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Leveraging Vision-Language Models for Open-Vocabulary

Instance Segmentation and Tracking
Bastian Pätzold∗123, Jan Nogga∗123, and Sven Behnke123

Abstract—Vision-language models (VLMs) excel in visual un-
derstanding but often lack reliable grounding capabilities and ac-
tionable inference rates. Integrating them with open-vocabulary
object detection (OVD), instance segmentation, and tracking
leverages their strengths while mitigating these drawbacks. We
utilize VLM-generated structured descriptions to identify visi-
ble object instances, collect application-relevant attributes, and
inform an open-vocabulary detector to extract corresponding
bounding boxes that are passed to a video segmentation model
providing segmentation masks and tracking. Once initialized, this
model directly extracts segmentation masks, processing image
streams in real time with minimal computational overhead.
Tracks can be updated online as needed by generating new struc-
tured descriptions and detections. This combines the descriptive
power of VLMs with the grounding capability of OVD and the
pixel-level understanding and speed of video segmentation. Our
evaluation across datasets and robotics platforms demonstrates
the broad applicability of this approach, showcasing its ability
to extract task-specific attributes from non-standard objects in
dynamic environments.

Index Terms—Object Detection, Segmentation and Categoriza-
tion; Semantic Scene Understanding; Visual Tracking

I. INTRODUCTION

IN recent years, vision-language models have emerged as a
groundbreaking advancement in the field of computer vi-

sion and natural language processing. Models such as GPT [1],
Claude [2], Gemini [3], or Pixtral [4] have demonstrated
remarkable capabilities to comprehend and generate descrip-
tions of complex visual scenes. One of the key features of
these models is their capacity for zero-shot recognition [5],
[6], enabling them to perceive a wide range of visual scenes
without specific prior training on a particular problem domain.
Moreover, they exhibit a unique ability to provide rich, contex-
tually aware interpretations that are readily directed to extract
relevant information and adhere to structural requirements in
accordance with any given task.

While a naive VLM-generated image description may, to
some extent, be considered sufficient for solving various
perception tasks, we identify three core issues that must be
addressed in order to apply it in a robotics context. First, the
time required to generate such a description exceeds the typical
inference time of a traditional vision pipeline. This directly
limits their applicability to time critical tasks in dynamic

Manuscript received: March 18, 2025; Revised June 11, 2025; Accepted
August 13, 2025.

This paper was recommended for publication by Editor Markus Vincze
upon evaluation of the Associate Editor and Reviewers’ comments.

∗Equal contribution. Contact: paetzold@ais.uni-bonn.de
1Autonomous Intelligent Systems, University of Bonn, Germany
2Lamarr Institute for Machine Learning and AI, Germany
3Center for Robotics, University of Bonn, Germany
Digital Object Identifier (DOI): see top of this page.

Fig. 1. Visualization of detected object instances, including object classes,
visual descriptions, bounding boxes, and segmentation masks, using off-the-
shelf foundation models without prior knowledge of the image content. Note,
that some object descriptions are collapsed to reduce visual clutter.

environments. Second, such a description is an unstructured
natural language text designed to be comprehensible to human
readers. Consequently, the relevant object information cannot
be immediately parsed into a machine-readable format for
downstream use. Third, the description cannot be readily
associated with the corresponding image content, lacking the
grounding capabilities provided by traditional vision pipelines.
However, dense pixel-level understanding is often required for
downstream interaction or manipulation tasks.

In this work, we address the aforementioned issues to
unlock the visual perception capabilities of VLMs for robotics
applications. We achieve this by augmenting and integrating
VLMs with other vision modules to describe and recognize
object instances. Our method provides task-relevant attributes,
bounding boxes, and segmentation masks at high frame rates,
without requiring training or fine-tuning for specific scenarios
or object sets, relying solely on widely available general-
purpose foundation models.

Our contributions include:
1) a method integrating off-the-shelf models to robustly

identify, describe, ground and track objects in a scene,
2) an instance-aware assignment scheme curating the out-

put of any given open-vocabulary detector,
3) an evaluation protocol for grounded object descriptions

compatible with existing object detection benchmarks,
4) a comparison with baselines in real-world experiments

on a mobile manipulator, on a custom dataset featuring
diverse non-standard objects, and on a public dataset.

For full reproducibility of results, we release VLM Grounding
for Instance Segmentation & Tracking (VLM-GIST)1, including
our implementation, evaluation scripts and custom dataset.

