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Abstract Mapping, real-time localization, and path
planning are prerequisites for autonomous robot nav-
igation. These functions also facilitate situation aware-

ness of remote operators. In this paper, we propose
methods for efficient 3D mapping and real-time 6D
pose tracking of autonomous robots using a continu-

ously rotating 2D laser scanner. We have developed
our approach in the context of the DLR SpaceBot Cup
robotics challenge. Multi-resolution surfel representa-

tions allow for compact maps and efficient registration
of local maps. Real-time pose tracking is performed by a
particle filter observing individual laser scan lines. Ter-

rain drivability is assessed within a global environment
map and used for planning feasible paths. Our approach
is evaluated using challenging real environments.

1 Introduction

In order to accomplish navigation and exploration tasks
using a mobile robot, a number of problems must be

solved—including environment mapping, localization,
drivability assessment, and path planning. These chal-
lenges become increasingly difficult in unconstrained

3D environments, such as those encountered during
planetary exploration missions. Additionally, sensing
hardware should be accurate, efficient, affordable, and
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Fig. 1 Top left: Our robot Explorer for the DLR SpaceBot
Cup. Top right: SpaceBot Cup arena. Bottom: 3D scans of
the arena aligned with our approach.

obey auxiliary constraints including weight and space
limitations.

To fulfill sensing hardware requirements, we use

a continuously rotating laser scanner for environment
perception. Local multi-resolution surfel maps allow for
a compact 3D environment representation and facilitate

efficient registration. We acquire local maps of the en-
vironment in a stop-and-go scanning scheme (Fig. 1).
The 3D scans are registered to each other and aligned
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into a global map using graph optimization of the 6D

scan poses.

The 6D robot pose is continuously tracked during
motion from the 2D scan lines of the continuously ro-

tating laser scanner. We efficiently determine the ob-
servation likelihoods of individual scan lines in an al-
locentric multi-resolution surfel map, which is used for

Monte Carlo localization.

Drivability assessment is performed using a 2.5D
surfel map created during exploration. In this map, sur-

faces characteristics including incline, smoothness, and
neighbor continuity can be easily extracted and eval-
uated for drivability—resulting in a navigation graph.

Using heuristic search, we determine cost-optimal paths
within the navigation graph.

Our evaluation demonstrates that accurate 3D maps

can be built and the pose of the robot is tracked in real-
time. Our approach has been used on our entry NimbRo
Centauro at the DLR SpaceBot Cup.

2 Related Work

Most research on mapping and localization using laser

scanners in 3D environments focuses on the 2D sub-
problem [5, 8]. Even more recent works have remained
in two dimensions [4, 20]. Due to increased availability

of depth sensors, research on mapping and localization
in 3D has recently boomed [22,23].

Using multi-resolution maps to maintain high per-

formance and low memory consumption has been in-
vestigated by several groups. Hornung et al. [11], for
example, implement a multi-resolution map based on

octrees (OctoMap). Ryde et al. [24] use voxel lists for ef-
ficient look-up. Both of these approaches consider map-
ping in 3D with a voxel being the smallest map ele-

ment. Similar to our approach, the 3D-NDT [22] rep-
resents point clouds as Gaussian distributions in vox-
els at multiple resolutions. Our multi-resolution surfel

maps (MRSMap [28]) adapt the maximum resolution
with distance to the sensor to incorporate measure-
ment characteristics. Our registration method matches

3D scans on all resolutions concurrently, utilizing the
finest common resolution available between both maps,
which also makes registration efficient. By exploiting

the neighborhood of scan lines due to the continuous
rotating 3D scan acquisition, map aggregation can also
be made very efficient.

Some approaches integrate scan lines of a contin-

uously rotating laser scanner into 3D maps while the
robot is moving [1, 2, 6, 21, 26]. While continuous mo-
tion is mandatory for many applications, in planetary

exploration the stop-and-scan scheme is beneficial. It
simplifies mapping and avoids inaccuracies that could
arise with approaches performing mapping under mo-

tion.

Some works focus on localization. Khoshelham [14]
proposes using solely planar objects for localization in

3D within indoor environments. Kuemmerle et al. [17]
apply Monte Carlo localization in multi-level surface
maps [30], which represent occupied height intervals on

a 2D grid. Klaess et al. [15] model the environment in
surfel maps in a fixed resolution, similar to the 3D-
NDT [22]. They then localize in these maps using a

tilting 2D laser by matching line elements extracted
from the 2D scan lines in a particle filter framework,
assuming motion of the robot in the horizontal plane.

Our approach does not need to make this assumption.

