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Abstract— The mapping of environments is a prerequisite for
many navigation and manipulation tasks. We propose a novel
method for acquiring 3D maps of indoor scenes from a freely
moving RGB-D camera. Our approach integrates color and
depth cues seamlessly in a multi-resolution map representation.
We consider measurement noise characteristics and exploit
dense image neighborhood to rapidly extract maps from RGB-D
images. An efficient ICP variant allows maps to be registered
in real-time at VGA resolution on a CPU. For simultaneous
localization and mapping, we extract key views and optimize
the trajectory in a probabilistic framework. Finally, we propose
an efficient randomized loop-closure technique that is designed
for on-line operation. We benchmark our method on a publicly
available RGB-D dataset and compare it with a state-of-the-art
approach that uses sparse image features.

I. INTRODUCTION

A “good” environment model is prerequisite to many
applications in computer vision and robotics. We propose
a novel approach to acquire explicit geometric models of
indoor scenes with a RGB-D camera that include color and
depth cues seamlessly. Such types of model can be used
to localize a mobile robot precisely in its environment, for
motion planning, or it can be enhanced with further semantic
information.

We represent our models by local surface elements (sur-
fels) at multiple spatial resolutions. Each surfel consists
of the joint spatial and color distribution in its volume of
interest. We propose highly efficient means to convert RGB-
D images into compact models. Our map representation can
be built from only one image or it fuses many images from
various view points to build compact local maps of larger
volumes. By this, for instance, our mapping framework can
be employed in a submap-based SLAM framework.

The use of multiple resolutions has advantages over flat
models. By the projective image formation process, sampling
density depends on depth and view angle onto observed
surfaces. The sampling density defines a maximum resolution
at which a surfel is still well observed. Furthermore, we adapt
the maximum resolution at a point to its depth. By this, we
consider distance-dependent noise in the depth measurements
that is intrinsic to the disparity measurement principle.

For scene mapping, we propose an accurate registration
method that aligns multi-resolution surfel maps in real-
time. Our approach makes use of all available data in the
image and registers maps at the finest resolution possible. In
order to recover the trajectory of the sensor, we extract key
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Fig. 1. Map and trajectory acquired with our approach. The map is
visualized by samples from the joint color and shape surfel distribution
at 5 cm resolution.

views from the image stream and keep track of the current
sensor pose by image registration. We propose a randomized
loop-closure technique that establishes constraints between
similar key views on-line. Finally, we optimize for the joint
likelihood of the pose estimates in a probabilistic graph
optimization framework.

Our approach yields accurate 3D texture and shape models
of indoor scenes (see Fig. 1). We evaluate our method on a
publicly available RGB-D benchmark dataset. This allows
for comparison of the performance of our algorithm with
state-of-the-art approaches.

II. RELATED WORK

Scene modelling has long been investigated in the com-
puter vision and robotics communities. Early work on si-
multaneous localization and mapping (SLAM) in robotics
has focused on acquiring 2D maps with mobile robots using
range sensors such as laser scanners and sonars (e.g., [1]).
Over the last decade, some approaches have been proposed
that estimate the 6 degree-of-freedom (DoF) trajectory of a
robot and a 3D map by means of 3D scan registration [2],
[3], [4].

In computer vision, many approaches to Structure from
Motion (SfM) are based on the extraction and matching of
keypoints between images. Stereo vision is frequently used
to directly obtain depth measurements for keypoints [5], [6].
Efficient RANSAC methods can then be applied to estimate
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the motion of the camera rig. MonoSLAM [7] was one of
the first methods that demonstrated SfM in real-time with a
single camera. More recently, Klein and Murray [8] proposed
a real-time capable bundle-adjustment method within small
workspaces.

Current work on SfM in computer vision also in-
cludes real-time dense surface reconstruction from monocu-
lar videos [9], [10]. Newcombe et al. [10] proposed DTAM,
an impressive method for dense tracking and mapping with
a monocular camera. DTAM acquires depth maps for in-
dividual key images of the RGB camera in real-time on a
GPU. These RGB images and their depth maps could be
used instead of images from RGB-D cameras in our scene
mapping framework.

In recent years, affordable depth cameras have become
available such as time-of-flight or structured-light cameras
like the Microsoft Kinect. Paired with the developments
in computer vision on real-time dense depth estimation
from monocular image sequences, exploiting dense depth for
robotic perception is now a viable option. However, efficient
means have to be developed to utilize the high frame-rate and
high resolution images provided by such sensing modalities.

