
Fast Semantic Segmentation of RGB-D Scenes

with GPU-Accelerated Deep Neural Networks

Nico Höft, Hannes Schulz, and Sven Behnke

Rheinische Friedrich-Wilhelms-Universität Bonn
Institut für Informatik VI, Friedrich-Ebert-Allee 144
{hoeft@cs,schulz@ais,behnke@cs}.uni-bonn.de

Abstract. In semantic scene segmentation, every pixel of an image is
assigned a category label. This task can be made easier by incorporat-
ing depth information, which structured light sensors provide. Depth,
however, has very di�erent properties from RGB image channels. In this
paper, we present a novel method to provide depth information to convo-
lutional neural networks. For this purpose, we apply a simpli�ed version
of the histogram of oriented depth (HOD) descriptor to the depth chan-
nel. We evaluate the network on the challenging NYU Depth V2 dataset
and show that with our method, we can reach competitive performance
at a high frame rate.

Keywords: deep learning, neural networks, object-class segmentation

1 Introduction

Semantic scene segmentation is a major challenge on the way to functional com-
puter vision systems. The task is to label every pixel in an image with surface
category it belongs to. Modern depth cameras can make the task easier, but
the depth information needs to be incorporated into existing techniques. In this
paper, we demonstrate how depth images can be used in a convolutional neural
network for scene labeling by employing a simpli�ed version of the histogram
of oriented gradients (HOG) descriptor to the depth channel (HOD). We train
and evaluate our model on the challenging NYU Depth dataset and compare its
classi�cation performance and execution time to state of the art methods.

2 Network Architecture

We train a four-stage convolutional neural network, which is illustrated in Fig. 1,
for object-class segmentation. The network structure, proposed by Schulz and
Behnke [1], is derived from traditional convolutional neural networks, but has
inputs at multiple scales. In contrast to classi�cation networks, there are no fully
connected layers at the top�the output maps are also convolutional.

The �rst three stages s = {0, 1, 2} have input, hidden convolutional, and
output maps Is, Cs, Os, respectively. Pooling layers Ps, P

′
s between the stages

behnke
Schreibmaschine
In Proceedings of 37th German Conference on Artificial Intelligence (KI), pp. 80-85, Springer LNCS 8736, Stuttgart, September 2014.

2 Nico Höft, Hannes Schulz, and Sven Behnke

I0

I1

I2

C0

C1

C2

O0

O1

O2

P0

P1

P ′
0

P ′
1

O′
2

Fig. 1. Network structure used in this paper. On stage s, Is is input, Cs a convolution,
Os the output, and Pi a pooling layer. Outputs of stage s are re�ned in stage s + 1,
�nal outputs are re�ned from O2 to O′

2. Solid and dashed arrows denote convolution
and max-pooling operations, respectively. Every stage corresponds to a scale at which
inputs are provided and outputs are evaluated.

reduce the resolution of the map representations. The output layer O′2 is the last
stage. The network di�ers from common deep neural networks, as it is trained in
stage-wise supervised manner and the outputs of the previous stage are supplied
to the next stage to be re�ned. Thus, the lower stages provide a prior for the
higher stages, while the simultaneous subsampling allows for the incorporation
of a large receptive �eld into the �nal decision.

Every layer consists of multiple maps. Input layers have three maps for ZCA-
whitened RGB channels, as well as �ve maps for histograms of oriented gradients
and depth each (detailed in Section 4). Intermediate layers contain 32 maps.
Convolutions extract local features from their source maps. Following Schulz and
Behnke [1], all convolution �lters have a size of 7×7, except for the last �lter.
The last �lter has a size of 11×11 and only re-weights previous classi�cation
results, taking into account a larger receptive �eld. Also note that there are no
fully connected layers�the convolutional output layers have one map for every
class, and a pixel-wise multinomial logistic regression loss is applied. In contrast
to Schulz and Behnke [1], we use rectifying non-linearities σ(x) = max(x, 0)
after convolutions. This non-linearity improves convergence [2] and results in
more de�ned boundaries in the output maps than sigmoid non-linearities. When
multiple convolutions converge to a map, their results are added before applying
a non-linearity.

3 Related Work

Our work builds on the architecture proposed in Schulz and Behnke [1], which
(in the same year as Farabet et al. [3]) introduced neural networks for RGB
scene segmentation. We improve on their model by employing rectifying non-
linearities, recent learning algorithms, online pre-processing, and providing depth
information to the model.

