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Transferring Category-based Functional Grasping

Skills by Latent Space Non-Rigid Registration
Diego Rodriguez and Sven Behnke

Abstract—Objects within a category are often similar in
their shape and usage. When we—as humans—want to grasp
something, we transfer our knowledge from past experiences
and adapt it to novel objects. In this paper, we propose a
new approach for transferring grasping skills that accumulates
grasping knowledge into a category-level canonical model. Grasp-
ing motions for novel instances of the category are inferred
from geometric deformations between the observed instance and
the canonical shape. Correspondences between the shapes are
established by means of a non-rigid registration method that
combines the Coherent Point Drift approach with subspace
methods. By incorporating category-level information into the
registration, we avoid unlikely shapes and focus on deformations
actually observed within the category. Control poses for gener-
ating grasping motions are accumulated in the canonical model
from grasping definitions of known objects. According to the
estimated shape parameters of a novel instance, the control poses
are transformed towards it. The category-level model makes our
method particularly relevant for on-line grasping, where fully-
observed objects are not easily available. This is demonstrated
through experiments in which objects with occluded handles are
successfully grasped.

Index Terms—Dexterous manipulation, Grasping, Multi-
fingered hands.

I. INTRODUCTION

W
HILE transferring grasping skills within a category

happens frequently and effortless in humans, obtaining

that generalization in robots is still an open problem. People

can be shown objects that they never saw before, and they often

will immediately know how to grasp and operate them. This

happens by transferring knowledge from their learned model

of the object category, e.g., screw drivers, to novel instances.

Although the manipulation of known objects can be planned

offline, many open-world applications require the manipulation

of unknown instances. Our approach accumulates manipulation

knowledge of known instances in category-level models and

transfers manipulations skills to novel instances (Fig. 1).

The method presented in this paper focuses on functional

grasping, i.e., on motions that allow not only to grasp the object

but also to use it. We use the term grasping to refer to the
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Figure 1: Shape information and grasping knowledge for known

object instances are aggregated in a category-level canonical

model. Grasping control poses are transferred to novel instances

of the category for generating the grasping motion.

process of bringing the object into the hand, and not only to the

final configuration of hand and object. We propose a method

for generating grasping motions for novel instances by making

use of category-level shape information represented by a

learned latent shape space. Our method aggregates object shape

and grasping knowledge from multiple known instances of a

category in a canonical model. The learned latent space of shape

variations enables a category-specific shape-aware non-rigid

registration procedure that establishes correspondences between

a view of a novel object instance and the canonical model.

Our method finds a transformation from the canonical model

to the view in the latent shape space—linearly interpolating

and extrapolating from other transformations found within

the category—which best matches the observed 3D points.

This estimates the shape parameters of the novel instance and

allows for inference of its occluded parts. By the non-rigid

transformation and the aggregated manipulation knowledge,

control poses for the novel instance are inferred. The grasping

motion is finally generated by using those control poses.

In this paper, we extend our previous work [1] by accumu-

lating grasping knowledge in the canonical model in addition

to the shape information, which enriches our transferring skill

model.

II. RELATED WORK

A. Non-Rigid Registration and Shape Spaces

Most of the non-rigid registration methods proposed so far

differ mostly by the prior restrictions or regularization on the

deformation that the points can undergo. Several restrictions
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such as conformal maps [2]–[4], isometry [5]–[7], thin-plate

splines [8], [9], elasticity [10] and Motion Coherence Theory

[11] have been used to encourage or constrain different types

of transformations.

For surface reconstruction, many methods use non-rigid

registration [12]–[15]. Approaches such as presented by Li

et al. [12] and Zollhöfer et al. [16] sequentially add higher

frequency details coming from new depth camera frames to a

low-resolution 3D capture through non-rigid registration.

For category-based shape spaces, several methods have been

proposed. Hasler et al. [17] generate a shape space of human

bodies with poses using 3D markers and human scans. Burghard

et al. [18] developed a shape space of varying geometry based

on dense correspondences. Engelmann et al. [19] define a shape

manifold which models intra-class shape variance; this method

is robust with noisy or occluded regions.