Recently, Newcombe et al. [11] proposed KinectFusion.
They incrementally register RGB-D images to a map that
is aggregated from previous images using GPUs. While
KinectFusion still accumulates minor drift in the map es-
timate over time as of its incremental nature, the authors
demonstrate remarkable performance for the mapping of
small workspaces. The approach is applied for augmented
reality user interfaces, and supports the tracking of the pose
of objects and the camera in real-time. Since KinectFusion is
implemented on GPU, it has stronger workspace limitation
than CPU-based implementations like ours due to memory
restrictions. In order to scale to larger workspaces, local
submaps have to built and eventually registered in a submap-
based SLAM framework. Our framework supports a compact
representation of local submaps. Our registration method is
already suited for registering individual RGB-D images as
well as entire local submaps that fuse many images. To map
environments with loop-closure, we find a best alignment
of key views by jointly optimizing spatial relations between
views. We determine the relative pose between views using
our registration method and assess the uncertainty of the pose
estimate.

Some approaches have been proposed that also learn maps
from RGB-D images in a trajectory optimization frame-
work [12], [13]. Henry et al. [12] extract textured surface
patches, register them using ICP [14] to the model, and apply
graph-optimization to obtain an accurate map. Our approach
provides shape-texture information in a compact representa-
tion. Our maps support registration of further views from a
wide range of distances, since the model contains detail at
multiple scales. Engelhard et al. [13] match SURF features
between RGB-D frames and refine the registration estimate
using ICP. Our registration method incorporates shape and
texture seamlessly and is also applicable to textureless
shapes.

Fig. 2. Multi-Resolution Surfel Maps. Left: We represent RGB-D data by
subdividing 3D space into voxels at multiple resolutions within an octree.
In each voxel we maintain shape and color distributions of contained points.
Considering the depth-dependent noise model in RGB-D images we obtain
a local multi-resolution structure by limiting the maximum resolution in the
tree with the depth. Right: We accumulate measurements from several view
poses in a single map by maintaining surfels for six orthogonal viewing
directions in each voxel.

III. MULTI-RESOLUTION SURFEL MAPS

A. Map Representation

We concisely represent RGB-D data in Multi-Resolution
Surfel Maps [15]. We use octrees to model textured surfaces
at multiple resolutions in a probabilistic way. At each voxel
in every resolution of the tree we store the joint distribution
of the spatial and color components of the points that fall
into the voxel. We approximate this distribution by its first
and second moment, i.e., sample mean and covariance (see
Fig. 2).

We enhance each surfel in the map with a local shape-
texture descriptor to guide data association during registra-
tion (see [15] for details). In order to be able to incorporate
images from several view poses within one map, we maintain
up to six surfels in each voxel from orthogonal viewing
directions.

B. Real-Time RGB-D Image Aggregation

Multi-Resolution Surfel Maps can be efficiently aggre-
gated from RGB-D images. We maintain the sufficient statis-
tics of the color and shape distribution in the voxels in order
to incrementally update the map. Instead of naively adding
each pixel individually to the map, we propose to efficiently
accumulate image regions before building up the octree.

This is possible, since points that fall into the same 3D
voxel are likely to project to nearby pixels in the image
(see Fig. 3). Furthermore, RGB-D sensors often obey a
characteristic noise model in which depth measurement noise
scales quadratically with the actual depth. By this, the
maximum resolution at a pixel can be limited with depth
and, hence, pixels at distant positions that belong to the same
octree leaf still form larger contiguous regions in the image.
The aggregation of leaf statistics within the image allows to
construct the map with only several 1,000 insertions of node
aggregates for a 640×480 image in contrast to 307,200 point
insertions.



Fig. 3. Top left: RGB image of the scene. Top right: Maximum node
resolution coding, color codes octant of the leaf in its parent’s node (see
text for details). Bottom: Color and shape distribution at 0.025 m (left) and
at 0.05 m resolution (right).

IV. ROBUST REAL-TIME REGISTRATION OF
MULTI-RESOLUTION SURFEL MAPS

We register Multi-Resolution Surfel Maps in a dual it-
erative refinement process: In each iteration, we associate
surfels between the maps given the current pose estimate.
Using these associations we then determine a new pose that
maximizes the matching likelihood for the maps. We make
use of the multi-resolution nature of our maps for an efficient
association strategy. We also handle discretization effects that
are introduced into the map by the binning of measurements
within the octree to obtain an accurate registration estimate.

A. Multi-Resolution Surfel Association

Since we match maps at multiple resolutions, we associate
surfels only in a local neighborhood that scales with the
resolution of the surfel (see Fig. 4). In this way, coarse
misalignments are corrected on coarser scales. In order to
achieve an accurate registration, our association strategy
chooses the finest resolution possible. This also saves re-
dundant calculations on coarser resolutions.

