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Abstract

Building consistent models of objects and scenes from moving sensors is an
important prerequisite for many recognition, manipulation, and navigation
tasks. Our approach integrates color and depth measurements seamlessly
in a multi-resolution map representation. We process image sequences from
RGB-D cameras and consider their typical noise properties. In order to align
the images, we register view-based maps efficiently on a CPU using multi-
resolution strategies. For simultaneous localization and mapping (SLAM),
we determine the motion of the camera by registering maps of key views and
optimize the trajectory in a probabilistic framework. We create object models
and map indoor scenes using our SLAM approach which includes randomized
loop closing to avoid drift. Camera motion relative to the acquired models is
then tracked in real-time based on our registration method. We benchmark
our method on publicly available RGB-D datasets, demonstrate accuracy,
efficiency, and robustness of our method, and compare it with state-of-the-
art approaches. We also report on several successful public demonstrations
where it was used in mobile manipulation tasks.

Keywords: RGB-D image registration, simultaneous localization and
mapping, object modeling, pose tracking

1. Introduction

Robots performing tasks in unstructured environments must estimate
their pose in reference to objects and parts of the environment. They re-
quire such perception to either manipulate objects, navigate to a goal, or
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Figure 1: Map and trajectory acquired with our approach (on the freiburg1 room RGB-
D sequence [1]). We represent RGB-D images by color and shape distributions within
voxels (denoted as surfels) at multiple resolutions and estimate camera motion between
images through efficient registration of our representation. To recover dense structure and
motion, key views (poses visualized by coordinate frames) are extracted along the camera
trajectory and globally aligned using pose graph optimization. The key view maps are
visualized by 15 samples from each surfel at 5 cm resolution.

understand the actions of other agents. Robots should act immediately and
fluently—especially dynamic tasks require fast perception.

In this article, we propose a method for efficient 3D perception of objects
and indoor scenes using RGB-D cameras. We learn dense 3D models and
track the pose of the camera with respect to these models in real-time at
high frame rate. Our method is efficient enough to run on CPUs—in contrast
to many approaches that strongly rely on massive parallel computation on
GPUs that may not be available on light-weight or low-cost robot platforms.

We contribute a novel approach to 3D modeling and tracking that is based
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on an efficient yet robust probabilistic registration method1. We represent
RGB-D images in 3D multi-resolution octree maps that model shape and
texture distributions within voxels. We propose a registration method that
is suitable for aligning maps generated from single images as well as maps
that aggregate multiple views, for instance, to create multi-view models of
objects. This fast and accurate registration method is utilized to find spa-
tial constraints between key views in a simultaneous localization and map-
ping (SLAM) framework to map objects and indoor scenes. Our SLAM
approach constructs a graph of spatial constraints and optimizes the joint
likelihood of the view poses. To this end, we also assess the uncertainty of
the registration estimates from the measurement uncertainty maintained in
our maps. For incremental mapping, we incorporate randomized loop-closing
to find new spatial constraints efficiently. The acquired models can then be
used for tracking the camera motion in real-time on a CPU. By the multi-
resolution nature of our maps, our method keeps track of objects in a wide
range of distances and speeds.

We evaluate the accuracy of our registration and SLAM approaches on
publicly available RGB-D benchmarks and compare them with state-of-the-
art methods. We also measure the robustness, accuracy, and efficiency of
our object tracking approach. Finally, we report on several successful public
demonstrations of our method in mobile manipulation tasks.

2. Related Work

Scene modeling has long been investigated in the computer vision and
robotics communities. Early work on simultaneous localization and map-
ping (SLAM) in robotics has focused on acquiring 2D maps with mobile
robots using range sensors such as laser scanners and sonars (e.g. [2]). Over
the last decade, some approaches have been proposed that estimate the 6
degree-of-freedom (DoF) trajectory of a robot and a 3D map by means of
3D scan registration [3, 4, 5]. Scans are frequently registered by derivatives
of the Iterative Closest Points (ICP) algorithm [6]. ICP methods operate on
raw points directly and typically require subsampling to achieve high frame
rates. Generalized-ICP [5] unifies the ICP formulation for various error met-
rics such as point-to-point, point-to-plane, and plane-to-plane. We compress

1Our framework is available open-source from http://code.google.com/p/mrsmap
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image content into RGB-D statistics in voxels at multiple resolutions and
register voxel contents between images.