1https://vlm-gist.github.io
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II. RELATED WORK

A. Closed-Vocabulary Detection in Robotics

Robots require robust perception capabilities to effectively
interact with their environment, as understanding and interpret-
ing the surrounding space is prerequisite to executing tasks.
A key aspect of robotic perception is object (and person)
detection, which is crucial for manipulation and interaction
tasks. Traditional detection methods often assume that the
objects of interest belong to a predefined set known during
training. While effective, these closed-vocabulary detectors
face significant limitations: they struggle to recognize unseen
instances of a known class and are unable to detect objects
belonging to entirely unknown classes. Moreover, they primar-
ily assign class labels to bounding boxes and fail to extract
richer semantic information. Popular datasets like COCO [7]
and specialized benchmarks like the YCB Object and Model
Set [8] have driven advancements in these detectors but are
inherently limited by their fixed taxonomies.

B. Open-Vocabulary Detectors

The introduction of aligned image and text encodings such
as CLIP [9] has made room for object detectors generalizing
beyond a fixed set of classes. Since then, performance in
open-vocabulary detection has scaled with training schemes
which increasingly exploit image-level data annotation. In this
vein, Detic [10] combines object detection samples with region
proposals and class labels from image classification data.
OWLv2 [11] consumes image captions by grounding their N-
grams to obtain pseudo-annotated samples for object detection.
To allow for training on phrase grounding and referring
expression comprehension datasets, Grounding DINO [12]
utilizes an attention mask based on phrase extraction to gen-
erate sub-sentence text encodings, while OmDet-Turbo [13]
reformulates samples from object detection, image caption,
human-object interaction and phrase grounding datasets as
visual question answering tasks to train on. More recently,
LLMDet [14] co-trains with a VLM to benefit from detailed
image and region level annotations.

While suitable for constrained robotics applications [15],
these models tend to overemphasize individual nouns, neglect
relational terms [16], and struggle with commonsense knowl-
edge such as logos [17]. In practice, this necessitates careful
manual prompt design around the expected objects and their
attributes, a limiting factor in open robotics environments.

C. Instance Segmentation and Tracking

Object instance masks for RGB-D data yield finer object
point clouds, which are useful for downstream tasks such
as grasp pose estimation. These can be obtained by using
bounding boxes to prompt Segment Anything (SAM) [18],
an image segmentation foundation model, as demonstrated by
Grounded SAM [19]. In the context of agentic systems, the
ability to track object masks over time is desirable to close
the feedback loop between object interactions. This is readily
achieved in a robotics use case with RGB-D sensors based
on object class and robot localization, but requires frequently

running detector inference. This overhead can be avoided by
instead prompting SAM 2 [20], a recent video segmentation
foundation model which runs on a mobile GPU.

D. Manual-Free Segmentation

Recent methods relax requirements for manual prompt-
ing. RAM-Grounded-SAM [19] grounds image tags without
accounting for specific object attributes. GenSAM [21] ob-
tains image-specific object prompts, localized to use as SAM
prompts. An iterative reweighting scheme then refines object
heatmaps. ProMaC [22] generates patch captions, initializ-
ing an iterative reasoning process using inpainting to prune
hallucinations. These methods rely on CLIP for semantic
disambiguation and cannot yield fully structured instance
segmentations of cluttered environments.

E. Vision-Language Models

Models such as Kosmos-2 [23] or Florence-2 [24] offer
captioning into phrase grounding and partially address the
issues of open-vocabulary detectors. However, trained on a
discrete set of task templates, they lack the ability to extract
specific semantic information in a machine-readable format.

In contrast, integrating vision capabilities on top of state-
of-the-art Large Language Models (LLMs), i.e. VLMs [1]–[4],
leverages the world knowledge and perception capabilities en-
coded in the LLM and allows for nuanced interactions [25]. In
addition to visual question answering, this enables constraining
the response format or engaging in multi-turn conversations.
Deitke et al. [26] propose Molmo, a generalist family of VLMs
with a special focus on visual grounding, capable of pointing
to 2D pixel locations supporting a given answer. Similarly, Bai
et al. [27] propose Qwen-VL with an emphasis on bounding
box detection, introducing special tokens that allow association
with corresponding descriptive text fragments. We believe that
these models are currently bottlenecked by processing visual
tokens projected from image patches rather than dense pixel-
wise representations, resulting in inaccurate bounding boxes.

While we find such extensions to the core formulation of a
VLM intriguing, we focus on generalist models that provide
a standard set of features and are easily interchangeable.
Our motivation is to take advantage of the rapid advances
in available models while reducing system complexity and
memory requirements, since a single model can be used for
other tasks beyond instance segmentation and tracking.