Starting at the finest resolution, we iterate through each
node in a resolution and establish associations between the
surfels on each resolution. In order to choose the finest
resolution possible, we do not associate a node, if one of
its children already has been associated. Since we have
to iterate our registration method multiple times, we can
gain efficiency by bootstrapping the association process from
previous iterations. If a surfel has not been associated in
the previous iteration, we search for all surfels in twice the
resolution distance in the target map. Note, that we use the
current pose estimate x for this purpose. If an association
from a previous iteration exists, we associate the surfel with
the best surfel among the neighbors of the last association.
Since we precalculate the 26-neighborhood of each octree
node, this look-up amounts to constant time.

We accept associations only, if the shape-texture descrip-
tors of the surfels match. We evaluate the compatibility by

Fig. 4. We register Multi-Resolution Surfel Maps in a multi-resolution data
association strategy. Top: We determine the matching on the finest resolution
shared by both maps to achieve high accuracy in pose estimation. Bottom:
For each surfel in the scene map we search for a closest match (red dashed
lines depict associations) in the model map under the pose estimate x. By
searching at the projected mean T (x)µ of the surfel in a local volume (red
squares) that scales with the resolution of the surfel, we efficiently correct
misalignments from coarse to fine resolutions.

thresholding on the Euclidean distance of the descriptors. In
this way, a surfel may not be associated with the closest
surfel in the target map.

Our association strategy not only saves redundant compar-
isons on coarse resolution. It also matches surface elements
at coarser scales, when fine-grained shape and texture details
cannot be matched on finer resolutions. Finally, since we
iterate over all surfels independently in each resolution, we
parallelize our association method.

B. Observation Model

Our goal is to register an RGB-D image z, from which we
construct the source map ms, towards a target map mm. We
formulate our problem as finding the most likely pose x that
optimizes the likelihood p(z|x,mm) of observing the target
map in the current image z. We express poses x = (q, t) by
a unit quaternion q for rotation and by the translation t ∈ R3.

We determine the observation likelihood by the matching
likelihood between source and target map,

p(ms|x,mm) =
∏

(i,j)∈A

p(ss,i|x, sm,j), (1)

where A is the set of surfel associations between the maps,
and ss,i = (µs,i,Σs,i) and sm,j = (µm,j ,Σm,j) are associ-
ated surfels. The observation likelihood of a surfel match is



the difference of the surfels under their normal distributions,

p(ss,i|x, sm,j) = N (di,j(x); 0,Σi,j(x)) ,

di,j(x) := µm,j − T (x)µs,i,

Σi,j(x) := Σm,j +R(x)Σs,iR(x)T ,

(2)

where T (x) is the homogeneous transformation matrix for
the pose estimate x and R(x) is its rotation matrix. We
marginalize the surfel distributions for the spatial dimen-
sions.

Note that due to the difference in view poses between the
images, the scene content is differently discretized between
the maps. We compensate for inaccuracies due to discretiza-
tion effects by trilinear interpolation. This is possible, when
a scene surfel ss,i is directly associated with the model
surfel sm;j in the octree node at the projected position of the
scene surfel T (x)µs,i. Instead of directly using the associated
model surfel sm,j in the observation likelihood (eq. (2)),
we consider the surfel representation in the model map as
a Gaussian Mixture model, and determine mean and covari-
ance of the model surfel at the projected position T (x)µs,i
through trilinear interpolation of neighboring surfels in the
model map.

C. Pose Optimization

We optimize the observation log likelihood

J(x) =
∑

(i,j)∈A

log(|Σi,j(x)|) + dTi,j(x)Σ−1i,j (x)di,j(x) (3)

for the pose x in a multi-stage process combining gradient
descent and Newton’s method.

Since gradient descent converges only linearly, we use
Newton’s method to find a pose with high precision. For
robust initialization, we first run several iterations of gradient
descent to obtain a pose estimate close to a minimum of the
log-likelihood.

In each step, we determine new surfel associations in the
current pose estimate. We weight each surfel association
according to the similarity in the shape-texture descriptors.
Our method typically converges within 10-20 iterations of
gradient descent and 5-10 iterations of Newton’s method
to a precise estimate. We parallelize the evaluation of the
gradients and the Hessian matrix for each surfel which yields
a significant speed-up on multi-core CPUs.