Our registration approach bears similarities to scan representation and
registration using the 3D Normal Distribution Transform (3D-NDT) [7]. The
NDT discretizes point clouds in a regular grid, in which each cell contains
the mean of points as well as their covariance. Accurate and robust matching
of 3D scans is then achieved through minimizing the matching likelihood be-
tween NDTs of scans. We propose novel methods to increase accuracy and to
enable high frame-rate operation for RGB-D images: Our approach exploits
measurement principles of RGB-D sensors to rapidly extract multi-resolution
surfel maps from images. To register maps efficiently, we associate surfels at
multiple resolutions concurrently, realizing implicitly a coarse-to-fine regis-
tration scheme while taking advantage of the highest resolution available
in both maps. While 3D-NDT also supports a multi-resolution representa-
tion of 3D scans, the 3D-NDT registration process optimizes from coarse to
fine resolutions, only considering a single resolution at a time. Furthermore,
our association strategy searches for matches in local neighborhoods whereas
NDT only performs single direct look-ups in the grid. Thirdly, our approach
utilizes shape and texture features to judge the compatibility between sur-
fels. Our highly efficient implementation registers 640×480 RGB-D images
at a frame rate of about 15 Hz on a CPU.

In computer vision, many approaches to Structure from Motion (SfM)
are based on the extraction and matching of keypoints between images.
Stereo vision is frequently used to directly obtain depth measurements for
keypoints [8, 9, 10]. Efficient RANSAC methods can then be applied to esti-
mate the motion of the camera rig. This approach similarly applies if depth
measurements are available from time-of-flight or structured-light RGB-D
cameras [11, 12].

MonoSLAM [13], based on Extended Kalman Filters, was one of the first
methods that demonstrated feature-based on-line SLAM in real-time with a
single camera. More recently, Klein and Murray [14] proposed a real-time ca-
pable bundle-adjustment method within small workspaces. Current work on
SfM in computer vision also includes real-time dense surface reconstruction
from monocular videos [15, 16]. Newcombe et al. [16] proposed DTAM, an
impressive method for dense tracking and mapping of small workspaces that
is real-time capable on GPU. It acquires dense models of key frames which
could be globally aligned into a dense model of the scene using view-based
dense SLAM methods such as our approach.
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In recent years, affordable depth cameras such as time-of-flight or
structured-light cameras (e.g. Microsoft Kinect, Asus Xtion) have become
available. Paired with the developments in computer vision on real-time
dense depth estimation from monocular image sequences, exploiting dense
depth for robotic perception is now a viable option. The premise of exploit-
ing dense depth is to increase the robustness of image registration over the
use of sparse interest points from only textured image regions. It should be
most beneficial in textureless environments that have geometric structure.
Efficient means have to be developed, however, to take full advantage of
the high frame rates and high-resolution images provided by such sensors.
Steinbruecker et al. [17] recently proposed a method for dense real-time regis-
tration of RGB-D images. They model the perspective warp between images
through view-pose changes and optimize for the best pose that explains the
difference in intensity. In our approach, we construct 3D representations of
the images and optimize for the relative pose between them. Note that our
registration method is more general, since our representation supports data
fusion from multiple view points. Hence, we also employ it for the regis-
tration of images to maps that aggregate multiple views, e.g., for tracking
multi-view object models.

Closely related to our setting is KinectFusion, proposed by Newcombe
et al. [18]. They incrementally register depth images to a map that is ag-
gregated from previous images and demonstrate remarkable performance for
small workspaces. The approach is applied for augmented reality user in-
terfaces and supports the tracking of the pose of objects and the camera
in real-time. Since KinectFusion is implemented on GPU, it has—due to
memory restrictions—stronger workspace limitation than CPU-based imple-
mentations like ours. In order to scale to larger workspaces, KinectFusion
has been extended using moving volumes [19, 20]. Due to their incremental
nature, these approaches still accumulate minor drift in the map estimate
over time [20] when the camera is swept into previously unseen areas. This
effect could be corrected through loop-closing like in our view-based SLAM
approach. For this, local submaps have to be built and eventually to be
registered in a submap-based SLAM framework. Our framework supports
a compact representation of local submaps and registers individual RGB-D
images as well as entire local submaps that summarize many images. We
detect loop closures and find a best alignment of key views by jointly op-
timizing spatial constraints between views. We determine the relative pose
between views using our registration method and assess the uncertainty of
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the pose estimate.
Some approaches have been proposed that also learn maps from depth