Fast Semantic Segmentation of RGB-D Scenes with Deep Neural Networks 3

Scene labeling using RGB-D data was introduced with the NYU Depth V1
dataset by Silberman and Fergus [4]. They present a CRF-based approach and
provide handcrafted unary and pairwise potentials encoding spatial location and
relative depth, respectively. These features improve signi�cantly over the depth-
free approach. In contrast to their work, we use learned �lters to combine predic-
tions. Furthermore, our pipeline is less complex and achieves a high framerate.
Later work [5] extends the dataset to version two, which we use here. Here,
the authors also incorporate additional domain knowledge into their approach,
which further adds to the complexity.

Couprie et al. [6] present a neural network for scene labeling which is very
close to ours. Their network processes the input at three di�erent resolutions
using the same network structure for each scale. The results are then upsampled
to the original size and merged within superpixels. Our model is only applied
once to the whole image, but uses inputs from multiple scales, which involves less
convolutions and is therefore faster. Outputs are also produced at all scales, but
instead of a heuristic combination method, our network learns how to use them
to improve the �nal segmentation results. Finally, the authors use raw depth
as input to the network, which cannot be exploited easily by a convolutional
neural network, e.g., absolute depth is less indicative of object boundaries than
are relative depth changes.

A common method for pixel-wise labeling are random forests [7, 8], which
currently provide the best results for RGB-D data [9, 10]. These methods scale
feature size to match the depth for every image position. Our convolutional
network does not normalize the feature computation by depth, which makes it
easy to reuse lower-level features for multiple higher-level computations.

4 Pre-Processing

Since our convolution routines1 only support square input images, we �rst ex-
tend the images with mirrored margins. To increase generalization, we generate
variations of the training set. This is performed online on the CPU while the
GPU evaluates the loss and the gradient, at no cost of speed. We randomly �ip
the image horizontally, scale it by up to ±10%, shift it by up to seven pixels in
horizontal and vertical direction and rotate by up to ±5◦. The depth channel is
processed in the same way. We then generate three types of input maps.

From random patches in the training set, we determine a whitening �lter
that decorrelates RGB channels as well as neighboring pixels. Subtracting the
mean and applying the �lter to an image yields three zero phase (ZCA) whitened
image channels.

On the RGB-image as well as on the depth channel, we compute a computa-
tionally inexpensive version of histograms of oriented gradients (HOG [11]) and
histogram of oriented depth (HOD [12]) as follows.

For every pixel p, we determine its gradient direction αp and magnitude np.
The absolute value of |αp| is then quantized by linear interpolation into two of
�ve bins at every image location, and weighted by np. To produce histograms of

1 We employ convolutions from the cuda-convnet framework of Alex Krizhevsky.

4 Nico Höft, Hannes Schulz, and Sven Behnke

Fig. 2. Network maps, inputs and outputs. First row, ignore mask and ZCA-whitened
RGB channels. Second and third row, HOG and HOD maps, respectively. Fourth row,
original image, ground truth and network prediction multiplied by ignore mask for
reference. Mirrored margins are removed for presentation to save space. Note that
HOG and HOD encode very di�erent image properties with similar statistics.

the orientation strengths present at all locations, we apply a Gaussian blur �l-
ter to all quantization images separately. Finally, the histograms are normalized
with the L2-hys norm.

The main di�erence to the standard HOG descriptor is that no image cells
are combined into a single descriptor. This leaves it to the network to incorpo-
rate long-range dependencies and saves space, since our descriptor contains only
�ve values per pixel.

All maps are normalized to have zero mean and unit variance over the train-
ing set. The process is repeated for every scale, where the size is reduced by a
factor of two. For the �rst scale, we use a size of 196×196. The teacher maps are
generated from ground truth by downsampling, rotating, scaling, and shifting
to match the network output. We use an additional ignore map, which sets the
loss to zero for pixels which were not annotated or where we added a margin to
the image by mirroring. Sample maps and segmentations are shown in Fig. 2.

5 Experiments

We split the training data set into 796 training and 73 validation images. In a
stage s, we use the RMSProp learning algorithm with an initial learnrate 10−4,
to train the weights of all stages below or equal to s. The active stage is auto-
matically switched once the validation error increases or fails to improve. The
pixel mean of the classi�cation error over training is shown in Fig. 3. During the
�rst two stages, training and validation error behave similarly, while in the �nal

Fast Semantic Segmentation of RGB-D Scenes with Deep Neural Networks 5

0 500 1000 1500 2000 2500 3000 3500
epoch

0.1

0.2

0.3

0.4

0.5

0.6

cl
as

si
fi

ca
ti

on
er

ro
r

training set

validation set

Fig. 3. Classi�cation error on NYU Depth V2 during training, measured as the mean
over output pixels. The peaks and subsequent drops occur when one stage is �nished
and learning proceeds to the next�randomly initialized�stage.

Table 1. Classi�cation Results on NYU Depth V2

Method Floor Structure Furniture Props Pixel Acc. Class Acc.