D. Estimation of Pose Uncertainty

We obtain an estimate of the observation covariance using
a closed-form approximation [16],

Σ(x) ≈
(
∂2J

∂x2

)−1
∂2J

∂z∂x
Σ(z)

∂2J

∂z∂x

T (
∂2J

∂x2

)−1
, (4)

where x is the pose estimate, z denotes the associated
surfels in both maps, and Σ(z) is given by the covariance
of the surfels. The covariance estimate of the relative pose
between the maps captures uncertainty along unobservable
dimensions, for instance, if the maps view a planar surface.

V. ON-LINE TRAJECTORY OPTIMIZATION

We will now describe our method for simultaneous local-
ization and mapping. While the camera moves through the
scene, we obtain a trajectory estimate using our registration
method. Since small registration errors may accumulate in
significant pose drift over time, we establish and optimize a
graph of probabilistic spatial relations between similar view
poses. We denote a view pose in the graph as key view.
We propose a randomized method to add spatial constraints
between similar views during on-line operation. By this, we
also detect the closure of trajectory loops.

A. Incremental Generation of Key View Graph

We register the current frame to the closest key view (the
reference key view) in order to keep track of the camera. We
measure distance in translation and rotation between view
poses. At large distances, we add a new key view for the
current frame to the graph. This also adds a spatial relation
between the new key view and its reference key view.

B. Constraint Detection

After each image update, we check for a new constraint
for the current reference key view. We determine for all un-
established constraints of the current reference key view vref
to other key views v a probability

pchk(v) = N
(
d(vref, v); 0, σ2

d

)
· N

(
|α(vref, v)| ; 0, σ2

α

)
(5)

that depends on the linear and rotational distances d(vref, v)
and |α(vref, v)| of the key view poses, respectively. We
sample a key view v according to pchk(v) and determine the
relative pose of the key views using our registration method.

In order to validate the matching of the key views, we
determine their matching likelihood under the pose estimate.
For each surfel in one of the key views, we find the best
matching surfel in the second view. We directly take into
account the consistency of the surface normals between
the surfels and therefore determine the matching likelihood
of the surfels as the product of the likelihood under their
distributions and under a normal distribution in the angle
between their normals. We assign a minimum likelihood
to all surfels with a worse match or without a match. In
this way, the matching likelihood accounts for the overlap
between the views. This likelihood is directional and, hence,
we evaluate it in both directions.

Since the matching likelihood depends on the observed
scene content, we cannot use a global threshold for deciding
if a constraint should be added. Instead we require the
matching likelihood of a new constraint to be at least a
fraction of the matching likelihood for the initial constraint
of the key view. This constraint has been established through
tracking from the referred key view and is thus assumed to
be consistent.

C. Graph Optimization

Our probabilistic registration method provides a mean and
covariance estimate for each spatial relation. We obtain the



Fig. 5. Median translational error of the pose estimate for different frame
skips k on the freiburg1_desk (left) and freiburg2_desk (right) dataset.

likelihood of the relative pose observation z = (x̂,Σ(x̂)) of
the key view j from view i by

p(x̂|xi, xj) = N (x̂; ∆(xi, xj),Σ(x̂)) , (6)

where ∆(xi, xj) denotes the relative pose between the key
views under their current estimates xi and xj .

From the graph of spatial relations we infer the probability
of the trajectory estimate given the relative pose observations

p(x1,...,N |x̂1, . . . , x̂M ) ∝
∏
k

p(x̂k|xi(k), xj(k)). (7)

We solve this graph optimization problem by sparse
Cholesky decomposition using the g2o framework [17]. At
each image update, we optimize the graph for a single
iteration.

VI. EXPERIMENTS

We evaluate our approach on a public RGB-D dataset [18].
The dataset contains RGB-D image sequences with ground
truth information for the camera pose. The ground truth has
been captured with a motion capture system. We measure
timings on an Intel Xeon 5650 2,67 GHz Hexa-Core CPU
using VGA resolution (640×480) images.

A. Incremental Registration

We first evaluate the properties of our registration method.
We chose the freiburg1_desk and freiburg2_desk datasets as
examples of fast and moderate camera motion, respectively,
in an office-like setting. The choice allows for comparison
with the registration approach (abbreviated by warp) in [19].

Our approach achieves a median translational drift of
4.62 mm and 2.27 mm per frame on the freiburg1_desk and
freiburg2_desk datasets, respectively (see Table I). We obtain
comparable results to warp (5.3 mm and 1.5 mm), while
our approach also performs significantly better than GICP
(10.3 mm and 6.3 mm [19]). However, when skipping frames
(see Fig. 5), our approach achieves similar accuracy to warp
for small displacements, but retains the robustness of ICP
methods for larger displacements when warp fails.

The mean processing time on the freiburg2_desk dataset
is 100,11 msec (ca. 10 Hz).