and RGB-D images in a trajectory optimization framework [21, 22, 23]. May
et al. [21] match time-of-flight depth images using ICP and apply global
relaxation over all images to build a consistent 3D map. Henry et al. [22]
extract textured surface patches, register them using the ICP algorithm to
the model, and apply graph optimization to obtain an accurate map. Our
approach provides shape-texture information in a compact representation
that supports pose tracking from a wide range of distances, since the model
is represented at multiple scales. Endres et al. [24] match point features from
the RGB image between frames and refine the registration estimate using
ICP. Our registration method incorporates shape and texture seamlessly and
is also applicable to textureless shapes.

The modeling of the geometry of objects from multiple views is a tra-
ditional research topic in robotics and computer graphics. A diverse set of
applications exists for such explicit geometric map representations like, for
instance, object recognition or manipulation planning.

One early work of Chen and Medioni [25] registers several range images
using an iterative least squares method. In order to acquire full-view ob-
ject models, the authors propose to take four to eight views onto the object.
Each view is then registered to a map that is aggregated from the precedingly
registered views. If the content and sequence of scans is chosen carefully to
include significant overlap with the already acquired map, this procedure ac-
cumulates less error than pair-wise registration of successive views. Weise et
al. [26] match surface patches between range images and align them globally
to reconstruct 3D object models. Krainin et al. [27] learn models of objects
with an approach similar to Henry et al. [22]. Again, our map representation
includes shape and texture seamlessly and inherently supports tracking from
a wide range of distances due to its multi-scale structure.

3. Multi-Resolution Surfel Maps

3.1. Map Representation

We represent joint color and shape distributions at multiple resolutions
in a probabilistic map. We use octrees as the natural data structure to
represent 3D space at multiple resolutions. In each node of the tree, i.e.,
inner nodes as well as leaf nodes across all resolutions (voxel sizes), we store
statistics on the joint spatial and color distribution of the points P within
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its volume which we denote as surfel. The distribution is approximated
with sample mean µ and covariance Σ of the data, i.e., we model the data
as normally distributed in a node’s volume. Instead of computing mean
and covariance in the nodes with a two-pass algorithm, we use a single-pass
update scheme with high numerical accuracy [28]. It determines the sufficient
statistics S(P) :=

∑
p∈P p and S2(P) :=

∑
p∈P pp

T of the normal distribution

from the statistics of two point sets PA and PB through

S(PA∪B)← S(PA) + S(PB),

S2(PA∪B)← S2(PA) + S2(PB) +
δδT

NANB(NA +NB)
,

(1)

where N(·) := |P(·)| and δ := NBS(PA)−NAS(PB). From these, we obtain
sample mean µ(P) = 1

|P|S(P) and covariance Σ(P) = 1
|P|−1
S2(P)− µµT .

Careful treatment of the numerical stability is required when utilizing
one-pass schemes for calculating the sample covariance [28]. We require a
minimum sample size of |P| ≥ 10 to create surfels and stop incorporating
new data points if |P| ≥ 10, 0002. The discretization of disparity and color
produced by the RGB-D sensor may cause degenerate sample covariances,
which we robustly detect by thresholding the determinant of the covariance
at a small constant.

We not only represent the local surface geometry by the distribution of
3D point coordinates in the nodes, but also model the spatial distribution of
color by maintaining the joint distribution of point coordinates and color in
a 6D normal distribution. In order to separate chrominance from luminance
information, we choose a variant of the HSL color space. We define the Lαβ
color space as L := 1

2
(max{R,G,B}+ min{R,G,B}), α := R − 1

2
G − 1

2
B,

and β :=
√

3
2

(G−B). The chrominances α and β represent hue and saturation
of the color and L represents its luminance.