III. METHOD

A. Overview & Application

Fig. 2 illustrates our method. It comprises an update mech-
anism and a direct path between an incoming image stream
and a tracker. To start continuously tracking object instance
masks with corresponding semantic information, the tracker
is initialized by passing a single image through the update
mechanism. First, the update mechanism uses a VLM to
generate a structured description – a machine-readable list that
provides semantic attributes and a natural language description
of all object instances visible in the image. Then, the natural
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Fig. 2. Pipeline leveraging vision-language models for open-vocabulary
instance segmentation and tracking. The low-frequency update mechanism
initializes the tracker and updates tracks on demand. The lightweight tracker
generates high-frequency segmentation masks on the full image stream.

language descriptions are used to ground the object instances
through an open-vocabulary detector. Finally, the resulting
bounding boxes are passed on to a segmentation model to
obtain the corresponding masks and update the tracker. Since
the update mechanism is comparatively slow, it is not intended
to be applied on every incoming frame, but whenever new
object instances become visible. It can be executed on demand
within the context of the application or at regular intervals.
The tracker, on the other hand, is lightweight and capable of
processing an entire image stream, given common frame rates
and resolutions.

B. Structured Description

To effectively use an open-vocabulary detector, careful
prompt design is required to explicitly ground all objects
in an image. This requires incorporating scene knowledge,
including object characteristics and relationships. However,
this dependency on prior knowledge limits its applicability in
open robotics environments. Our goal is to automate this pro-
cess, approximating an oracle that provides suitable detector
prompts without requiring prior scene knowledge.

1) Model Selection: We use a VLM to generate a structured
description. All of our VLM interactions generate text from
text and image input. To extract detector prompts for all
visible object instances, we require the VLMs’ responses
to be machine-readable. To accomplish this, we employ the
established method of requesting the VLM to respond with
JSON-compliant text [28], [29].

2) Prompting Technique: We prompt a VLM to generate a
single list in JSON format, with a separate entry for each
unique object visible in the image. Each entry must be a
dictionary containing multiple key-value pairs, i.e. attributes,
that provide necessary information both to the user and to sub-
sequent pipeline steps. In particular, we require the attributes
object name and description, where the first is used like a
class label in a typical detector and the second is used to
prompt an open-vocabulary detector. Its ability to recognize an
object instance is directly affected by specifying the expected
format and content of the description attribute. Yao et al. [17]
compare the sensitivity of several open-vocabulary detectors
to different types of prompts. They show how some detectors

benefit from including spatial relationships to other image
features in the prompt, while others benefit from including
color or material. We explicitly prompt the model to provide
unique instance descriptions, limited to ten words, that include
type, color, and appearance.

Additional attributes can be defined by the user to extract
features that are relevant in the context of the application.
They can be configured to require certain attributes, restrict
the validity of values and data types, or establish dependencies
between attributes. Adapting them before each execution of the
update mechanism allows to dynamically shift the attention of
the system’s visual perception. The time required to generate
a structured description is directly proportional to its length,
the type of model, and the hardware used. While it’s length
depends on the number of object instances visible in the image,
limiting the number and conciseness of attributes is key to
minimizing update-latency. Fig. 3 shows several examples of
object instances contained in a structured description with four
additional user-defined attributes.

3) Post-Processing: We apply various techniques to ro-
bustly obtain a valid structured description from a raw VLM
response. First, we use regular expressions to extract the
longest valid JSON object in order to accommodate artifacts
such as additional text or Markdown tags outside of the JSON
body. Then, we process each list element that is a dictionary
and discard all others. We verify that the expected attributes
exist and that their values are valid. To account for minor
inaccuracies and minimize unnecessary filtering, we employ
further correction techniques, which include typecasting and
expected keyword matching based on the Levenshtein dis-
tance. Finally, we ensure uniqueness of object name attributes
by appending sequential numbers to duplicates.

4) Decoupled Attribution: The described approach to at-
tribution works well for simple attributes like those shown
in Fig. 3. However, we observe that the structured description
tends to be strongly biased by prompts that contain more com-
plex attribution instructions. For example, when we specify
the Boolean attribute task relevant for the task “Find a pen”,
we observe that the considered VLMs tend to identify similar
or hardly visible objects as pens, though they describe them
accurately in the absence of this attribute.

To address this issue, we allow the user to define a
concise natural language task and add the Boolean attribute
task relevant to each object instance. Its generation is de-
coupled from the initial structured description in a subse-
quent prompt. In particular, we prompt the model to generate
a JSON-encoded list of all task-relevant object instances,
referenced by their object name attribute. Using the same
post-processing techniques mentioned before, we augment the
initial structured description with the additional attribute. Note
that this approach addresses bias while also reducing the
number of output tokens and enabling parallel attribution.

