.

Index Terms—Localization, Semantic Scene Understanding,
Mapping.

I. INTRODUCTION

LOCALIZATION is a fundamental problem in robotics,
allowing robots to estimate their position and orientation

within an environment. Traditional approaches utilize single
or fused sensor modalities [1], [2], [3]. Cross-modal localiza-
tion [4] further increases flexibility for heterogeneous systems
and facilitates map reuse across platforms, while incorporating
semantic awareness enhances robot autonomy [5], [6]. The
semantics can be incorporated through object detection [7],
semantic segmentation [8], or vision-language features [9],
[10]. This letter introduces the Open-vocabulary Monte Carlo
Localization (OMCL) framework, which extends Monte Carlo
Localization (MCL) with vision-language features [10]. These
abstract features enable affordable camera-only localization
in 3D maps created from different sensors, like RGB-D
cameras or LiDAR. Fig. 1 demonstrates the language map
and localization process of the proposed framework.

Our approach stores features learned by contrastive
language-image pretraining (CLIP [10]) in a 3D map. The
positions of features are represented within a spatial language
map, while RGB input is processed to extract the features that
describe the current observation. Ray tracing is employed to
estimate the correlation between the observations and the map
allowing for pose estimation in 3D environments. We propose
a technique to convert pre-existing maps to the compatible
representation for our localization framework, compare it to
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Fig. 1. OMCL particles are sampled on a Language Map storing open-
vocabulary features. Each particle represents a candidate camera pose. Par-
ticles are weighted according to how well the VLM-processed RGB input
matches the ray-traced map value at the relevant location. The red particle
denotes the estimated pose (weighted mean). The Language Map is colored
by similarity to the prompted labels.

state-of-the-art methods, and conduct a comprehensive abla-
tion study. Our contributions include the following:

• Language-grounded localization. We present OMCL, a
novel localization framework that grounds pose estima-
tion in language features and accelerates global localiza-
tion via open-vocabulary prompts.

• Cross-modal sensor usage. OMCL includes a mapping
module that constructs a unified, sparse language map,
enabling sensors of different modalities to be used for
mapping and localization (e.g., RGB-D or point clouds
for mapping and RGB for localization).

• Generalization. OMCL is compatible with independently
constructed point clouds, enabling reuse of existing maps,
and it generalizes across indoor and outdoor environ-
ments.

OMCL offers an effective, language-feature guided solution
for localization. It achieves state-of-the-art performance com-
pared to existing baselines and opens up new possibilities for
natural language-guided and cross-modal localization. A robot
can be localized by non-expert users without the necessity of
comprehending the underlying map representation through the
use of natural language descriptions in OMCL.

II. RELATED WORKS

Semantic Localization. We focus on visual continuous
localization within 3D maps constructed from cross-modal
sensors [11], [12]. Unlike Loc-NeRF [13], which relies on ren-
dered visual consistency for pose tracking, we achieve sensor
cross-modality through semantic consistency. Prior methods,
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SeDAR [14] and SIMP [7], use MCL for long-term indoor
semantic localization on floor plans; in contrast, we propose a
more general map representation and a semantic-consistency
measurement model. We evaluate against SeDAR [14] and
SIMP [7] by adapting our map representation to their floor-
plan views.

SemLoc [15] and Zhang et al. [16] explore semantic
consistency for localization in outdoor environments. Unlike
these methods, we rely purely on semantic consistency in a
multi-modal feature space, without additional geometry-based
optimization terms or custom semantic segmentation models.
CMRNext [4] is a state-of-the-art camera-to-LiDAR map-
matching baseline for outdoor localization, which, in contrast
to our approach, relies on a fine-tuned neural network model.

Unlike our approach, place recognition (PR) methods [17]
estimate the pose from a single image, whereas we handle
continuous image streams and pose tracking, potentially re-
quiring multiple observations before convergence. However,
MCL allows using the same map for both global localization
and subsequent pose tracking [18]. While PR can be used for
initialization, it requires additional PR-specific infrastructure;
in contrast, we propose a map-native, prompt-augmented ini-
tialization.