Since we build maps of scenes and objects from all perspectives, multiple
distinct surfaces may be contained within a node’s volume. We model this
by maintaining multiple surfels in a node that are visible from several view

2Using double precision (machine epsilon 2.2·10−16) and assuming a minimum standard
deviation of 10−4 in P, and reasonable map sizes (maximal radius smaller than 102 m), we
obtain a theoretical bound for the relative accuracy of the covariance entries in the order
of 10−6 at 104 samples [29]. More accurate but slower two-pass schemes could be used for
extremely large map or sample sizes, or smaller noise.
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Figure 2: Multi-resolution surfel map aggregation from an RGB-D image. Top left: RGB
image of the scene. Top right: Maximum node resolution coding, color codes octant of
the leaf in its parent’s node (max. resolution 0.0125 m, see text for details). Bottom: 15
samples per color and shape surfel at 0.025 m (left) and at 0.05 m resolution (right).

directions. We use up to six orthogonal view directions aligned with the basis
vectors e1, e2, e3 of the map reference frame. When adding a new point to the
map, we determine the view direction onto the point and associate it with
the surfel belonging to the most similar view direction.

3.2. Shape-Texture Descriptor

We construct descriptors of shape and texture in the local neighborhood of
each surfel (see Fig. 3). Similar to FPFH features [30], we first build three-bin
histograms hsh(s) of the three angular surfel-pair relations between the query
surfel s and its up to 26 neighbors s′ at the same resolution. The three angles
are measured between the normals of both surfels ](n, n′) and between each
normal and the line ∆µ := µ − µ′ between the surfel means, i.e., ](n,∆µ)
and ](n′,∆µ). Each surfel-pair relation is weighted with the number of
points in the neighboring node. We smooth the histograms to better cope
with discretization effects by adding the histogram of neighboring surfels
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Figure 3: 2D illustration of our local shape-texture descriptor. We determine a local
description of shape, chrominance (α, β), and luminance (L) contrasts to improve the
association of surfels. Each node is compared to its 26 neighbors. We subsequently
smooth the descriptors between neighbors. See Sec. 3.2 for further details.

with a factor γ = 0.1 and normalize the histograms by the total number of
points.

Similarly, we extract local histograms of luminance hL(s) and chromi-
nance hα(s), hβ(s) contrasts. We bin luminance and chrominance differences
between neighboring surfels into positive, negative, or insignificant. Note,
that neighboring voxels can efficiently be found using precalculated look-up
tables [31]. We store the pointers to neighbors explicitly in each node to
achieve better run-time efficiency than tracing the neighbors through the
tree. The octree representation is still more memory-efficient than a multi-
resolution grid, as it only represents the 3D surface observed by the sensor.

3.3. Efficient RGB-D Image Aggregation

The use of sufficient statistics allows for an efficient incremental update
of the map. In the simplest implementation, the sufficient statistics of each
point is added individually to the tree. Starting at the root node, the suf-
ficient statistics is recursively added to the nodes that contain the point in
their volume.

Adding each point individually is, however, not the most efficient way
to generate the map. Instead, we exploit that by the projective nature of
the camera, neighboring pixels in the image project to nearby points on the
sampled 3D surface—up to occlusion effects. This means that neighbors in
the image are likely to belong to the same octree nodes.
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Figure 4: 2D illustration of occlusion handling. We exclude surfels from the registration
process that receive background points at depth discontinuities. At such points, the vis-
ibility of the structure in the background changes with the view point, causing distorted
pose estimates if not excluded.

We further consider the typical property of RGB-D sensors that noise
increases quadratically with depth. We thus adapt the maximum octree
node resolution at a pixel to the squared distance from the sensor. In effect,
the size of the octree is significantly reduced and the leaf nodes subsume local
patches in the image (see top-right of Fig. 2). We exploit these properties
and scan the image to aggregate the sufficient statistics of contiguous image
regions that belong to the same octree node. This measurement aggregation
allows to construct the map with only several thousand insertions of node
aggregates for a 640×480 image in contrast to 307,200 point insertions.

After the image content has been incorporated into the representation, we
precompute mean, covariance, surface normals, and shape-texture features
for later registration purposes.

3.4. Handling of Image and Virtual Borders

Special care must be taken at the borders of the image and at virtual
borders where background is occluded (see Fig. 4). Nodes that receive such
border points only partially observe the underlying surface structure. When
updated with these partial measurements, the surfel distribution is distorted
towards the visible points. In order to avoid this, we determine such nodes
by scanning efficiently through the image, and neglect them.