B. Transferring Grasping Skills

Based on segmented objects according to their RGB-D

appearance, Vahrenkamp et al. [20] transfer grasp poses from

a set of template grasps. Ficuciello et al. [21] developed an

approach to confer grasping capabilities based on a reinforce-

ment learning technique and postural synergies. In [22] and

[23], functional grasp poses are warped such that distance

between correspondences is minimized, then the warped poses

are replanned in order to increase the functionality of the

grasp. In [24] a similar contact warping is combined with

motor synergies to generalize human grasping. Stueckler et al.

[25] transfer manipulation skills using a non-rigid registration

method based on multi-resolution surfel maps. The non-rigid

registration serves as the mechanism to warp available grasping

poses.

C. Discussion

Although current state-of-the-art methods for non-rigid

registration yield good results, they have some limitations.

Newcombe et al. [15] use optical flow constraints and thus this

approach does not perform well with large deformations or

changes in color and illumination. Moreover, several captures

of the object are required. The method by Burghard et al.

[18] accurately estimates dense correspondences, but does

not perform well with incomplete scans or noisy data. To

solve these problems, we incorporate category-level information

in our approach, such that we are able to register partially-

occluded novel instances using a single capture of the object.

Methods such as Engelmann et al. [19] deal with minor

misalignments and occlusions, but do not offer correspondences

between points and do not give any kind of transformation.

Our method, on the other hand, offers a transformation for

each point of the novel instance and even points that do not

belong to the object which allows us to transform grasp poses.

Regarding transferring grasping skills, we tackle the problem

of requiring a fully observed [22] or a non-occluded [20]

object by exploiting the geometrical information residing in

our learned categorical model. Unlike [25] we model shape

and grasping not for single known instances, but for object

categories, which gives us the possibility to learn typical shape

variations and to infer grasping information even when parts of

the object are not observed. More importantly, none of previous

approaches is able to accumulate and to use knowledge from

several previous successfully experiences, which is the main

focus of this paper.

III. METHOD

Our approach is composed of a learning phase and an

inference phase (Figs. 2 and 3). In the learning phase, a

category-specific linear model of the transformations that a

category of objects can undergo is built. In this manner, poses

in the space of the canonical shape can be transformed into the

space of an observed instance. These poses can be added even

after the learning phase. The category-specific linear model

is learned as follows: First, we select a single instance from

the training dataset to be the canonical model of the category.

Then, we find the transformations relating this instance to all

other instances of the category using Coherent Point Drift

(CPD) [11]. Finally, we find a linear latent subspace of these

transformations, which becomes our transformation model for

the category. For each instance in the training set, an associated

grasping descriptor ς (vector representation of the grasping

motion) is also transformed into the canonical space. In this

manner, multiple experiences can be aggregated in the canonical

model.

In the inference phase, given a novel observed instance, our

method searches in the subspace of transformations to find

the transformation which best relates the canonical shape to

the observed instance. Depending on the resulting latent shape

variables and the aggregated grasping knowledge accumulated

in the canonical model, a grasping descriptor for the novel

instance is inferred.

A. Categories and Shape Representation

A category is composed by a set of objects which share the

same topology and have a similar shape. Each category has a

canonical shape C that will be deformed to fit the shape of

the training and testing sample shapes. To represent a shape,

we use point clouds, which can be generated from meshes by

ray-casting from several viewpoints on a tessellated sphere and

then down-sampling with a voxel grid filter. Each category

specifies a canonical pose and reference frame, used for initial

alignments.

B. Coherent Point Drift

Here, we shortly describe the Coherent Point Drift (CPD)

[11] and how we use it for our non-rigid registration.

CPD estimates a deformation field mapping between a

template point set S[t] = (s
[t]
1 , ..., s

[t]
M )T and a reference point

set S[r] = (s
[r]
1 , ..., s

[r]
N )T . The points in S[t] are modeled as

centroids of a Gaussian Mixture Model (GMM) from which the

points in S[r] are drawn. CPD maximizes the likelihood of the

GMM while imposing constraints on the motion of the centroids

such that points near each other should move coherently and

have a similar motion to their neighbors [26]. The likelihood of
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Figure 2: Training phase. The deformations between each instance and the canonical model are calculated using CPD. These

deformations are assembled into the design matrix Y. Using PCA-EM, the principal components which constitute the latent

space are extracted. The grasping descriptor for each training sample is aggregated in the canonical model. The latent variables

serve as feature vector while the grasping descriptor is the desired output for the grasping transfer model.