Semantic Mapping. Many recent works focus on open-
set semantic mapping of indoor environments followed by
3D semantic segmentation. SAM3D [19] creates 3D scene
masks from SAM [20]. OpenScene [5] proposes a method
to directly predict point-wise CLIP [10] features for input
point clouds. ConceptGraphs [21] constructs a graph-based
representation with incorporated semantic feature vectors.
ConceptFusion [22], implemented on top of ∇SLAM [23],
produces unordered multi-modal maps. LiLMaps [24] investi-
gates sequential visual–language mapping for implicit repre-
sentations, reducing the memory footprint of such dense maps.
Unlike these mapping-focused works, we provide options for
constructing the map from different sensing modalities and
couple it with a ray-tracing-based, semantic-aware probabilis-
tic localization module.

The recent OVO [25] mapping approach uses Gaussian-
SLAM [26] and ORB-SLAM2 [27] but does not exploit
the semantic information added to the map to improve pose
estimation. Concurrent to our work, RayFronts [28] similarly
constructs an ordered map by averaging visual–language fea-
tures from multiple directions. However, they focus on multi-
modal open-set querying and beyond-range semantic classi-
fication. Similar to the aforementioned works, we construct
our map representation from externally estimated poses, while
tight integration with simultaneous localization and mapping
(SLAM) [29], [30] is a possible future improvement.

Vision Language Models. We employ contrastive Vision-
Language Models (VLMs) [10], [5], [31], [28], [32], for the
localization task. VLMs and large language models (LLMs)
are widely used for related navigation [33], [6] and scene
understanding [34] tasks. We use pixel-wise visual-language
features (such as CLIP [10]) produced by the image encoder
as open semantic representations in the maps. By default, our
framework employs LSeg [31] and OpenScene [5] encoders,
but we demonstrate flexibility with respect to the choice of

visual–language backbone by switching to X-Decoder [32] and
NARADIO [28].

We don’t compete with the aforementioned approaches;
instead, our method creates a unified visual-language map
from cross-modal sensors and evaluates its downstream impact
on localization.

III. METHOD

The proposed pipeline is illustrated in Fig. 2. The map
representation constructed and used by our framework is the
Octree Language Map. We focus on storing visual–language
features [10], [31], [5] in the map to investigate their poten-
tial for advancing perception systems. Section III-A covers
Octree Language Map implementation details and, after that,
describes its construction from different inputs based on pixel-
wise visual encoders for RGB-D input and OpenScene [5] for
point clouds.

In Section III-B we address the visual-only localization in
3D maps. Although multimodal sensor configurations (e.g.,
RGB-D cameras, LiDAR) can be employed for mapping, the
subsequent localization requires only visual data and map-
scaled odometry (Motion Model), under the assumption that
the features in the map are consistent with those extracted
from the input RGB image.

We focus on mapped visual–language features that are
semantically grounded using open-set semantic prompts.

A. Mapping

Throughout the mapping process, we generate a volumetric
language map (Octree Language Map), a sparse octree-based
structure, in which each map voxel is linked to the correspond-
ing F -dimensional visual-language feature [10], [31], [5]. The
Octree Language Map offers compact storage at fine-grained
resolution and provides efficient ray-tracing functionality [35].
It retains only features that are mutually different by at least a
cosine distance threshold τ . Each voxel in the map stores the
index of its corresponding feature in the database FeaturesDB:

FeaturesDB = {fi ∈ Rn, | d(fi, fj) > τ ; i, j ∈ N},

d(A,B) = 1− A ·B
∥A∥∥B∥

, where A,B ∈ Rn.
(1)

We provide two mapping approaches: one for posed RGB-
D images and another for fused point clouds (Fig. 2). The
produced Octree Language Map is unified.