C. Open-Vocabulary Detection

Once a structured description containing all the desirable
semantic information for all visible object instances in the
image is obtained, we proceed to ground each one. First, the
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Fig. 3. Object instances with four additional user-defined attributes parsed
from a structured description annotating their corresponding detections.

description attributes from all object instances are collected
and used as prompts for an open-vocabulary detector. In prin-
ciple, any text-promptable detector that can produce bound-
ing boxes is suitable for this task. We use MM-Grounding-
DINO [16], which is a strong open-weight model trained on
an open mixture of datasets.

Since the detector can recall more than one object per
prompt, while our goal is to obtain a one-to-one mapping
to object instances in the structured description, superfluous
detections must be discarded. The subsequent validation step
is also designed to achieve this regardless of the number
of detections it is fed. We balance the ratio of detections
that are immediately discarded and those that are discarded
downstream by defining the Over-Detect-Factor (ODF). This
factor scales the number of object instances in the structured
description to provide an upper bound on the number of
detections propagated. In particular, we initially select the most
confident detection for each object instance. For an ODF> 1,
we add detections until the upper bound is reached, prioritizing
confident ones. In this case, skipping the optional validation
step will result in duplicate detections, which increases recall
and reduces precision.

D. Instance Segmentation & Tracking

We use SAM 2 [20] to obtain segmentation masks for all
object instances based on the bounding boxes provided by the
detector. We then track the object instances across an image
stream using its video segmentation capability.

Since the official SAM 2 implementation does not support
causal inference, we utilize a third-party repository [30]. If the
tracker is not initialized, we prompt it with all bounding boxes
from the detection step. This yields track IDs and segmentation
masks corresponding to each detection. On the other hand,
when established tracks exist, we retrieve the current tracker
state, convert all masks to bounding boxes and suppress new
track creation for detections with an IoU > 0.6 relative to
an existing track. We then concatenate the filtered new boxes
with the previous ones to update the tracker state.

E. Validation & Error Correction

The optional validation step aims to increase confidence in
the mapping between descriptions and object masks. It does

this by either validating, correcting, or rejecting the previously
obtained grounding of all object instances, while ensuring that
each object instance is grounded at most once. This is useful
when precision is preferred over recall, for example, if a robot
is supposed to interact with any one of multiple objects, it is
unnecessary to ground each one, but beneficial to prioritize
correctly grounded objects.

1) Generate Validation Labels: For each grounded object
instance, we prompt a VLM with the full image, a crop
of the full image at the respective bounding box, the full
structured description, and an instruction to respond with
the object name attribute of the object instance seen in the
crop. If the crop cannot be associated with any of the object
instances, we instruct the model to respond with a special
invalid keyword instead. If the response is not invalid, it yields
a new proposed mapping between a description and an object
track. All object instances can be processed in parallel, so the
effective validation latency is the maximum response time for
any one proposal.

2) Solve Assignment Problem: To decide whether to vali-
date, correct, or reject a proposal, we collect the responses for
all object instances and compare them to the original mapping.
We group object instances with similar object name attributes,
so that each object instance can be uniquely associated with
a group, and each group has one or more object instances
associated with it. This helps to disambiguate object instances
that are difficult to visually distinguish based on their crops.
Finally, we use a heuristic to maximize the agreement between
the validation responses and the original mapping. This is
achieved, for example, by resolving duplicate agreements
between both mappings to unassigned group members, using
the detector confidence of the original mapping, and adhering
to the validation response when prior steps are inconclusive.

IV. IMPLEMENTATION

For full reproducibility and to facilitate further research and
benchmarks, we publish VLM-GIST1 including our implemen-
tation, evaluation scripts and custom dataset.

1) VLM Inference & Middleware: For local inference,
we orchestrate multiple vLLM servers with a custom load
balancing module, which routes API requests and scales the
maximum processable requests with the number of nodes.

To interface with a wide range of VLMs, we developed a
ROS2 package that acts as a middleware for interfacing with
the Chat Completions API established by OpenAI. It supports
commercial online APIs such as OpenAI, Mistral AI, and
OpenRouter, as well as the open source inference framework
vLLM [31], which allows us to self-host (quantized) open-
weight models from families such as Pixtral [4], Molmo [26],
Qwen [27], and InternVL [32]. By handling aspects such as
monitoring, timeout behavior, model parameters, error cor-
rection, and asynchronous generation, this package makes it
easy to run, switch, and compare models in a general, robust,
reproducible, and consistent manner. We also use this package
to interface all other models used in the evaluation, which can
either run locally on a robot or on a remote server.
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Fig. 4. Experimental robot platforms. (a) Team NimbRo’s TIAGo++ robot
at the RoboCup@Home 2024 finals in Eindhoven, grasping ingredients
associated with a dinner recipe. (b) Industrial scenario where objects on a
conveyor belt are detected from above, picked up, and placed in boxes.