In contrast, foreground depth edges describe the valuable geometric con-
tour of objects. We distinguish between surfels on contours which receive
foreground points at depth discontinuities, and surfels that don’t receive such
points. During registration, we use this property as an additional feature cue
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and only match surfels that are either both on a contour or both not on a
contour.

4. Robust Efficient Registration of Multi-Resolution Surfel Maps

The registration of multi-resolution surfel maps requires two main steps
that are iterated multiple times and both need to be addressed efficiently:
First, we robustly associate surfels between the maps. For these associa-
tions, we then determine a transformation that maximizes their matching
likelihood.

4.1. Multi-Resolution Surfel Association

Starting at the finest resolution, we iterate through each node in the
current resolution and establish associations between the surfels in each view
direction. In order to choose the finest resolution possible, we do not associate
a node, if one of its children already has been associated, saving redundant
matches on coarse resolutions. We have to iterate data association and pose
optimization multiple times, hence we gain efficiency by bootstrapping the
association process from previous iterations. If a surfel has not been associ-
ated in the previous iteration, we search for a matching surfel in the target
map. The surfel mean is transformed with the current pose estimate x and
an efficient cubic volume query is performed in the target map for which
the side length of the cube is set to twice the resolution of the query sur-
fel’s node. In this way, the resolution at which misalignments are corrected
is adapted from coarse to fine resolutions inherently during the registration
process. The view direction of the query surfel is also rotated according to x
to select the surfel for the corresponding view direction in the target map.

If an association from a previous iteration exists, we associate the surfel
with the best matching surfel within the direct neighbors of the last associ-
ated surfel’s node. Since we precalculate the 26-neighborhood of each octree
node, this look-up amounts to only constant time. We accept associations
only, if the shape-texture descriptors of both surfels match which we evaluate
by thresholding on the Euclidean distance df (si, sj) ≤ τ with τ = 0.1 between
the shape and texture descriptor, where df (si, sj) :=

∑
c∈{sh,L,α,β} dc(si, sj).

No weighting between the descriptor components has been necessary in our
implementation. Within a resolution, surfels are processed independently
which allows the load within a resolution to be distributed over multiple
CPU cores.
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4.2. Observation Model

Our goal is to register an RGB-D image z, from which we construct the
source map ms, towards a target map mm. We formulate our problem as
finding the most likely pose x that maximizes the likelihood p(z | x,mm) of
observing the current image z in the target map. We choose to represent
poses x = (q, t)T by translations t ∈ R3 and by unit quaternions q for a
compact representation of the rotational part without singularities.

We construct the source map ms from the image z and determine the
observation likelihood between source and target map,

p(ms | x,mm) =
∏

(i,j)∈A

p(ss,i | x, sm,j), (2)

where A is the set of surfel associations between the maps, and ss,i =
(µs,i,Σs,i), sm,j = (µm,j,Σm,j) are associated surfels. The observation like-
lihood of a surfel match is the difference of the surfels under their normal
distributions,

p(ss,i | x, sm,j) = N (di,j(x); 0,Σi,j(x)) ,

di,j(x) := µm,j − T (x)µs,i,

Σi,j(x) := Σm,j +R(x)Σs,iR(x)T ,

(3)

where T (x) is the homogeneous transformation matrix for the pose estimate x
and R(x) is its rotation matrix. We marginalize the surfel distributions for
the spatial dimensions.

Note that due to the difference in view poses between the images, the
scene content is discretized differently between the maps. We compensate
for inaccuracies due to discretization effects by trilinear interpolation. This is
possible, if a scene surfel ss,i is directly associated with the model surfel sm,j
in the octree node at the projected position of the scene surfel T (x)µs,i.
Instead of directly using the associated model surfel sm,j in the observation
likelihood (Eq. (3)), we determine mean and covariance of the model surfel at
the projected position T (x)µs,i through trilinear interpolation of neighboring
surfels in the model map.

4.3. Pose Optimization

We optimize the logarithm of the observation likelihood (Eq. (3))

L(x) =
∑
a∈A

log(|Σa(x)|) + dTa (x)Σ−1
a (x)da(x) (4)
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for the pose x in two stages: We apply fast approximate Levenberg-
Marquardt (LM) optimization to initialize fine registration using Newton’s
method.