Input Option 1. Unless stated otherwise, we use the
LSeg [31] visual–language model to extract pixel-wise features
and project them onto the Octree Language Map using depth
measurements and known camera poses. The mapping is
sequential, and features projected into the same voxel are
cumulatively averaged with the existing ones. Once all data
have been processed, the mapped features form FeaturesDB
according to Eq. (1). The first features that satisfy Eq. (1) are
added to FeaturesDB, while subsequent ones are replaced by
their cosine-closest counterparts from FeaturesDB.

Input Option 2. We process the aggregated point cloud
map with the OpenScene 3D distillation model [5] to predict
visual–language features for each point in a feed-forward
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Fig. 2. Mapping: We propose two options to create Octree Language Maps. Input Option 1: OMCL derives language features from RGB images and
reconstructs a 3D map from them using the corresponding volumetric data (depth images, LiDAR measurements, etc.). Input Option 2: Language features are
directly predicted on precomputed 3D point clouds for each point and subsequently converted into the octree representation. Localization: A particle filter
uses an RGB image as the only input, weighting particles by the discrepancy between language features extracted from the input image and those ray-traced
from the Octree Language Map. Our stratified ray sampling strategy compensates for the imbalance between different object instance sizes in the image. All
features are colored for visualization purpose only.

manner. The Octree Language Map is then formed by av-
eraging features within voxels and constructing FeaturesDB
as input option 1. The described approach is suitable for
converting existing 3D maps into our Octree Language Map
representation.

Semantic Grounding. Each element of the constructed
FeaturesDB can be viewed as an automatically created semantic
class. We propose to ground FeaturesDB using user-defined
open-set semantic prompts. In practice, we employ the text
encoder corresponding to the mapping model (CLIP [10] for
LSeg [31] and OpenScene [5]) and redefine FeaturesDB using
the features of the provided open-set semantic classes. The
feature indices stored in the voxels of the Octree Language
Map are remapped based on the highest cosine similarity
between their original associated features and the redefined
FeaturesDB. Old features that are too far in cosine distance
from the provided open-set semantic classes are discarded
along with their corresponding map voxels. Grounding reduces
the memory footprint by decreasing the number of stored
features. It increases the discriminability of the remaining
features and allows the user to specify which semantic classes
are represented in the map for downstream localization.

B. Localization

We use RGB images and odometry (Motion Model) to
localize within the language maps employing MCL. We ini-
tially assign uniformly distributed weights to each particle
and sample particles with random poses around the probable
starting position. When a new RGB image is received, the
motion model is applied to all particles to predict their new
poses. A coarse odometry from any built-in sensor can be
employed. The image is processed using the language-driven
semantic segmentation model [31] to extract per-pixel features.

To form the measurement model of our MCL and assign new
weights for the particles, we evaluate the consistency between
the extracted features and the map (Fig. 2 bottom).

Observation Likelihood. If the camera is exactly at a parti-
cle’s pose, the features extracted from the image should match
those stored in the Octree Language Map where viewing rays
hit a surface. We employ camera intrinsics and each particle’s
predicted pose to form the rays in world coordinates. Ray-
tracing [35] on the map finds the first voxel hit by each ray,
from which we retrieve the stored language feature. Let γ and
φ denote the voxel features and pixel features corresponding
to the same rays, respectively. The weight wt

i of particle i at
time t is then estimated as:

wt
i =

wt−1
i max(Li, 0)∑

i(w
t−1
i max(Li, 0))