2) Domestic Service Robot: We developed a modified PAL
Robotics TIAGo++ omnidirectional two-armed platform (see
Fig. 4a) to compete in the RoboCup@Home Open Platform
League 2024 [15]. The purpose of this competition is to
promote the development of general-purpose autonomous ser-
vice robots that can be deployed in challenging and unknown
domestic environments. It is equipped with an Orbbec Gemini
2 RGB-D camera running at 1080p. For VLM inference, we
rely on online APIs accessed through an onboard 5G router.
The detector and tracker run locally alongside several other
compute-intensive tasks on a Zotac ZBOX with an NVIDIA
RTX A4500 Mobile 16GB GPU.

3) Industrial Grasping Robot: In collaboration with
igus GmbH, the Lamarr Institute, Fraunhofer IAIS and IML,
we developed a robot demonstrator (see Fig. 4b) that mimics
an industrial scenario. In particular, an igus ReBeL 6-DoF arm
equipped with a suction gripper is placed next to a conveyor
belt to pick up items from it and place them in nearby storage
containers. A generic 4K webcam is used to detect the objects
on the conveyor belt from a top-down perspective.

V. EVALUATION

A. Robot Experiments

1) Qualitative Experiments: Our method was used in the
winning performance of Team NimbRo in the finals of the
RoboCup@Home Open Platform League 2024 [15]. In this 10-
minute demonstration, our robot explored an arena simulating
a typical apartment and helped to prepare dinner.

First, the robot explored the apartment and collected images
from potential food locations. The images were passed to the
update mechanism and processed using GPT-4o-2024-05-13
while exploration continued. We defined the task ”Find all
food and cooking ingredients.” to identify all available food
items and discard all other objects, such as furniture and
decorations. The robot then received a dinner order from one
of the judges, for which we generated a recipe based on the
available ingredients in the apartment.

Then the robot moved to one of the food locations and
executed the update mechanism with the new task ”Grasp
the ingredients mentioned in the following recipe: ...”. By
evaluating the task relevant attributes of the detected object
instances to identify the food items contained in the recipe,
the robot tried to grasp two of them using both of its arms.

TABLE I
ROBOT EVALUATION RESULTS.

Experiments % Task % Obj. % of Failures

Succ. ↑ Ident. ↑ Agent Nav. Manip. Vision

Baseline Ours 85 90 0 33 67 0
Kosmos-2 35 25 8 8 15 69

Complex Ours 67 87 40 0 20 40

Performance for a mobile manipulator performing a simple base-
line task and more complex tasks. Performance is measured by
successful task execution and percentage of correctly identified
target objects. Task failures cases are assigned to the responsible
robot sub-component, where vision refers to our pipeline.

Between this initial detection and each grasp, the robot had
to adjust its relative position to the objects several times to
accommodate the arm’s workspace and to find a collision-free
grasping trajectory. The tracking capability of our method is
essential here because it eliminates the need to detect and
associate target objects reliably several times in a row. Finally,
the robot could deliver the ingredients and inform the judge
of their nature and purpose in the recipe by evaluating the
description attributes of the grasped objects.

In the industrial scenario, we developed an LLM-based
agent that attempts to execute any given natural language
instruction using a set of pre-defined tools for perception
(our method), grasping, placing, and logging. The goal was
to demonstrate how a robot in a typical industrial scenario
can use and benefit from modern approaches for object recog-
nition and natural language understanding. Tasks this system
performed include sorting chocolates by color, finding the food
item with the oldest expiration date, and classifying products
by arbitrary properties. For example, it can reason that the
chocolate packaged in white is likely not vegan because its
label suggests that it contains yogurt, which is usually made
from milk. This shows how our method can handle uncommon
scenarios in terms of the top-down view, the industrial setting,
and a variety of unknown products. It also demonstrates the
ability to read text, recognize brands and logos, and interpret
images on packaging materials.