Path planning for driving in planar 2D indoor en-

vironments is a well-studied topic in robotics. Hornung
et al. [10] consider the variable footprint of a mobile
manipulation robot for 2D path planning. They derive

a multi-layered 2D representation for planning in an
OctoMap. Klaess et al. [15] map the environment in
3D surfel grids using a 3D laser scanner and derive

a 2D navigation map that considers the height of the
robot. For navigation on non-flat terrain, several ap-
proaches generate 2D cost maps from sensor readings

to essentially treat path planning in 2D [7, 9, 19]. Fre-
quently, the terrain is modeled in elevation grid maps,
on which planning can be performed [13,18]. Recently,

Stoyanov [27] proposed a wavefront-propagation path
planner in 3D-NDT maps. We use efficient search-based
planners and propose a robust approach to traverse be-

tween multiple 3D scans.

3 Multi-Resolution Surfel Maps

We use multi-resolution surfel maps (MRSMaps [28]) to
efficiently represent environments. Octrees are the nat-

ural data structure for multiple-resolution information
storage in 3D. Within octree voxels, both the surface
shape parameters and surface reflectance distribution

are stored as a surface element (surfel). Surfels approx-
imate points within a voxel, which are considered nor-
mally distributed, by a sample mean and covariance.
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These are stored through all resolutions in the octree.

Thus, a non-leaf node maintains the statistical proper-
ties of all descendants allowing for quick sampling of the
map at any resolution. In contrast to the error model

of RGB-D sensors, the maximum resolution at a mea-
sured point is now determined in linear dependency of
the distance of the point from the sensor. This implic-

itly captures decreasing sampling density with distance
from the sensor caused by the constant angular resolu-
tion of our 3D laser-range finder.

The registration of local multiresolution surfel

maps, which are created from 3D scans, is implemented
in two main steps: surfel association and pose optimiza-
tion.

Surfels are associated between maps from the finest
resolution to coarser resolutions until associations have
been determined for the entire map. We search for asso-

ciations in a local query volume whose size is inversely
proportional to the resolution of the surfel. Surfels that
have been associated in a previous iteration are re-

associated with the best matching surfel found within
the direct voxel-grid neighbors of the previous associ-
ation. Associations are made between surfels having

the closest Euclidean distance in position and shape-
texture descriptors [28] within the query volume.

Given a target map mm and a 3D laser scan of an
environment, we model pose optimization as finding the

pose x that maximizes the likelihood p(z|x,mm) of ob-
serving the laser measurements z at the pose x in the
target map mm. Poses x = (q, t)T are represented by

a translational part t ∈ R3 and unit quaternion q. Af-
ter creating a map ms from the 3D scan measurements
z, we determine the observation likelihood between the

source and target map given a pose x

p(ms|x,mm) =
∏

(i,j)∈A

p(ss,i|sm,j), (1)

where A is the set of surfel associations and su,v =
(µu,v, Σu,v) is the surfel v in map u. As we model sur-

fels as normal distributions, we can easily calculate the
observation likelihood of two associated surfels.

To determine the map pose x of the observation,
we optimize the logarithm of the observation likeli-

hood from Eq. (1) in two stages. We calculate an initial
transform using Levenberg-Marquardt (LM) optimiza-
tion and use Newton’s method for refinement.

4 Simultaneous Localization and Mapping

Mapping: Graph optimization is used to globally op-

timize the tracked pose from 3D laser scans. For each
input 3D scan, a key view vi ∈ V (pose visualized by
a coordinate frame) is extracted along the sensor view

trajectory and globally aligned to a reference key view.
This alignment implies a geometric constraint between
the key views and is thus maintained as an edge ei,j ∈ E
in a key-view graph G = (V, E). As an additional step,
all key views deemed close are registered against each
other to add edges to the constraint graph. The key

views are optimized in a probabilistic pose graph using
the g2o framework [16]. The optimized poses of all key
views are used to create an allocentric MRSMap.

Monte Carlo Localization using scan lines: The 6D
pose of the laser scanner in the allocentric map is

tracked with a particle filter. This pose estimate is used
to initialize the registration transform for the next key
view. Compared to other filtering methods that allow

for non-linear motion and measurement models such
as an Extended Kalman Filter (EKF), the particle fil-
ter allows for simple integration of a scan line-to-map

measurement model and also has the ability to solve the
global localization problem for future applications. The
general idea of a particle filter is not discussed here;

see [3] for a detailed introduction.

To compute a suitable state estimate, we model the

state transition with a time-discrete linear dynamics
model. The state estimation problem is posed as the
estimation of the full 6-DoF configuration of the laser

scanner. Odometry is also given as input to the prop-
agation model with assumed Gaussian noise in trans-
lational and rotational parts. For our rover-type robot,

we project the propagated pose onto the drivable sur-
face. Using an inertial measurement unit (IMU), the
state propagation model also constrains the pitch and

roll orientations of the robot.