, Li =
1

N

N∑
j=1

φj · γj
∥φj∥∥γj∥

, (2)

where N represents the total number of rays per particle.
Li is, in effect, the averaged cosine similarity between

image and map features. The more similar the observations and
the map are, the higher the value of Li and, consequently, the
higher the corresponding particle weight wt

i . The final camera
pose is then estimated as the average of particles that are close
to the most likely particle, using their corresponding weights
wt

i .
Stratified Ray Sampling. We reduce computational costs by

sampling and using only N pixels and their corresponding
features from the image. However, large surfaces (e.g., walls,
floor) occupy most pixels, while smaller but distinctive objects
cover far fewer pixels, causing many objects to be underrepre-
sented or missed when sampled uniformly. Since accurate pose
estimation relies on preserving information from all objects,
we introduce sampling masks for the image, where each
mask corresponds to a cluster of pixels with similar visual-
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Fig. 3. Sampled pixels for images of resolution 540 × 540. Both images
employ the same sampling masks. The left image corresponds to 28 samples
per cluster and the right one to 211. Small clusters have a higher sampling
density, but the total number of samples is less for them because the duplicates
are discarded.

language features. From each such feature-consistent cluster,
we uniformly sample an equal number of pixels, discarding
duplicates (Fig. 3). The same samples are employed for all par-
ticles. The proposed stratified per-cluster sampling improves
pose estimation accuracy, as confirmed by our ablation study
in Section IV-D.

To form the clusters, we use the map features FeaturesDB as
centroids because, according to Eq. (2), localization assumes
that map and image features are correlated and FeaturesDB
already stores only distinct features (see Eq. (1)). The clusters
are then formed from the extracted image features assigned
to the centroids with which they produce the highest cosine
similarity. Unless stated otherwise, we use full FeaturesDB for
clustering, though random subsets of centroids may be used
to limit the number of clusters and reduce computation. Both
FeaturesDB and the clusters are created automatically, requiring
no manual labeling for mapping or localization.

C. Prompt-augmented Initialization

Standard approaches for global localization either require
geometric coordinates as input for initialization or sample
particles across the entire environment. However, sampling
across the whole environment is inefficient, while geometric
coordinates are difficult for non-expert users to interpret or
provide, and localization may diverge if the initialization
is incorrect. Moreover, global localization that is decoupled
from the subsequent pose tracking step may require storing
additional information within the map itself.

We propose using textual prompts θ to describe probable
initial positions. As demonstrated in Fig. 4, the prompt is
an open set of natural language words that describe the
surrounding environment. There is no restrictions on word
content, as each word is encoded into a feature using a text
encoder (CLIP [10] for LSeg [31] and OpenScene [5]).

First, the proposed initialization accepts natural language
words as input, taking a step toward full natural language-
based localization. Second, since the input is text, it is naturally
compatible with the output of large language models, enabling
initialization with AI agents. Finally, instead of relying on
a single initial location, we initialize particles by sampling
them uniformly over all locations that match the given prompt.

Fig. 4. An example of initial locations for the global localization based
on the user prompt. The red spots correspond to the prompt (toilet, mirror,
towel, sink) and the green one to (table, chair, picture, door, tv monitor).
OMCL particles can be initialized nearby the prompt matching spots instead
of the random locations.

Through direct integration with MCL, the initialization sub-
sequently converges to a precise pose, as described in Sec-
tion III-B, based on multiple consecutive observations, and
then MCL continues to track the pose. The same Octree
Language Map is employed for both global localization and
following pose tracking.

We segment the scene into two classes: floor and surround-
ings. We obtain the floor voxels by comparing all stored
features with the feature corresponding to the word “floor”,
extracted by the text encoder. For each floor voxel, we then
find surrounding features γ̄ within a radius R. Next, for
each word in the prompt θ, we count the number of these
surrounding features whose cosine similarity with that word
exceeds the threshold ρ:

Vm =
∑
n

(CosineSimilarity(γ̄n×F , θ̄m×F ) > ρ), (3)

where n is the number of neighbor surroundings, m is the
number of words in the prompt, and F is the feature dimen-
sionality.