2) Quantitative Experiments: Table I quantifies the perfor-
mance of our method on a real robot. For the experiments,
we deploy our method as the vision system for a mobile
manipulator with an agentic task planner. To account for the
performance of other necessary systems, we design a simple
baseline task: ”Bring me the object on the couch / pantry
table.”. The object is not specified, and there is only a single
object at the specified location, so the vision system must
only ground and track (for realignment in manipulation) the
object, but does not necessarily need to identify it accurately.
Under these requirements, we do not expect our method to
fail, which places the full burden on the planning, navigation
and manipulation stacks. We select one location with a low
grasping surface and one with a high one to cover the robot’s
reachability. Ten household items which fit in the robot’s
gripper are used as test objects, covering various shapes and
sizes. We perform this task for each combination of object
and location for a total of 20 trials. A trial is counted as
a success if it ends with the robot successfully handing the
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Fig. 5. Manipulation scenes and corresponding tasks which were successfully
solved by a mobile manipulator equipped with our proposed method.

object to the operator. For failed trials, we assign the cause
to the responsible sub-component. Additionally, the object is
considered correctly identified if its description is accurate.

We observe that failures result only from navigation or
manipulation errors, but never due to our vision system. The
objects are always grounded and mostly correctly identified,
e.g. in one instance the robot brought a benchy boat but
described it as an origami figurine.

We repeat the experiment with Kosmos-2 [23] replacing the
VLM and open-vocabulary detector. The task success rate is
low, with most failures originating from the vision system.
Very small objects are missed, so the robot cannot interact
with them. When an object is grounded, the bounding boxes
are often imprecise, leading to a bad tracker initialization and
subsequent tracking failures. Even when the object is grounded
and retrieved, it is most often described incorrectly. Overall,
despite the model’s performance in other tasks, we find it is
not suitable for this application. We also attempted to use
Florence-2 [24], but found that it described singular objects
on furniture along with the furniture itself, grounding both
together, such that manipulation is not possible.

Finally, we explore the limitations of the proposed method
by applying it to 15 more complex tasks (see Fig. 5) including
semantic disambiguation (e.g. bringing specifically the upside
down cup among several cups), logic and counting (e.g.
bringing a certain object if there is an odd number of objects
with a specific attribute on the table and another object
otherwise), and reading comprehension (e.g. reading a note at
the location and executing the task described on it). We also
use a larger set of objects and introduce clutter unrelated to
the task. All tasks are formulated such that an object must be
retrieved for the operator, which ensures that the grounding
and tracking components of our method are tested as well.
Here, due to the complexity of the tasks, planning is more
likely to fail when objects are too vaguely described by our
method, e.g. the agent is searching for cereals but only a ’white
box’ is described. Our method also fails several times when
the open-vocabulary detector confuses visually similar objects,
e.g. swaps the detection of a power cable with a nearby HDMI
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Fig. 6. Partial times for execution of the update mechanism. Experimental
setup: Using (a) GPT-4o-2024-11-20 and (b) Gemini 2.0 Flash (description
& validation) and MM-GDINO-L zero-shot with an Over-Detect-Factor of 1.5
and one decoupled attribute on our custom dataset. Each structured description
contains (a) µ = 13.8 and (b) µ = 12.3 instances.

cable, or when tracks are lost on small objects in a cluttered
scene. Overall, observing a success rate of 67% compared to
an ideal result of 85% given the performance of other sub-
components, we find that our method can address a wide
variety of challenging tasks.

B. Vision Benchmarks

1) Label Matching: Since our method assigns open-set
names and descriptions with each detection, there is no direct
way to evaluate performance metrics on public datasets. To
achieve this, we need to develop a mechanism to automatically
find the semantic associations between our detections and
the annotated classes contained in the dataset. We do this
by first asking GPT-4o-2024-11-20 to generate five sentence
definitions of the abstract category referred to by each of
our detections and the annotated classes in the dataset. For
the former, we provide the LLM with the corresponding
object name and description attributes from the structured
description. We then use OpenAI’s text-embedding-3-large
model to encode both attributes and definition of all detections,
and the class name and definition of all dataset classes. Finally,
for all detections and classes, we compute the pairwise cosine
similarities between their embeddings, average them to obtain
a single similarity score for each pair, and find the most similar
class for each detection.

The class set of a dataset is most often incomplete, i.e. it
contains object instances that are not annotated because they
do not correspond to any class in the scope of the dataset.
Therefore, we must decide to either assign each detection to
the most similar class or discard it from further evaluation.
Instead of thresholding the obtained similarities, we augment
the set of classes with additional ones that are designed
to have minimal semantic overlap with the dataset classes,
reducing the incompleteness. Then, if the most similar class
to a detection is an augmented one, we discard the detection
from further evaluation. Otherwise, we assign the respective
native dataset class and evaluate it accordingly.

