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Abstract Bipedal walking is a complex whole-body

motion with inherently unstable dynamics that makes

the design of a robust controller particularly challeng-

ing. While a walk controller could potentially be learned

with the hardware in the loop, the destructive nature

of exploratory motions and the impracticality of a high

number of required repetitions render most of the ex-

isting machine learning methods unsuitable for an on-

line learning setting with real hardware. In a project in

the DFG Priority Programme Autonomous Learning,

we are investigating ways of bootstrapping the learning

process with basic walking skills and enabling a hu-

manoid robot to autonomously learn how to control its

balance during walking.

Keywords Online Learning · Bipedal Walking · Push

Recovery

1 Introduction

Using machine learning is thought to be a promising ap-

proach to produce a capable bipedal walk controller. In

simulation, artificially evolved muscle reflex control [1]

can produce a convincingly natural looking bipedal walk.

However, as the motions require hours to days on a

large number of cores to optimize, the applicability to

real robots is not foreseeable. When a real robot is in

the loop, the feasible number of trials and the risk of

damaging the hardware become limiting factors, and
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dictate that the learning process must reach a reliable

walking performance after only a low number of experi-

ences. Successful learning projects on real hardware to

date typically start with an already stable walk and op-

timize the walking speed or stability during execution

[8, 2], or learn the parameters of a motion skeleton such

that some form of stable walking is achieved within a

feasible amount of iterations [7]. Balancing has mostly

been ignored in the context of machine learning so far.

We investigate a learning method that incorporates

a Central Pattern Generator (CPG) to produce coor-

dinated stepping motions and an analytic balance con-

troller that initializes the learning process with a robot

that already has a concept of balance. The learning al-

gorithm is executed online and improves the walking

capabilities of a biped using the feedback it gains from

every step the robot makes. A simple physical model is

exploited to gain an approximate gradient that boosts

the learning performance to real hardware feasibility.

2 Gait Control Framework

Our online learning concept is embedded into the bipedal

gait control framework shown in Figure 2. The focus of

the ongoing research is the Learning Control compo-

nent. The other components are already in place. The

robot itself (bottom right) is part of the loop. It receives

motor targets from the control software and provides

sensor data about its internal state. A low-level CPG

[4] is used as a Motion Generator (top right) of open-

loop stepping motions. The CPG hides the complexity

of the full-body walking motion and exhibits param-

eters to control the size and the timing of the steps.

The State Estimation module (bottom left) estimates

the angle and the angular velocity of the trunk and re-
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constructs a tilted full-body pose of the robot. From

the pose reconstruction the step size can be measured

by computing the distance between the feet at the end

of the step, and low-dimensional features are extracted

that serve as inputs for the analytic and the learning

balance controllers.

In the Analytic Control module (top middle), closed-

form mathematical expressions of the Linear Inverted

Pendulum Model (LIPM) are used to compute the tim-

ing and the location of the next footstep in order to

keep the robot balanced while obeying a step size com-

manded by a higher control instance. In its core, the An-

alytic Control drives the Center of Mass (CoM) towards

a limit cycle by means of Zero Moment Point (ZMP),

step timing, and foot placement control strategies. Fig-

ure 1 and a video1 demonstrates the capabilities of the

analytic footstep controller. More information about its

implementation is given in [5].

The Learning Control (top left) improves the per-

formance of the robot in terms of balance and refer-

ence tracking by learning offsets to the step size and

step timing outputs of the analytic footstep controller.

The offsets are learned based on measurable errors the

robot makes during walking. Errors can stem from im-

precise actuation, latency, and the imperfection of the

low-dimensional analytic balance model.

3 The Online Learning Process

Our concept of learning a bipedal walk controller [6]

hinges on a strong reduction of the input and output

dimensions of the learning task and the initialization of

walking skills. The use of the CPG to generate stepping

motions reduces the high-dimensional task of learning

whole-body control to a low-dimensional task of learn-

ing only Cartesian footstep coordinates and the step

timing. Furthermore, we decompose the learning task

by learning the sagittal footstep coordinate, the lateral

1 http://youtu.be/PoTBWV1mOlY

Fig. 1 Push recovery with bipedal robot Dynaped.
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Fig. 2 Overview of our gait control framework. The input
into the gait control framework is the desired step size Š
commanded by a higher layer. The Analytic Control (top mid-
dle) and the Learning Control (top left) both have the task
to obey the commanded step size while maintaining the bal-
ance of the biped. The Analytic Control computes the time
T and the location S of the next footstep with the Linear
Inverted Pendulum Model. The Learning Control component
observes the errors the robot makes during walking and learns
the corrective offsets ∆S and ∆T to the outputs of the An-
alytic Control. Both controllers use low-dimensional features
extracted from a whole-body pose reconstruction by the State
Estimation component (bottom left). The Motion Generator
(top right) generates joint position targets q for a timed step-
ping motion towards the desired footstep coordinates.

footstep coordinate, and the step timing as independent

instances of even lower dimensionality. The dimensional

decomposition approach has already been a key concept

for the implementation of the analytic controller [3].