Finally, we estimate the floor voxel–prompt alignment ratio
s as a measure of how well the floor voxel matches the
prompt, by requiring that at least k of its surrounding voxels
correspond to each word:

s =
1

m

∑
m

(Vm ≥ k), 0 ≤ k ≤ m, (4)

where s is equal to 1 for floor voxels that match all words.
The particles are uniformly sampled above “floor” voxels that
match all words.

IV. EXPERIMENTS

We provide complete evaluation of our localization
in medium-size indoor environments on Matterport3D
dataset [37], comparing against similar approaches and using
publicly available sequences provided by VLMaps [6]. We
further analyze how localization performance depends on
measurement–map consistency.

Using the Replica dataset [38] for smaller, room-sized
environments, we obtain localization accuracy aligned with
that observed on medium-sized environments and additionally
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TABLE I
ABSOLUTE TRAJECTORY ERROR (APE) FOR LOCALIZATION ON MATTERPORT3D DATASET.

RMSE [m] STD [m] Mean [m] Median [m] min RMSE [m] max RMSE [m] SSE [m2] Completed Scens

2D

OMCLGT 0.11 0.07 0.09 0.08 0.08 0.18 17.38 10/10
OMCLLSeg 0.15 0.09 0.13 0.12 0.11 0.28 33.07 10/10
OMCLauto

LSeg 0.24 0.15 0.18 0.15 0.14 0.52 95.0 10/10
OMCLOpen\LSeg 0.36 0.24 0.27 0.22 0.15 0.62 164.07 8/10
SeDAR∗

GT [14] 0.79 0.46 0.64 0.54 0.24 2.33 1891.2 6/10
SIMP∗

GT [7] 1.39 1.03 0.79 0.94 0.45 2.81 2898.15 4/10

3D

OMCLGT 0.15 0.09 0.12 0.1 0.1 0.3 30.45 10/10
OMCLLSeg 0.2 0.1 0.18 0.17 0.17 0.41 59.53 10/10
OMCLOpen\LSeg 0.42 0.25 0.31 0.25 0.22 0.75 223.32 8/10
RTAB-Map [36] 5.23 2.97 4.30 3.6 0.31 8.14 25781.93 10/10

TABLE II
OMCL PARAMETERS.

Parameter Value Parameter Value

Discrepancy threshold τ 0.02 Language feature size F 512
Number of particles 1024 Surrounding radius R 2 [m]
Number of rays 2048 Similarity threshold ρ 0.9
Map resolution 0.02 [m] Matching criterion k 500

assess the semantic coverage of our Octree Language Map
relative to open-vocabulary baselines. For the large-scale eval-
uation, we employ the SemanticKITTI urban driving dataset
[39], demonstrating generalization capabilities of the proposed
approach.

Unless otherwise noted, we use the parameters sum-
marized in Table II. We use the lower index notation
OMCLMapping\Localization to indicate the specific model used for
mapping and localization, respectively. For instance, OMCLGT
means that ground truth semantic images are used for both
mapping and localization; while OMCLOpen\LSeg means Open-
Scene [5] is used for mapping and LSeg [31] for localization.
OMCL always operates in the continuous feature-embedding
space, processing GT labels with a corresponding text encoder.

By default, we ground FeaturesDB as described in Sec-
tion III-A with a prompt consisting of the datasets’ semantic
class labels. For reference purposes, we provide evaluation for
the ungrounded OMCLauto version. All results are obtained
using an Nvidia RTX 3090 GPU equipped with 24GB of
memory.

A. Long-Term Indoor Localization

Localization Evaluation: Table I. We compare our ap-
proach with SeDAR [14] and SIMP [7] which, similar to
us, employ MCL and measure semantic consistency for long-
term indoor localization (Section II). For fair comparison, all
approaches are evaluated on the same Octree Language Map
which was created from ground truth data (GT) and projected
to a floor plan map (2D) by averaging the data along the ver-
tical dimension. We denote baselines adapted to the common
map as SeDAR∗ and SIMP∗. The same noisy odometry is
applied to all methods: ground-truth poses are perturbed with
zero-mean Gaussian noise with standard deviations of 0.10 m
(translation) and 6◦ (rotation). For reference, the average per-
step ground truth motion is 0.13 m in translation and 8◦ in
rotation. Particles are initialized around the starting pose with

TABLE III
MEASUREMENTS-MAP CONSISTENCY EVALUATION.