The observation model of a scan line is similar to the

model for 3D scan registration. Instead of registering
single scan lines to a target surfel map, we use a particle
filter and determine the likelihood of a scan line given

a particle pose x. The observation model measures the
alignment of the scan line Z = {zi}n ∈ R3 with n point
measurements to the current target map mt, given a
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Fig. 2 Aligned 3D scans of the DLR SpaceBot Cup arena
(color codes height). Localization estimate in blue.

particle pose x:

p(Z|x,mt) =
n∏

i=1

p(zi|x,A(zi, x,mt)),

A(zi, x,mt) = argmin
st

dplane(st, T (x)zi), (2)

where A(zi, x,mt) associates the transformed measure-

ment point ztransformed = T (x)zi to the surfel within the
target map having the smallest distance dplane between
the surfel plane and the target point. The potential sur-

fels to associate are found using a volumetric query
around the transformed measurement with a volume
size proportional to the distance of the measurement to

the sensor. If no association can be found within the re-
gion, the observation likelihood of the point is given a
default no-association likelihood corresponding to the

sensor models false/random measurement probability.
The observation likelihood of a measurement to a surfel
is given by the distance of the measurement end-point

from the surfel plane under the normal distribution of
the surfel.

Since we use the motion model as proposal distri-

bution in the particle filter, the importance weight for
each particle is given by its observation likelihood.

5 Navigation Planning

For navigation planning, we assume that the drivable
surface can be projected onto a horizontal 2D repre-
sentation, i.e., there are no overhanging structures the

robot shall drive under and upon. Thus, we chose a

two-dimensional grid of surfels as the data structure for
drivability assessment and planning. Surface informa-
tion must be stored within the grid to allow for terrain

assessment and surfels are well suited to this task.

Using the allocentric localization map for navigation

planning could be prone to slight misalignment errors
between the 3D scans. As a basis for navigation, we fuse
all 3D scans at a predefined resolution in a 2D grid. We

overcome discretization effects by generating all indi-
vidual MRSMaps in a common reference frame. Within
a 3D scan, we merge surfels along the height direction to

avoid the discretization of inclines. In regions where 3D
scans overlap, multiple surfels correspond to a cell of the
2D grid. Surfels within a short distance from the scan

position are used directly, because they have been cre-
ated from dense high-quality measurements. Outside of
this radius, we keep the surfel with higher mean height,

if the height difference between the surfels is larger than
a threshold. Otherwise, we choose the surfel having the
highest number of measurement surface points.

5.1 Drivability Assessment

We find the drivable cells in the 2D grid using region
growing. We evaluate the drivable characteristics of the
current grid cell from the robot foot print in the grid

map. This region is modeled by a bounding circle—an
overestimate that neglects the effects of orientation on
cost. The drivability of an individual surfel is deter-

mined from several features, as illustrated in Fig. 3.

Data Coverage: The number of cells containing valid

surfels divided by the total number of cells within the
region indicates the degree of surface knowledge. The
recommended minimal region coverage depends on sev-

eral factors including surface properties, safety consid-
erations, and mapping resolution. We cannot require
100% coverage, because occlusions and missing mea-

surements may create small gaps in the surfel grid.

Bumpiness: We define local bumpiness b(c) of a cell c as

the maximum difference between its mean height µz(c)
and the mean height of all eight directly neighboring
surfels n ∈ N (c):

b(c) = max
n∈N (c)

{µz(c)− µz(n)} . (3)
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Fig. 3 Navigation planning for Fig. 2. Drivable cells are
shaded by cost. Undrivable cells due to lack of data cover-
age (red), large incline (blue), large region bumpiness (green),
and combined cost (yellow). Planned path in blue.

Bumpiness is compared to a threshold which should
be set depending on the robot ground clearance, wheel
size, and general planning safeness required.

Incline: Incline refers to the angle of a surface with ref-
erence to gravity, measured by the IMU. To determine

the incline of a cell, we aggregate the statistical data of
all surfels within the robot foot print. The normal vec-
tor of this robot-sized surfel is compared against the

gravity vector for determining incline ir(c). The incline
threshold should be related to the driving character-
istics of the robot considering both motor capabilities

and tipping resistance.

Drivability Cost: The cost of a cell C(c) is dependent
upon both region bumpiness and incline. The cost is

calculated as C(c) = αbr(c) + βir(c), where α and β
are weighting parameters for bumpiness and incline, re-
spectively. Thresholding these combined cell costs must

ensure safety in case of simultaneous effects of bumpi-
ness and incline.

5.2 Path Planning

Cost-optimal paths are efficiently planned using the A*

algorithm. We use the Euclidean distance as the heuris-
tic and consider traversability and drivability costs as
edge and node costs. Fig. 3 shows an example result.