The LM method is suitable for weighted non-linear least squares prob-
lems of the form arg maxx e

T (x)We(x), where e(x) = y − f(x) is a vector of
residuals and W is a weighting matrix. In our case, we stack the residuals
between associated surfels e(x) = (da(x))a∈A and neglect the effect of the
pose on the covariance to obtain a constant block-diagonal weighting ma-
trix W = diag

(
{waΣ−1

a (x)}a∈A
)
. We weight each surfel match also with the

similarity wa := τ −df (a) of the shape-texture descriptors. LM optimization
now performs damped Gauss-Newton steps

x′ ← x+ (JTWJ + λI)−1JTWe(x), (5)

where J := (Ja(x)) is the Jacobian stacked from individual Jacobians Ja =
dT
dx

(x)µs,a per surfel association. Note that due to the block-diagonal struc-
ture of W , this update decomposes into simple sums over terms per associ-
ation, i.e., JTWJ =

∑
a∈A J

T
aWaJa and JTWe(x) =

∑
a∈A J

T
aWada. During

the LM optimization, we do not use trilinear interpolation of surfels and up-
date the association of surfels only, if the pose changes of the LM method
converged below a threshold. We stop iterating the LM method, if the pose
still not changes after surfel association, or a maximum number of iterations
is reached. Afterwards, we fine-tune the registration result by Newton’s
method directly on the observation log-likelihood (Eq. (4)) with trilinear
interpolation and surfel association in each step. While Newton’s method
requires second-order derivatives, they can be efficiently calculated analyti-
cally due to the simple form of the observation log likelihood in Eq. (4). Our
approach typically converges within 10-20 iterations of LM and 5 iterations
of Newton’s method to a precise estimate. We parallelize the evaluation of
the first- and second-order derivatives over surfels which yields a significant
speed-up on multi-core CPUs.

The normalization constraint on the quaternion part of our pose repre-
sentation requires special handling during the optimization. We incorporate
the normalization by only optimizing for a compact 3-dimensional quater-
nion representation that consists of the coefficients of the imaginary parts.
The real part of the quaternion can be recovered from the normalization
constraint and its initial sign before the optimization. This approach alone
would only be valid for angular misalignments below 180◦. To allow for arbi-
trary angular misalignments, we compose the current pose estimate x from a
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constant part x′ and a subsequent pose change ∆x, i.e., T (x) = T (∆x)T (x′).
In each iteration of LM or Newton’s method, we set x′ = x and optimize
for ∆x instead.

4.4. Estimation of Pose Uncertainty

We obtain an estimate of the observation covariance using a closed-form
approximation [32]:

Σ(x) ≈
(
∂2L

∂x2

)−1
∂2L

∂s∂x
Σ(s)

∂2L

∂s∂x

T (
∂2L

∂x2

)−1

, (6)

where x is the pose estimate, s denotes the associated surfels in both maps,
and Σ(s) is the covariance of the surfels. The covariance estimate of the
relative pose between the maps captures uncertainty along unobservable di-
mensions, for instance, if the maps view a planar surface.

5. Model Learning and Tracking

Our image representation and registration techniques now provide tools
for learning models of objects or indoor scenes and for tracking them. Models
are acquired by moving an RGB-D camera around an object or through a
scene. Our goal is then to estimate the motion of the camera in order to
overlay images into a consistent 3D model of the object or the scene. Once
the model is available, it can be tracked in the live images of the camera
using our registration approach.

5.1. Model Learning

Näıve sequential registration of images, i.e., visual odometry, would be
prone to drift. Instead, we register images towards a reference key view to
keep track of the camera motion. Since registration quality degrades with
the view pose difference between images, a new key view is generated from
the current image if the camera moved sufficiently far, and the new key view
is set as the reference for further tracking. The registration result xji between
a new key view vi and its reference vj is a spatial constraint that we maintain
as values of edges eij ∈ E in a graph G = (V , E) of key views (see Fig. 5).

We find additional spatial constraints between similar key views using
our registration method in a randomized hypothesis-and-test scheme. This
scheme tests one spatial constraint per frame to enable on-line operation
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Figure 5: Exemplary key view graph. Key views (poses visualized by coordinate frames)
are extracted along the camera trajectory after sufficient motion and spatial constraints
between key views (black lines) are established using our registration method.

and also detects loop-closures. The poses of the key views are optimized in a
probabilistic pose graph optimization framework, which also supports on-line
operation by iterating graph optimization once per frame.