the GMM is not directly maximized, but instead its equivalent

negative log-likelihood function is minimized:

E(ψ, σ2) = −
N∑

n=1

log
M∑

m=1

exp−
1

2σ2 ‖s[r]n −T (s[t]m ,ψ)‖
2

, (1)

where T (s
[t]
m ,ψ) is a parametrized transformation from the

template point set to the reference set, and σ2 is the covariance

of the Gaussian density. The transformation T , for the non-rigid

registration, is defined as the initial position plus a displacement

function v:

T (S[t], v) = S[t] + v(S[t]). (2)

The constraints on the motion of the centroids are realized

by regularizing the displacement function v. Adding this

regularization φ(v) to the negative log-likelihood Eq. (1), we

obtain

f(v, σ2) = E(σ2, v) +
λ

2
φ(v), (3)

where λ is a trade-off parameter between the goodness of

maximum likelihood fit and regularization. A particular choice

of φ(v) leads to the following displacement function v(Z) [11]:

v(Z) = G(S[t],Z)W, (4)

for any set of D-dimensional points ZN×D. G(S[t],Z) is

defined as a Gaussian kernel matrix composed element-wise

by:

gij = G(s
[t]
i , zj) = exp

− 1
2β2

∥

∥

∥
s
[t]
i

−zj

∥

∥

∥

2

, (5)

WM×D is a matrix of kernel weights, and β is a scalar

that controls the strength of interaction between points. An

additional interpretation of W is as a set of D-dimensional

deformation vectors, each associated with one of the M points

of S[t]. For convenience in the notation, GM×M will denote

G(S[t],S[t]). Note that G(·, ·) can simply be computed by Eq.

(5), but the matrix W needs to be estimated.

To minimize Eq. (3), CPD uses an Expectation Maximization

(EM) algorithm. In the E-step, the posterior probabilities matrix

P is estimated using past parameter values. This matrix P is

composed element-wise by:

pmn =
e−

1
2σ2 ‖s

[r]
n −(s[t]m+G(m,·)W)‖

2

∑M

m=1 e
− 1

2σ2

∥

∥

∥
s
[r]
n −(s

[t]
m+G(k,·)W)

∥

∥

∥

2

+ ω
1−ω

(2πσ2)
D
2

N
(6)

where ω reflects the assumption on the amount of noise.

In the M-step, the matrix W is estimated by:

(G+ λσ2d(P1)−1)W = d(P1)−1PS[r] − S[t] (7)

where 1 represents a column vector of ones and d(·)−1 is the

inverse diagonal matrix. For a more detailed description of the

CPD algorithm, please refer to [11].

In our method, we use the canonical shape C for the

deforming template shape S[t] and each training example Ti

as the reference point set S[r]. Therefore, the transformations

Ti are defined as

Ti(C,Wi) = C+GWi (8)

where Wi is the W matrix computed by taking training

example Ti as the reference point set S[r].

C. Latent Space

CPD allows us to define a feature vector representing

the deformation field. This vector has the same length for

all training examples; additionally, elements in this vector

correspond with the same elements in another. This allows us

to learn a latent lower-dimensional space.

We observe from Eq. (8) that the deformation field between

the canonical and an observed instance is fully determined by

G and W. Moreover, we see that G only requires the points

of the canonical shape and it remains constant for all training

examples. Therefore, the entire uniqueness of the deformation

field for each training example is captured by its matrix W.

We construct a row vector yi ∈ R
p=M ·D from each

matrix Wi of each training example Ti, that characterizes the
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Figure 3: The canonical shape (red) is matched against a partially-occluded target shape (leftmost) by finding its latent shape

parameters. The grasping descriptor cς is inferred from x. Finally, the descriptor is transformed to the observed space.

corresponding deformation field. The vectors are normalized

to have zero-mean and unit-variance and are then assembled

into a design matrix Y. Finally, we find a lower-dimensional

manifold of deformation fields for the category by applying

the Principle Component Analysis Expectation Maximization

(PCA-EM) algorithm on the matrix Y.