Table 1 Distances between parking garage 3D scans in m.

scans 0-1 1-2 2-3 3-4 4-5 5-6 avg err

actual 4.20 4.94 6.53 4.45 4.54 8.54
tracking 4.30 5.26 6.39 4.44 4.85 9.40 0.29
SLAM 4.18 4.90 6.37 4.40 4.49 8.43 0.08

For plan execution, waypoints are derived from it,
and a local navigation plan is updated with high fre-

quency based on the real-time egocentric terrain model
obtained from the omnidirectional depth cameras [25].

6 Experiments

Experiments were performed in the arena of the DLR

SpaceBot challenge, on a benchmark dataset of the Au-
tonomous Space Robotics Lab from the University of
Toronto, and a real environment similar to those en-

countered during search and rescue missions.

A laser-scanner was mounted on a mobile vehicle
that recorded odometry and sensor data. This data
was processed in real-time using an Intel Core i7-

3610QM running at 2.3GHz with 16GB RAM (parking
lot dataset) and a robot on-board Intel Core i7-4770K
(max. 3.5GHz) with 32GB RAM. Localization was per-

formed using 250 particles. To ensure dense point clouds
from 3D laser scans, we rotated the laser at a slow speed
( 1
15 Hz) when creating full 3D scans. For tracking, we

wished to maximize visible space per time period and
rotated the laser at 1Hz.

Parking Garage: The parking garage environment is
relatively large for an enclosed space (approximately
25×60m) and contains various structures including ve-

hicles, girders, support beams, and windows. Within
this environment, seven full 3D scans were taken at an
average distance of 5.53m between key views. Ground

truth was hand-measured and consists of the relative
distances between scanning poses. Using this metric,
registration yielded an average error of 8 cm with a

maximum error of 16 cm. Table 1 details the track-
ing accuracy compared to both ground truth measure-
ments and the graph optimized registration pose esti-

mate. Fig. 4 shows the estimated path from scan line
tracking including registration poses. Fig. 5 shows the
aligned point cloud generated during this experiment.
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Fig. 4 Parking garage experiment. Tracked vehicle move-
ment vs. raw odometry. Circles indicate 3D scan registration.

Fig. 5 Aligned scans from parking garage, colored by height.

DLR SpaceBot Cup Arena: Using data collected at
the DLR SpaceBot Cup 2013, results are presented

illustrating the accuracy of the mapping system and
the ability to plan trajectories spanning several 3D
scans. Note that during the recording, persons have

walked through the arena causing spurious measure-
ments. Here, odometry is a fused estimate of wheel
odometry, IMU measurements, and visual odometry.

We used fovis [12] to estimate motion from eight RGB-
D cameras viewing in all directions around the robot.
Shown in Fig. 1, the SpaceBot Cup arena models a

rough-terrain environment similar to those potentially
visited by space exploration. Within the arena, 14 3D
scans were taken at an average distance of 4.33m. To

more closely resemble the open-environments in space,
we have removed ceiling and wall measurements from
the 3D scans before processing. Fig. 2 shows aligned

scans and localization estimate and Fig. 3 illustrates
navigation planning.

Autonomous Space Robotics Lab Benchmark: Using
benchmark data provided by the Autonomous Space

Fig. 6 Aligned scans on the ASRL a200 met dataset.

Robotics Lab (ASRL) from the University of Toronto

Institute for Aerospace Studies, a comparison against
alternative mapping methods is possible [29]. The
a200 met dataset consists of 25 3D laser scans includ-

ing stereo visual odometry. Because 2D scans during
driving are not available, we used visual odometry for
localization. Our mapping system produces the sharp

point cloud shown in Fig. 6.

Run-Time Performance: Localization using the parti-
cle filter is limited by the laser scanner data acquisition
rate. Using the Hokuyo laser scanner running at 40Hz,

a localization rate of 30–35Hz was observed, depending
on the number of valid measurements.

The SpaceBot Cup arena dataset is used for map-

ping performance analysis, as 3D scans are both dense
and well distributed for graph optimization. With
an average 3D scan containing approx. 516,000 valid

points, map to map registration is performed with an
average time of 1.40 s using a maximum mapping res-
olution of 2.5 cm. Map construction at this resolution

takes an average of 0.96 s. Using a maximum resolu-
tion of 12.5 cm results in an average registration time
of 0.24 s and map creation time of 0.49 s with the same

sensor data.

7 Conclusion

We presented an integrated approach for robot navi-
gation with a continuously rotating 2D laser scanner.
We use local multi-resolution surfel maps to represent
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3D scans which are efficiently registered and aligned in

a global map using graph optimization. The motion of
the robot is tracked in real time with respect to an allo-
centric map using a particle filter. We assess drivability

based on local surface geometry and plan cost-optimal
navigation trajectories. In the experiments, we demon-
strated successful mapping and tracking in various en-

vironments.

Ideas for future work include integrating occupancy

mapping for an improved observation likelihood model.
We may also consider improved proposals in our par-
ticle filter through registration of 2D scan lines to the

map.
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