Finally, we fuse the key views by overlaying them in one multi-view map
from their optimized pose estimates.

5.1.1. Constraint Detection

On each frame, we check for one new constraint between the current
reference vref and other key views vcmp. We determine a probability

pchk(vcmp) = N
(
d(xref, xcmp); 0, σ2

d

)
· N

(
|α(xref, xcmp)| ; 0, σ2

α

)
(7)

that depends on the linear and rotational distances d(xref, xcmp)
and |α(xref, xcmp)| of the key view poses xref and xcmp, respectively. We
sample a key view v according to pchk(v) and determine a spatial constraint
between the key views using our registration method.

It is important to validate the matching of key views, since if the key views
barely or even not overlap our registration method may find suboptimal so-
lutions that—if included—could let the pose graph optimization diverge. We
examine the matching likelihood of the registration estimate for validation.
For each surfel in one of the key views, we find the best matching surfel in
the second view. Here, we directly take into account the consistency of sur-
face normals and therefore determine the matching likelihood of the surfels
as the product of the likelihood under their distributions and under a nor-
mal distribution in the angle between their normals. We assign a minimum
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likelihood to all surfels with a worse match or without a match. In this way,
the matching likelihood accounts for the overlap between the views. This
likelihood is directional and, hence, we evaluate it in both directions.

We cannot use a global threshold for deciding if a constraint should be
added, as the matching likelihood depends on the image content. Instead we
require the matching likelihood of a new constraint to be at least a fraction
of the matching likelihood for the initial constraint of the key view. This
constraint has been established through tracking of the reference key view
and is thus assumed to be consistent.

5.1.2. Pose Graph Optimization

Our probabilistic registration method provides a mean xji and covariance
estimate Σ(xji ) for each spatial constraint eij. We obtain the likelihood of
the relative pose observation z = (xji ,Σ(xji )) of the key view j from view i
by

p(xji | xi, xj) = N
(
xji ; ∆(xi, xj),Σ(xji )

)
, (8)

where ∆(xi, xj) denotes the relative pose between the key views for their
current estimates xi and xj.

From the graph of spatial constraints, we infer the probability of the
trajectory estimate given all relative pose observations

p(V | E) ∝
∏
eij∈E

p(xji | xi, xj). (9)

We solve this graph optimization problem by sparse Cholesky decomposition
within the g2o framework [33].

5.1.3. Key View Fusion to Maps or Object Models

We fuse the pose-optimized key views by overlaying them in one multi-
view multi-resolution surfel map.

For creating object models, we include only measurements within a vol-
ume of interest which is defined by a user or may also be provided by image
segmentation approaches. In our implementation, the user selects points in
one image of the sequence to form a convex hull on the support plane for the
footprint of the object. The user then specifies the height above the support
of the object.
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5.2. Pose Tracking

We apply our registration method to estimate the pose of the camera
with respect to a model. We aggregate the current RGB-D image in a multi-
resolution surfel map and register it to the map. During object tracking
we save unnecessary computations by processing the image in a volume of
interest close to the last pose estimate. We only process image points that
are likely under the spatial distribution of the object model. Mean and
covariance of this distribution are readily obtained from the sum of surfel
statistics |P|, S(P), and S2(P) over all view directions in the root node of
the tree.

6. Experiments

We evaluate our approaches on publicly available RGB-D datasets3. The
RGB-D benchmark dataset by Sturm et al. [1] is used to assess image regis-
tration and RGB-D SLAM in indoor scenes, for which we restrict our evalua-
tion to sequences of static scenes. In addition, we generated a complementary
RGB-D dataset for the evaluation of object tracking and modeling.

Both datasets contain RGB-D image sequences with ground truth infor-
mation for the camera pose which is measured using external optical motion
capture systems. Our object dataset includes sequences of three objects of
different sizes (a chair, a textured box, and a small humanoid robot). For
model reconstruction, we recorded each object from a 360◦ trajectory. Three
test sets are provided for evaluating tracking performance with slow, medium,
and fast camera motion for each object. Each sequence consists of 1,000
frames recorded at 30 Hz and VGA (640×480) resolution. We set the maxi-
mum resolution of our maps to 0.0125 m throughout the experiments which
is a reasonable lower limit with respect to the minimum measurement range
of the sensor (ca. 0.4 m). We evaluate timings of all methods on a notebook
PC with an Intel Core i7 3610QM 2.3 GHz (max. 3.3 GHz) QuadCore CPU
using full resolution (VGA) images. Resulting trajectories are assessed using
the absolute trajectory error (ATE) and relative pose error (RPE) metrics
as proposed in [1].
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Table 1: Comparison of median (max.) relative pose error (RPE) in mm for incremental
registration on RGB-D sequences of the Freiburg benchmark dataset [1].