We investigate the learning of a walk control function,

which is formally defined as

(∆S,∆T) = W(θ, θ̇, Š). (1)

The walk control function W receives the trunk angle

and angular velocity (θ, θ̇) in pitch and roll directions,

and the commanded step size Š as inputs, and outputs

a step size offset ∆S and a step timing offset ∆T that

are added to the output of the analytic controller. We

represent the walk control function W with a function

approximator and train it during the control process,

as illustrated in Figure 3. The walk control function

is initialized with a value of zero for all outputs. At

the end of each step, the trunk angle θE is measured

as an indicator of balance, and the step size SE as an

indicator of the reference tracking error. We compute

a gradient function G(θE,SE) based on the pendulum-

cart model that resembles the angular dynamics of a

biped and suggests a change of the step size. Then we

update the function approximator with the update rule

W(θi, θ̇i, Ši)k+1 = W(θi, θ̇i, Ši)k+ηG(θE,SE),∀i ∈ I,
(2)
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Fig. 3 The learning process uses the trunk attitude θE and
the step size SE at the end of the step to infer a gradient
G(θE,SE) that suggests a change of the step size. The gra-
dient is used to update a function approximator that takes
charge of controlling a balanced walk.

where η is a learning rate, and {θi, θ̇i}, i ∈ I, is the set

of trunk angles and angular velocities that were mea-

sured during the step. In words, we query the function

approximator at the locations that were seen during

the step, add the gradient to the resulting values, and

present the results as the new desired outputs to the

walk control function approximator.

The main control loop queries the function approxi-

mator with a high frequency—typically 100 Hz—to drive

the walking motion. The function approximator has to

deliver a time-critical response, even when it is being

updated with new data. Neither the response time nor

the memory consumption of the function approxima-

tor should degrade with the ever increasing amount of

seen data, otherwise the learning process will eventually

have to terminate. Gaussian processes, regression trees,

and random forests, all degrade when used in an incre-

mental learning setting. The Locally Weighted Projec-

tion Regression (LWPR) algorithm represents a func-

tion with a bounded number of locally linear kernels,

such that old training data can be discarded. Thus, the

memory consumption, update times, and recall times

are bounded. We use an open-source implementation2

that fully satisfies our requirements.

4 Experiments

We performed experiments with learning the sagittal

step size on a simulated biped and evaluated different

2 http://wcms.inf.ed.ac.uk/ipab/slmc/research/software-
lwpr

aspects of the learning process. We evaluated whether

the learning component is able to improve the over-

all walking stability. We applied 400 randomly timed

push impulses directed in the forward direction to the

back of a robot walking in place. The magnitudes of

the impulses were sampled from a range that included

strong enough pushes that forced the robot to make

forward steps in order to avoid falling. By dividing the

number of falls by the number of pushes for several

ranges of impulses, we estimated the probability to fall

depending on the magnitude of the disturbance. The

results are shown in Figure 4. In addition to the an-

alytic and the learned balance augmentation, we also

included an open-loop controller that walks in place

with a fixed frequency and does not react to the pushes.

The analytic controller significantly increases the push

resistance compared to what the robot can absorb pas-

sively. Our online learning technique increases the sta-

bility even further.

We evaluated the ability of the robot to return to a

reference step size after a disturbance. We commanded

the robot to walk forward with a fixed step size. We

pushed the robot repeatedly forward with an impulse of
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Fig. 4 Probability to fall of an open-loop, analytic, and a
learned controller with respect to varying push impulses from
the back.
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Fig. 5 The robot learned to react to a push with a smaller
step size error than with the analytic controller by allowing a
larger, but tolerable tilt. The robot is able to return faster to
the reference step size with the learning component enabled.
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Fig. 6 Even if not initialized with the analytic controller,
the learning framework manages to learn how to stabilize the
robot after only three pushes. The pushes are indicated by
the vertical lines.

a constant magnitude that is strong enough to force the

robot to adapt its foot placement, but not too strong

for the analytic and the learned balance controllers to

handle. The pushes were triggered at random times in

order to hit the robot in different phases of the walking

motion. Synchronized at the moment of the push, Fig-

ure 5 shows the mean and the variance of the step size

error and the trunk angle after the push. Both of these

quantities return to their reference values. The learned

controller reacts to the pushes with a smaller step size

error than the analytic controller by utilizing a larger,

but tolerable inclination of the body. The learned con-

troller also returns faster to the reference step size.

Finally, we evaluated the potential of our learning

approach with an experiment that is focused on the

speed and robustness of learning. In this experiment we

did not use the analytic controller for initialization. The

robot starts with stepping in place and no prior know-

ledge of step size control. We disturb the robot with

push impulses from the back and observe how quickly

the robot learns to absorb the push without falling.

The result of the experiment is shown in Figure 6. The

first two pushes made the robot fall, but the controller

learned from this experience and managed to stabilize

the robot already on the third push. After the third

push, the learning process has mostly settled and the

controller has learned how to balance after the push.

5 Conclusion

We identified the initialization of walking skills and the

reduction of the complexity of the learning problem as

key ingredients for successfully learning a bipedal walk

controller under real hardware conditions. By investing

a simple model assumption, we limited the competence

of the learning algorithm to inverted pendulum-like bal-

ancing tasks, but we gained a competitive learning per-

formance that is able to balance a humanoid robot af-

ter a strong push based only on the experience of a few

failed recovery steps.

In future work, we intend to complete all learning

components for the footstep coordinates and the tim-

ing of the steps, and to investigate how much learning

and walking performance can be achieved with isolated

learners. By enabling the robot to disturb itself, we plan

to give life to a learning instance that autonomously

explores and learns its own balance. In the successor

project, we intend to investigate learning of walking in

rough terrain with restricted footholds.
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