B. Indoor SLAM

We evaluate our SLAM approach on 11 sequences of
the RGB-D benchmark dataset and compare our approach
to RGB-D SLAM ([20], [21]). We employ the absolute

Fig. 6. 3D map (5 cm resolution) and camera trajectory result of our
approach on the freiburg2_desk dataset.

trajectory error (ATE) and relative pose error (RPE) metrics
as proposed in [18]. For the SLAM experiments, we measure
the average RPE over all numbers of frame skips. Fig. 6
shows a typical result obtained with our approach on the
freiburg2_desk sequence. This sequence contains moderately
fast camera motion in a loop around a table-top setting. The
freiburg1_room sequence contains a trajectory loop through
an office (see Fig. 1). The camera moves much faster than in
the freiburg2_desk sequence. On both datasets, our method
clearly outperforms RGB-D SLAM in both error metrics (see
Table II). The freiburg1_desk and freiburg1_desk2 sequences
do not contain such large trajectory loops. The camera
is swept quickly back and forth over a table-top setting.
While on freiburg1_desk RGB-D SLAM performs better,
both methods achieve similar results on the freiburg1_desk2
sequence. In average, our method yields lower AT and RP
errors on the sequences in Table II.

Note, that our method did not succeed on se-
quences such as freiburg1_floor or freiburg2_large_loop. On
freiburg1_floor the camera sweeps over a floor with only
little texture that could be captured by the local descriptors
of the surfels. Our method also cannot keep track of the
camera pose, if large parts of the image contain no valid or
highly uncertain depth at large distances.

The processing time for on-line operation is mainly gov-
erned by our registration method. At each image update, we

TABLE I
COMPARISON OF MEDIAN POSE DRIFT BETWEEN FRAMES.

dataset ours warp GICP

freiburg1_desk 4.62 mm 5.3 mm 10.3 mm
0.0092 deg 0.0065 deg 0.0154 deg

freiburg2_desk 2.27 mm 1.5 mm 6.3 mm
0.0041 deg 0.0027 deg 0.0060 deg



Fig. 7. Projection onto the x-y-plane of ground truth and trajectory estimate
of our approach on the freiburg2_desk dataset.

have to register 2 pairs of views. First, we keep track of
the current sensor pose by aligning the image to the closest
key view in the map. Our randomized constraint detection
method invokes a second registration at each image update.
In our experiments, one iteration of graph optimization could
be performed in the order of 1 ms.

VII. CONCLUSIONS

We proposed a novel approach to SLAM with RGB-D
cameras in indoor environments. In our method, we com-
press the image content efficiently in 3D Multi-Resolution
Surfel Maps. This map representation is well suited for
accurate real-time registration by directly matching surfels
and optimizing their matching likelihood. Our registration
method also provides an estimate of pose uncertainty. We
use this information to smooth the joint trajectory estimate
in a probabilistic optimization framework. We present means
to establish spatial relations between similar key views and
to detect loop-closures during on-line operation.

Our approach yields accurate estimates of map and trajec-
tory. On a benchmark dataset we could demonstrate, that

TABLE II
COMPARISON OF OUR SLAM APPROACH WITH RGB-D SLAM IN

ABSOLUTE TRAJECTORY (ATE) AND RELATIVE POSE ERROR (RPE).

RMSE ATE in m RMSE RPE in m

dataset ours RGB-D
SLAM

ours RGB-D
SLAM

freiburg1_360 0.069 0.079 0.110 0.103
freiburg1_desk2 0.049 0.043 0.090 0.102
freiburg1_desk 0.043 0.023 0.075 0.049
freiburg1_plant 0.026 0.091 0.044 0.142
freiburg1_room 0.069 0.084 0.139 0.219
freiburg1_rpy 0.027 0.026 0.040 0.042
freiburg1_teddy 0.039 0.076 0.073 0.138
freiburg1_xyz 0.013 0.014 0.020 0.021
freiburg2_desk 0.052 0.095 0.099 0.143
freiburg2_rpy 0.024 0.019 0.034 0.026
freiburg2_xyz 0.020 0.026 0.030 0.037

average 0.039 0.052 0.069 0.093

in most cases the accuracy of our method is similar or
even better compared to a state-of-the-art approach that maps
sparse image features. Since our method strongly relies on
dense depth, it is less accurate, if large parts of the image
have no valid or only highly uncertain depth measurements.
We will therefore combine our dense depth registration
method with the alignment of point or contour features.

In future work, we will further investigate loop-closure de-
tection for long trajectory loops through appearance modal-
ities. We will also incorporate graph management strategies
such as sub-graph hierarchies and graph pruning to allow for
long-term operation.
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