Accuracy [%] Precision [%] Recall [%] IoU [%]

Matterport3D [37]

OMCLGT 86.75 78.96 78.95 67.46
OMCLLSeg 82.74 59.74 54.30 43.35
OMCLauto

LSeg 80.99 59.13 51.24 41.28
OMCLOpen\LSeg 62.89 38.25 42.91 26.95

Replica [38]

OMCLNAR 96.53 23.87 46.8 17.1

standard deviations of 0.3 m and 17◦. RTAB-Map [36] is
employed as the evaluation baseline of our full pose estimation
on the Octree Language Map in 3D. We use the RGB-D variant
of RTAB-Map to avoid the degeneracies of monocular SLAM
in low-parallax, in-place rotation segments widely present in
the dataset.

For completeness, we report the full APE statistics [40]
in Table I, averaged over all sequences, and provide the cor-
responding measurement–map consistency evaluation in Ta-
ble III. We evaluate both OMCL configurations shown in
(Fig. 2). Under “Input Option 1”, we use OMCLGT and
OMCLLSeg. Under “Input Option 2”, OMCLOpen\LSeg employs
the OpenScene [5] 3D distillation model for the mapping and,
because OpenScene does not accept image input, we use LSeg
for localization. This is feasible because both models operate
in the same CLIP feature space.

Measurements-Map Consistency Evaluation: Table III.
We report accuracy, precision, recall and IoU between the map
and the observed features during localization, averaged over all
poses and sequences for different datasets. To compute these
metrics, we treat each feature stored in the Octree Language
Map (i.e., each element of FeaturesDB) as an independent
semantic class. For each per-pixel image feature, we identify
its corresponding map feature via ray casting and count a
correct correspondence if that map feature attains the highest
cosine similarity among all features in FeaturesDB.

The evaluation quantifies a lower bound on consistency
between the map and measurements during localization and
assesses both the map’s ability to preserve information and
the image encoder’s consistency across viewing directions. It
is a lower-bound because correspondences are discretized as
correct/incorrect, whereas localization operates in a continuous
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Fig. 5. Example trajectories performed by OMCL on the Matterport3D dataset, with APE indicated by color for each segment. Map projections are shown
in brown. The plots demonstrate the performance in scenarios that involve loopy paths, corridors, and long monotonic trajectories.

TABLE IV
REPLICA 3D SEMANTIC AND LOCALIZATION EVALUATION.

All Tail Camera pose /
ATE RMSE

[cm]mIoU mAcc mIoU mAcc

OpenScene [5] 15.9 24.6 1.5 6.7 N/A
ConceptGraphs [21] 16.7 33.7 4.4 26.8 N/A
RayFronts [28] 27.7 54.5 17.6 41.3 N/A
OVO [25] 27.1 39.1 12.1 19.6 0.6 – 1.9
OMCLNAR (ours) 32.1 56.2 21.4 43.9 35

feature-similarity space. Note that localization depends solely
on this consistency and not on the absolute correctness of the
map’s semantics.

Results and Comparison: Tables I and III. The metrics re-
ported in Table III align with the localization results in Table I.
The metrics of OMCLLSeg are close to those of OMCLGT and
both outperform SeDAR∗

GT and SIMP∗
GT. OMCLOpen\LSeg lacks

sufficient mapping consistency to complete all test sequences;
nevertheless, it still outperforms the baselines and success-
fully executes most sequences. Moreover, OMCLOpen\LSeg
can create the Octree Language Map directly from existing
point clouds. The ungrounded OMCLauto

LSeg achieves metrics
comparable to OMCLLSeg.