Much like with CPD, we alternate between an E- and M-step.

The E-step is given by:

X = YLT (LLT )−1 (9)

whereas the M-step is defined by:

L = (XTX)−1XTY. (10)

Lp×q is the resulting matrix of principle components. So, for

a new normalized set of observations Yo, the latent variables

can be found by postmultiplying Yo by L. In this manner, a

deformation field is now described by only q latent parameters.

Similarly, any point x in the latent space can be converted into

a deformation field transformation by first postmultiplying x

by LT and by converting the result into a WM×D matrix after

the respective denormalization. Thus, moving through the q-

dimensional space linearly interpolates between the deformation

fields.

D. Grasping Knowledge Aggregation

We aggregate grasping knowledge from different instances

into the canonical model in two steps: first, by generating

the grasping motion in the observed space and, second, by

transforming its grasping descriptor into the canonical space.

A grasping motion is represented as a sequence of

parametrized primitives each of them defined by a control

pose expressed in the same coordinate system of the shape

of the object. The generation of grasping motions can be

performed manually for each instance in the training set, which

favors accuracy over time and wear off of the system (on

real robotic platforms). This imposes however a limit on the

number of samples of the training dataset mostly because of

time constraints. In order to overcome this limit, we adopt a

constrained sample-based motion generation approach.

A sampled motion is created by generating constrained

random 6D poses around the control poses of the canonical

grasping motion as depicted in Figure 4. Each component of

the translation is sampled from a normal distribution. For the

rotation, a quaternion is build out of three uniformed points

following the approach described in [27]. These orientations

are filtered by specific functional constraints of each category,

in the case of drills, for example, rotations that occlude or

impede the use of the trigger are discarded. If the sampled

grasping motion leads to collisions with other objects in the

environment including the robotic arm, the motion is discarded

as well. Finally, the sampled motion is executed and evaluated.

If the object is functionally grasped successfully, the grasping

control poses are transformed into the canonical space.

Finding the transformation from the observed space into the

canonical space is equal to finding the inverse transformation

of Eq. (2) or equivalently to finding the inverse transformation

of Eq. (4). However, the inverse function v−1 is not directly

available. It can nonetheless be estimated for a point o in

the space of the observed shape using a set of points Z =
(z1, ..., zM )T in the canonical space which deform close to o

by the equation:

v−1(o) = −

∑M

i=1 G(o, zi + v(zi))v(zi)∑M

i=1 G(o, zi + v(zi))
. (11)

Figure 4: Sampled-based grasping motion generation. 6D

constrained random poses are sampled around control poses

of the canonical grasping motion.
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For transforming the orientation, we apply Eq. (11) to the

rotational vector base of each pose and orthonormalize it.

For each instance in our training dataset, we have so far a

latent vector xi that represents the shape deformations from

the canonical instance to the observed instance and a grasping

descriptor ςi transformed into the canonical space. We set the

latent vector xi as a feature vector and the grasping descriptor ςi
as the corresponding target output and train a linear regression

model. In other words, grasping knowledge is aggregated in the

canonical model by serving as a training label of a regression

model (Fig. 5). Algorithm 1 summarizes the training phase

(Figure 2).

E. Shape Inference

A shape transformation is specified by the q parameters of

the latent vector xi plus additional seven parameters of a rigid

transformation θi. The rigid transformation is meant to account

for minor misalignments between the observed shape and the

canonical shape at the global level.

We concurrently optimize for the latent parameters and

the rigid transformation using gradient descent. As CPD and

ICP, our method requires an initial coarse alignment of the

observed shape because of the expected local minima. We

want to find an aligned dense deformation field which when

applied to the canonical shape C minimizes the distance to

corresponding points in the observed shape O. Specifically,

we want to minimize the energy function:

E(x,θ) = −

M∑

m=1

log

N∑

n=1

exp
1

2σ2 ‖On−Θ(Tm(Cm,Wm(x)),θ)‖2

(12)

where the function Θ applies the rigid transformation given

parameters θ.