Ours without depth 69.1 57.8 55.7 41.7 56.2 56.1
Ours with depth 77.9 65.4 55.9 49.9 61.1 62.0
[6] without depth 68.1 87.8 51.1 29.9 59.2 63.0
[6] with depth 87.3 86.1 45.3 35.5 63.5 64.5

stages the network capacity is large enough to over�t.

Classi�cation Performance. To evaluate performance on the 580 image test
set, we crop the introduced margins, determine the pixel-wise maximum over
output maps and scale the prediction to match the size of the original image.
There are two common error metrics in the literature, the average pixel accu-
racy and the average accuracy over classes, both of which are shown in Table 1.
Our network bene�ts greatly from the introduction of depth maps, as apparent
in the class accuracy increase from 56.1 to 62.0. We compare our results with
the architecture of Couprie et al. [6], which is similar but computationally more
expensive. While we do not reach their overall accuracy, we outperform their
model in two of the four classes, furniture and, interestingly, the rather small
props�despite our coarser output resolution.

Prediction Speed. We can also attempt to compare the time it takes to pro-
cess an image by the network. Couprie et al. [6] report 0.7 s per image on a
laptop. We process multiple images in parallel on a GPU. With asynchronous
pre-processing, our performance saturates at a batch size of 64, where we are
able to process 52 frames per second on a 12 core Intel Xeon at 2.6GHz and a
NVIDIA GeForce GTX TITAN GPU. Note that this faster than the frame rate
of the sensor collecting the dataset (30Hz). While the implementation of Couprie
et al. [6] could certainly also pro�t from a GPU implementation, it requires more
convolutions as well as expensive superpixel averaging and upscaling operations.
Our network is also faster than random forests on the same task (30.3 fps [10],
hardware similar to ours).

6 REFERENCES

6 Conclusion

We presented a convolutional neural network architecture for RGB-D seman-
tic scene segmentation, where the depth channel is provided as feature maps
representing components of a simpli�ed histogram of oriented depth (HOD) op-
erator. We evaluated the network on the challenging NYU Depth V2 dataset
and found that introducing depth signi�cantly improved the performance of our
model, resulting in competitive classi�cation performance. In contrast to other
published results of neural network and random-forest based methods, our GPU
implementation is able to process images at a high framerate of 52 fps.

References

[1] H Schulz and S Behnke. �Learning object-class segmentation with convo-
lutional neural networks�. In: Eur. Symp. on Art. Neural Networks. 2012.

[2] A Krizhevsky, I Sutskever, and G Hinton. �Imagenet classi�cation with
deep convolutional neural networks�. In: Adv. in Neural Information Pro-
cessing Systems. 2012.

[3] C Farabet, C Couprie, L Najman, and Y LeCun. �Scene parsing with
multiscale feature learning, purity trees, and optimal covers�. In: arXiv
preprint arXiv:1202.2160 (2012).

[4] N Silberman and R Fergus. �Indoor scene segmentation using a structured
light sensor�. In: Int. Conf. on Computer Vision (ICCV) Workshops. 2011.

[5] N Silberman, D Hoiem, P Kohli, and R Fergus. �Indoor Segmentation and
Support Inference from RGBD Images�. In: Europ. Conf. on Computer
Vision (ECCV). 2012.

[6] C Couprie, C Farabet, L Najman, and Y LeCun. �Indoor Semantic Seg-
mentation using depth information�. In: CoRR abs/1301.3572 (2013).

[7] T Sharp. �Implementing decision trees and forests on a GPU�. In: Europ.
Conf. on Computer Vision (ECCV). 2008.

[8] J Shotton, T Sharp, A Kipman, A Fitzgibbon, M Finocchio, A Blake,
M Cook, and R Moore. �Real-time human pose recognition in parts from
single depth images�. In: Communications of the ACM (2013).

[9] J Stückler, B Waldvogel, H Schulz, and S Behnke. �Dense real-time map-
ping of object-class semantics from RGB-D video�. In: Journal of Real-
Time Image Processing (2013).

[10] AC Müller and S Behnke. �Learning Depth-Sensitive Conditional Random
Fields for Semantic Segmentation of RGB-D Images�. In: Int. Conf. on
Robotics and Automation (ICRA). 2014.

[11] N Dalal and B Triggs. �Histograms of oriented gradients for human detec-
tion�. In: Computer Vision and Pattern Recognition (CVPR). 2005.

[12] L Spinello and KO Arras. �People detection in RGB-D data�. In: Int. Conf.
on Intelligent Robots and Systems (IROS). IEEE. 2011.

	Fast Semantic Segmentation of RGB-D Scenes with GPU-Accelerated Deep Neural Networks
	Introduction
	Network Architecture
	Related Work
	Pre-Processing
	Experiments
	Conclusion