Larger gaps between the Mean and RMSE in Table I
indicate more significant deviations from the real pose. The
geometry-based RTAB-Map [36] loses tracking in narrow,
feature-poor areas. Although it subsequently relocalizes, the
accumulated errors prevent accurate recovery of the full trajec-
tory. Fig. 5 illustrates the performance of OMCL in a variety
of scenarios, including loopy paths, corridors, and monotonic
trajectories.

B. Datasets Generalization

Replica. The Replica dataset [38] contains photo-realistic
3D indoor scene reconstructions at room and building scale.
Following the OVO [25] evaluation procedure, we estimate
the semantic map classification quality and report localization
accuracy on the resulting estimated map in Table IV. We
employ the NARADIO [28] image and text encoder for
mapping and localization. Ground-truth odometry is perturbed
with zero-mean Gaussian noise at 20% of the per-step motion.
The classification accuracies are reported for all classes (All)
and for the most challenging, low-frequency one-third subset

TABLE V
ATE ON SEQUENCE 00 OF THE KITTI DATASET.

Translation [m] Rotation [°] Fine-tuning
data

Mean Std Mean Std

Stereo DSO [41] 7.23 5.0 1.99 0.86 no training
SemLoc [15] 1.49 – – – other urban-driving
Zhang et al. [16] 0.58 – – – KITTI
Pi-Long [42] 9.88 5.39 6.24 3.61 no fine-tuning
OMCLX-Dec(our) 0.52 0.26 1.77 0.26 no fine-tuning
CMRNext [4] 0.11 0.06 0.25 0.15 KITTI + other urban

(Tail [25]). The camera poses in OVO [25] are estimated
using Gaussian-SLAM [26] and ORB-SLAM2 [27], with ATE
RMSEs of 0.6 cm and 1.9 cm, respectively.

OMCLNAR achieves the best semantic mapping quality due
to its high-resolution mapping, while the small improvement
over similar RayFronts is likely due to implementation details
and design choices. The largest improvement is observed
in the less frequent classes (Tail). Although the measured
semantic quality is high, the subsequent localization on the
map is stable but not very accurate (about 35 cm). This
correlates with the low measurement–map consistency metric
estimated for the used dataset–encoder (Replica-NARADIO)
pair in Table III. Replica is smaller but also semantically
denser than the Matterport3D dataset, which makes it more
challenging to perceive visual features on the map equally
well from all viewing directions. Precision and IoU in Table III
correlate with localization accuracy across the Matterport3D
and Replica datasets.

SemanticKITTI. SemanticKITTI [39] contains semanti-
cally annotated 3D LiDAR from urban driving. As in Sem-
Loc, we rely on the reconstructed semantic point cloud and
evaluate localization on existing maps. OMCLx-dec employs
X-Decoder [32] as the visual localization model and language
encoder, with odometry provided by Stereo DSO. We use 512
particles, 4096 rays per image, and an Octree Language map
resolution of 0.05 m. Following CMRNext [4], we report the
averaged localization metrics on Sequence 00 in Table V.

OMCLX-Dec outperforms other semantic-consistency-based
localization methods in accuracy, while requiring no fine-
tuning, leading to a significant improvement in the estimated
odometry. CMRNext is the state-of-the-art camera-to-LiDAR
map matching approach, but it requires fine-tuning to the
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Fig. 6. Impact of the number of particles on localization accuracy and FPS
for varying numbers of sampled rays.

data and was trained on the remaining KITTI sequences. We
also compare against the feed-forward Pi-Long approach [42]
with loop closure, which, similar to ours, performs monocular
localization and does not require data-specific fine-tuning.

C. Prompt-augmented Initialization

In order to assess the proposed initialization, we randomly
distribute particles across the map and report the average
number of OMCL steps required to achieve the designated
localization accuracy in Table VI. The single OMCL step
corresponds to the weighing of the particles and then resam-
pling. The prompts are randomly generated from the lists of
probable words for each starting location, with each prompt
containing three to five words. We evaluate on the sequences
of Matterport3D dataset, and localization can be considered
sufficient once it reaches 0.2 m, since this matches the accuracy
of the subsequent pose tracking (Table I).