Finally, we introduce mapping rules to address systematic
annotation problems where a category of depicted objects is
repeatedly annotated with a dissimilar class. For example, soap
dispensers might be annotated as bottle, rather than not being
annotated due to a lack of an appropriate dataset class. Here we
augment the missing object categories as described, but map
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TABLE II
ISOLATED DETECTOR METRICS.

Detector Data
mAP Precision Recall F1-score

All Cls Ins Cls Ins Cls Ins All Cls Ins

MMGD Custom n.a. 0.36 0.43 0.55 0.54 0.46 0.54 n.a. 0.50 0.54
COCO 0.50 0.51 0.56 0.81 0.78 0.70 0.78 0.73 0.75 0.78

LLMDet Custom n.a. 0.33 0.41 0.45 0.52 0.45 0.52 n.a. 0.45 0.52
COCO 0.49 0.53 0.56 0.81 0.78 0.72 0.78 0.71 0.76 0.78

OmDetT Custom n.a. 0.16 0.20 0.16 0.28 0.28 0.28 n.a. 0.20 0.28
COCO 0.33 0.38 0.42 0.71 0.65 0.54 0.65 0.57 0.61 0.65

OWLv2 Custom n.a. 0.08 0.09 0.17 0.14 0.12 0.14 n.a. 0.14 0.14
COCO 0.38 0.41 0.45 0.46 0.72 0.39 0.72 0.41 0.42 0.72

Performance metrics for isolated open-vocabulary detectors. We prompt
detectors with all classes, those in the image (cls), and the corresponding
instance counts. Conf. thresh. for All and Cls maximize the F1-score.

matched detections to the respective dissimilar dataset classes
instead. This scheme, parametrized by augmented labels,
definitions and their corresponding text embeddings, wraps
detection metrics to enable evaluation of manual prompting-
free methods on object detection benchmarks.

All reported performance metrics are obtained using this
approach. For COCO minival, we use 271 augmented classes
and eleven mapping rules. For our densely annotated custom
dataset with unique descriptions instead of classes, we do
not use augmented classes, but match against all descriptions
contained in the image. In a manual verification of 100 random
object instances described on COCO images, we find 89%
correct matches and 11% borderline cases where the instance
description is not sufficient to uniquely assign it to one of the
COCO classes.

2) Datasets: Our custom dataset contains diverse, non-
standard objects in domestic environments that resemble chal-
lenging manipulation scenes. It contains 64 images, partially
drawn from AgiBot World [33], with an average of 18 anno-
tations (range 8 to 48), covering 136% (cumulative) of each
image. We exhaustively annotated all visible objects in each
image, assigning natural language descriptions that address
their type, appearance, and location – sufficient for unique
identification. COCO minival contains 5000 images with an
average of 7 annotations, covering 54% (cumulative) of each
image. Of these images, 1% have no annotations, 54% have
up to five, and 15% have 15 or more.

3) Experiments: To assess the practicality of our method,
we examine the execution time of the update mechanism.
Fig. 6 shows that it is dominated by (partially optional) VLM
interactions, while detection and segmentation are negligible.
While we find the use of larger models with the optional steps
feasible in practice, a small quantized model can generate
structured descriptions in 2.5s, even for complex scenes.

In Table II we report common performance metrics of
several open-vocabulary detectors in isolation. We evaluate
each detector with increasing degrees of information about
a given image. Specifically, we first evaluate under the estab-
lished protocol of prompting with all class labels occurring in
the dataset. Since the labels in our custom dataset represent
instance-specific descriptions instead of class labels, this is
not applicable for our dataset. Next, we apply a class label

TABLE III
BASELINE COMPARISON.

Data Model Ins. Time mAP Pre. Rec. F1

C
O

C
O

Gemini 2.5 Pro 11.1 13.9 0.35 0.60 0.49 0.54
Gemini 2.5 Flash 9.24 3.48 0.32 0.59 0.44 0.51
Gemini 2.0 Flash 6.00 3.41 0.30 0.49 0.44 0.46
GPT-4.1 10.5 8.72 0.33 0.55 0.47 0.51
GPT-4.1 mini 7.81 5.22 0.30 0.62 0.43 0.50
GPT-4o 8.83 4.96 0.30 0.49 0.43 0.46
OVIS 2.5 9B 7.02 6.97 0.32 0.67 0.40 0.50
Mistral Medium 3.1 8.40 3.21 0.31 0.61 0.41 0.49
Qwen2.5-VL-72B† 5.88 13.3 0.33 0.54 0.46 0.49
InternVL2.5-38B-MPO† 7.26 16.2 0.33 0.49 0.49 0.49
InternVL2.5-8B-MPO†‡ 5.12 2.32 0.26 0.54 0.37 0.44
InternVL2.5-4B-MPO†‡ 5.54 1.80 0.28 0.50 0.36 0.42
InternVL2.5-1B-MPO† 3.55 0.81 0.22 0.50 0.25 0.33
Claude Sonnet 4 7.93 5.64 0.29 0.65 0.37 0.47
Grok-2 7.85 4.83 0.30 0.43 0.48 0.45