When a minimum is found, we can transform any point or set

of points into the observed space by applying the deformation

Figure 5: Grasping knowledge aggregation. Grasping descrip-

tors of observed instances are transformed and aggregated in

the canonical model by Eq. (11)

field using Eq. (4) and Eq. (2) and then applying the rigid

transformation Θ. Moreover, CPD provides a dense deformation

field, allowing us to find deformation vectors for novel points,

even those added after the field is created.

F. Transferring Grasping Skills

The transfer of grasping skills for novel instances is per-

formed as follows. A latent vector x describing the shape

deformation of the object from the canonical instance is

calculated as explained in Section III-E. This vector constitutes

a test sample of the linear regression, whose inference is

a grasping descriptor cς . Then, cς is transformed into the

observed space. This transformation is performed in two steps.

First, the control poses of the grasping motion are warped

using Eq. (2) replacing S[t] by the translational part and the

rotational vector base of the control poses. Because the warping

process can violate the orthogonality of the orientation, we

orthonormalize the warped orientation. Second, we apply the

rigid transformation Θ defined by the parameters θ.

The resulting transformed control poses oς are expressed

in the frame of the object. Thus, for executing the motion

each of the poses has to be adapted relative to the pose of

the observed object by premultiplying the control poses by the

pose of the object w.r.t. the base of the manipulator. Algorithm

2 summarizes the inference of grasping skills.

IV. SETUP AND EVALUATION

In this section, we evaluate only the grasping skill transfer

because the latent space non-rigid registration method was

already evaluated in [1]. We tested our method on two

categories: Drill a Spray Bottle, containing 13 and 17 instances

respectively. We obtained the object models from two online

CAD databases: GrabCad 1 and 3DWarehouse2. The CAD

models were converted into meshes in order to generate the

input point clouds for our method. They were obtained by

Algorithm 1 Training phase

Input: A set of training shapes in their canonical pose with

corresponding grasping descriptors oς .

1: Select a canonical shape C via heuristic or pick the one

with the lower reconstruction energy.

2: Estimate the deformation fields between the canonical

shape and the other training examples using CPD.

3: Concatenate the resulting set of W matrices from the

deformation fields into a design matrix Y.

4: Perform PCA-EM on the design matrix Y to compute the

latent space of deformation fields x.

5: Transform the grasping descriptors oς into the canonical

space cς .

6: Train the Linear Regressor R : x →c ς .

Output: A canonical shape C, a latent space of deformation

fields L and a trained model for inferring grasping descriptors

R.

1https://grabcad.com/library
2https://3dwarehouse.sketchup.com/
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Algorithm 2 Grasping Skills Inference

Input: Transformation model (C, L), trained regressor R and

observed shape O

1: Use gradient descent to estimate the parameters of the

underlying transformation (x and θ) until the termination

criteria is met. To calculate the value of the energy function,

in each iteration:

- Using the current values of x and θ:

1) Create vector Ŷ and convert it into matrix W.

2) Use Eq. (4) and Eq. (2) to deform C.

3) Apply the rigid transformation Θ to the deformed C.

2: Use the resulting x to infer a grasping descriptor cς inferred

by R.

3: Transform the grasping descriptor into the observed space.

Output: Grasping descriptor in observed space cς .

ray-casting from several viewpoints on a tessellated sphere and

down-sampling with a voxel grid filter.

We use the five-fingered Schunk hand with a total of 9
fully actuated Degrees of Freedom (DoF) and 11 mimic joints.

The experiments were carried out in the Gazebo simulation

environment. The collision model of the finger links were

modeled by capsules using an automatic ROS optimal capsule

generator based on the Roboptim library [28] as shown in

Fig. 6. The inertia tensors of the graspable objects were

approximated using Meshlab. For building the shape latent

spaces, we parametrized CPD with β=1, λ=3 and σ2 = 0.01.

The number of latent variables was set to capture at least

95% of the variance of each class. The grasping motions for

each object in the training set were sampled as described

in Section III-D with a maximum distance of 0.04 m and a

maximum angular deviation of 0.2.

For each category, we select the canonical model manually.