Table VI shows that the maximum number of steps needed
for localization is 44, with fast convergence once 1 m accuracy
is achieved. On average, localization requires 29 steps to
determine the camera pose, and a minimum of 24 steps is
needed to reach 0.1 m accuracy.

Enhancing global localization with the user prompt ac-
cording to Section III-C allows us to accelerate localization
convergence. OMCL0.1 m / prompt

LSeg used 14 steps on average to
achieve an accuracy of 0.1 m with the fastest case taking 3
steps, accelerating localization convergence by factors of 2.7
and 8, respectively.

D. Ablation Studies

We demonstrate the impacts of different parameters and
ray sampling strategies in Figs. 6 and 7. The plots are con-
structed by running one trajectory ten times with OMCLLSeg.
According to Fig. 7, our stratified ray sampling strategy
(Section III-B) outperforms the one with an equal distribution
of the rays among the observable categories in both the APE
metric and the FPS for the high number of rays. Moreover,
our implementation consumes less GPU memory, allowing it
to handle a larger number of rays. Compared with uniform
sampling over the full image, our stratified approach can work
even with a small number of sampled rays because it tries to

Fig. 7. Comparison between our stratified ray sampling strategy and equal
distribution of rays among observable categories, for different particle counts.

TABLE VI
GLOBAL LOCALIZATION STEPS BEFORE CONVERGENCE.

mean [st.] std [st.] min [st.] max [st.]

OMCL2 m
LSeg 19 8 11 39

OMCL1 m
LSeg 22 8 16 41

OMCL0.5 m
LSeg 25 8 16 42

OMCL0.2 m
LSeg 29 8 17 44

OMCL0.1 m
LSeg 38 7 24 45

OMCL0.1 m / prompt
LSeg 14 5 3 23

The steps indicate the number of OMCL iterations needed to reach the
specified localization accuracy.

cover all different observable object instances. It tends to cover
the full image without duplicated samples when increasing the
number of rays. The APE variance does not decrease gradually
with an increase in rays. Keeping the number of particles
constant, using more rays improves the APE by about 10%
compared to 28 rays.

Fig. 6 demonstrates that the increase in the number of
particles reduces the variance of APE. It is noticeable that
even with a small number of particles, OMCL can still perform
pose estimation. In the beginning, the particles have a higher
impact on APE compared to the rays (Fig. 7), but the rays have
a smaller initial APE error. Increasing the number of particles
beyond 211 leads to a 10% improvement in APE, but the sys-
tem may become less stable to the track loss. Together, Figs. 6
and 7 help to select parameters with corresponding APE and
processed frames per second (FPS) to satisfy the application
needs. We do not include the timing of the used visual model
in the presented FPS values because it varies for different
models and can be parallelized.

V. CONCLUSION

In this paper, we introduced OMCL, a framework for vision-
based Monte Carlo localization in open-vocabulary 3D seman-
tic maps. The maps are created from posed RGB-D images or
3D point clouds and store CLIP features in an octree, enabling
cross-modal sensor setups for mapping and localization. A
textual prompt can be used to initialize localization. OMCL
computes the likelihood of localization hypotheses based on
the consistency of open-vocabulary features extracted from
the current input image and the corresponding map features
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that are retrieved by ray casting. OMCL is flexible with
respect to the choice of the feature extractor and benefits from
stratified ray sampling. Our method generalizes across room-
scale indoor, large-scale indoor, and outdoor environments. We
provide a measurements-map consistency analysis and ablation
studies of the proposed framework.

OMCL lacks online map updates and requires map-scaled
odometry. Future work on tighter integration with a SLAM
backend could potentially address both issues.
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