Florence-2 11.2 0.95 n.a. 0.49 0.55 0.52
Kosmos-2 4.58 1.60 n.a. 0.44 0.19 0.26

C
us

to
m

Gemini 2.5 Pro 14.3 15.7 0.36 0.52 0.40 0.45
Gemini 2.5 Flash 12.9 4.37 0.30 0.49 0.34 0.40
GPT-4.1 13.8 10.7 0.31 0.48 0.36 0.41
GPT-4.1 mini 10.3 6.78 0.28 0.57 0.32 0.41
OVIS 2.5 9B 8.59 8.51 0.24 0.57 0.27 0.36

Florence-2 6.97 0.82 n.a. 0.33 0.13 0.18
Kosmos-2 4.63 1.27 n.a. 0.26 0.07 0.11

Grounded instances with inference time, and performance metrics for
description models and baselines. We use ODF = 1.0 without validation on
500 COCO minival images and our custom dataset. Highlighted models
are (†) inferred locally and (‡) 4-bit AWQ-quantized [34].

oracle providing the ground truth labels occurring for each
image. In either case, we report all metrics for the detector-
specific confidence threshold which maximizes the F1-score
for a given dataset. Finally, we apply an instance-aware oracle
that additionally provides the number of occurrences per label,
wrapping each detector with an ODF = 1.0.

For all detectors, we observe a significant performance drop
when evaluating on our custom dataset. This is expected,
as it contains more complex scenes and more fine-grained
annotation. Overall, MM-Grounding-DINO performs best, and
we thus use it for all subsequent experiments. It is worth
noting that LLMDet does not convincingly outperform MM-
Grounding-DINO, despite co-training with a VLM. It may be
limited by its architecture (same as MM-Grounding-DINO) or
its training scale.

On both datasets, all detectors benefit from per-image
prompting represented by the class and instance-aware oracles.
Intuitively, using more information about the image leads to
better scores, but this result also confirms that our proposed
assignment scheme using the ODF exploits the label counts
while absolving practitioners of tuning detector confidence
thresholds. Of course, the instance-aware oracle is not avail-
able in practice. We argue that this is not a drawback because
in open robotics environments, manually crafting suitable
object prompts beforehand is unrealistic. Thus, parsing a given
scene is a necessary step in any case, which justifies the
proposed approach to approximate the instance-aware oracle
using a VLM.

Table III compares our method to Kosmos-2 [23] and
Florence-2 [24]. We present results for COCO minival and
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our custom dataset, as well as for several VLMs used to
generate the structured descriptions within our method. In
line with general VLM benchmarks [35], we observe that
the performance of our method improves with larger or more
recent models. While the performance of Florence-2 is similar
to the best models used in our method for COCO minival,
the performance of both baselines drops significantly on our
custom dataset. This is due to the lack of rich semantic
content in the descriptions they generate, which are insufficient
for associating them with semantically rich and fine-grained
ground truth descriptions. Instead, our method’s ability to
maintain performance under this condition confirms its practi-
cal feasibility in open robotics environments. Note that we use
the same prompts for all VLMs in all experiments, allowing
for further optimization.

Additionally, we measure the effect of the validation step
for multiple models and observe the intended precision – recall
tradeoff. For example, for GPT-4o on COCO minival, recall
decreases from 0.43 to 0.36 while precision increases from
0.49 to 0.64. Thus, users are advised to apply the optional
validation based on their priorities.

VI. CONCLUSION

Our proposed method VLM-GIST leverages foundation
models to generate structured descriptions from images that
identify all visible object instances and extract arbitrary user-
defined attributes, obtain corresponding bounding boxes and
segmentation masks, and efficiently track them in an image
stream. We show that our approach generalizes across model
variants and that its performance is directly correlated with
the general capabilities of the models used. We demonstrate
how VLM-GIST can be effectively integrated into real-world
robotics applications, suitable for use in conjunction with
LLM-based agents. Moreover, it is capable of automatically
annotating datasets without human involvement. Such datasets
may prove useful for improving the performance of open-
vocabulary detectors or VLMs in this or other applications.
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