We use cross validation leaving two samples out. We trained six

drill and seven spray bottle grasping transfer models. Because

our method is able to infer category-alike geometries, we also

evaluated our method with partially-observed point clouds. For

this, we generate a single view of the test objects of each cross

validation model. In total, we evaluated the method on 12 fully

observed and 12 partially observed drills and 14 fully observed

and 14 partially observed spray bottles. For each instance, one

Figure 6: Visual and collision model of the robotic hand. At

rightmost both models are displayed simultaneously to show

the goodness of the capsule approximation.

TABLE I
RATIO OF SUCCESSFULLY TRANSFERED GRASPS.

Drill Spray Bottle
Grasp Func. Grasp Grasp Func. Grasp

Fully observed 7/12 4/12 8/14 3/14
Partially observed 6/12 3/12 9/14 6/14

simulation trial was performed because the execution of the

generated motion is fully deterministic in simulation.

From the 52 instances to be grasped 30 were successfully

grasped; that yields a success rate of 57.7%. Note, however,

that a successfully grasped instance in our approach considers

the entire motion, not only the last grasp configuration.

Regarding functional grasps, i.e., the index finger is able

to trigger the tools, 16 instances were successfully grasped

which results in a 32% success rate. The results are presented

in Table I. Compared to the results presented in [22], although

the success rate of our method is lower, our method is able

to handle partially-occluded objects and an inference takes in

average 7 s compared to the 12.6 min which is only suitable

for offline applications. Figure 7 shows for each category two

different—a fully observed and a partially-observed—samples

that were successfully grasped.

Our method was also tested in real-robot experiments. We

created only one latent transformation model for the drill

category using all the 12 available meshes plus the canonical

model. The observed object was inferred from one single

view captured by the Kinect v2 sensor [29]. The tests were

carried out on two different platforms: a UR10 arm and the

CENTAURO robot. The hand was controlled by a PID position-

current cascade controller, such that the joint position controller

defines the desired joint currents. The saturation values of the

current controller together with the PID values of the position

controller were set to provide a certain level of compliance

which contributed mainly at the last stage of the grasping

motion. Using the UR10 robotic arm, our method was able to

grasp two different drills twice without any failure. Similarly,

with the CENTAURO robot, our approach grasped one instance

of a drill twice without any failure (Fig. 8).

A video illustrating our approach is available online3.

A. Discussion

Real experiments with two different robotic arms demon-

strate that our method does not depend on the kinematics

of the arm holding the hand. We assume however that the

kinematics of the arm is able to reach 6D poses in its workspace.

Our method is also agnostic to the robotic hand; a canonical

grasping motion that is suitable to the hand is the only

requirement for applicability.

Most of the grasping motions that failed exhibited a high

deviation with respect to the canonical control poses which

indicates a large variance in the learned transfer model. This

suggests a need for more sample-efficient inference methods

and the need for more training data.

3http://www.ais.uni-bonn.de/videos/RA-L_2018_Rodriguez
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Figure 7: At the leftmost the meshes are shown. For illustration purposes we show additional perspectives of the same single

view of the partially observed objects. The respective point clouds are shown in blue. The inferred instances (green point

clouds) together with the transformed control points that define the motion are also displayed. In order to observe how good

the inference matches the observed points, the mesh of the canonical models is transformed and displayed (green meshes)

together with the observed data (blue points). Finally, the resulting grasped object in Gazebo is also depicted at the rightmost.

Figure 8: Experiments performed with the Centauro robot grasping autonomously a novel instance of a drill.
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V. CONCLUSION

In this paper, we proposed a new approach of transferring

grasping skills between objects within a category that is based

on the knowledge aggregation of different training samples into

a canonical model. Thanks to the learned latent shape space,

our method is capable of completing missing or occluded object

surfaces from partial views. Our method was able to transfer

grasping skills with real robotic platforms from experiences

collected only in simulation. This demonstrates the feasibility

regarding the available sensory data (single-view point clouds)

and runtime of our approach.

For future work, we want to consider more complex cate-

gories that impose higher variations in the joint configuration of

the hand. So, more dimensionality reduction will be expected.

As we realized the reduced number of training samples

limits the presented approach, we start looking into automatic

generation of plausible meshes from the canonical model. We

also want to explore variants of the CPD algorithm in order to

speed our current implementation. Finally, we would like also

to exploit additional sensory modalities such as joint currents

and force-torque sensors.
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