sequence ours
warp [17]
(OpenCV)

GICP [5] 3D-NDT [7] fovis [12]

fr1 360 5.1 (46.4) 5.9 (75.4) 18.8 (88.3) 7.8 (140.8) 7.1 (43.1)
fr1 desk 4.4 (20.1) 5.8 (131.8) 10.2 (54.9) 7.9 (26.6) 6.3 (34.2)
fr1 desk2 4.5 (24.1) 6.2 (147.4) 10.4 (261.2) 8.2 (46.3) 6.6 (49.9)
fr1 floor 4.9 (355.9) 2.1 (3167) 5.0 (193.6) 6.3 (1021) 2.6 (412.4)
fr1 plant 3.5 (27.7) 4.2 (300.8) 16.1 (831.4) 7.4 (62.3) 4.6 (61.6)
fr1 room 3.5 (33.3) 4.6 (167.8) 10.2 (212.6) 6.1 (51.2) 5.4 (55.1)
fr1 rpy 3.0 (24.8) 5.1 (41.8) 10.4 (636.6) 6.8 (41.9) 5.4 (38.7)
fr1 teddy 4.2 (77.4) 6.1 (381.1) 21.3 (356.6) 8.8 (126.6) 7.1 (82.4)
fr1 xyz 2.6 (9.8) 4.1 (18.1) 3.9 (42.0) 5.2 (36.7) 4.6 (25.8)
fr2 desk 2.1 (15.1) 2.1 (14.1) 6.7 (64.4) 4.3 (31.7) 2.5 (15.5)
fr2 large no loop 21.8 (167.4) 20.5 (7.6e5) 21.3 (1289) 32.1 (2512) 11.0 (173.0)
fr2 rpy 1.6 (29.9) 1.7 (189.5) 1.3 (28.7) 4.2 (55.1) 1.7 (11.0)
fr2 xyz 1.4 (33.1) 2.0 (8.8) 1.7 (26.8) 4.0 (18.0) 1.9 (9.9)
fr3 long office household 2.6 (16.9) 3.2 (34.0) 7.8 (209.1) 4.2 (40.2) 3.7 (35.6)
fr3 nostruct. notext. far 9.7 (48.4) 40.4 (6.0e4) 8.6 (66.1) 13.8 (77.8) 11.3 (108.4)
fr3 nostruct. notext. near 15.2 (56.9) 28.2 (3.2e4) 12.5 (182.1) 17.1 (144.6) 11.2 (79.3)
fr3 nostruct. text. far 18.5 (57.9) 19.2 (1230) 10.9 (58.6) 18.6 (74.6) 20.8 (101.5)
fr3 nostruct. text. near 11.5 (52.4) 7.0 (100.5) 8.9 (67.1) 10.6 (80.4) 7.3 (41.6)
fr3 struct. notext. far 2.2 (16.6) 8.6 (2579) 4.5 (23.2) 2.9 (19.2) 9.1 (62.4)
fr3 struct. notext. near 2.1 (13.5) 8.6 (1108) 2.9 (12.2) 2.4 (44.5) 9.3 (86.9)
fr3 struct. text. far 5.5 (20.7) 8.1 (39.0) 7.1 (23.3) 5.4 (20.1) 8.8 (45.2)
fr3 struct. text. near 3.2 (14.7) 5.9 (34.8) 5.6 (34.2) 5.5 (82.3) 6.5 (38.2)

Table 2: Comparison of average (std. dev.) runtime in milliseconds for incremental
registration on RGB-D benchmark sequences.

sequence ours
warp [17]
(OpenCV)

GICP [5] 3D-NDT [7] fovis [12]

fr1 desk 75.15 (9.66) 108.64 (18.41) 4015.4 (1891.6) 414.87 (255.57) 15.98 (7.00)
fr2 desk 61.47 (7.68) 99.29 (10.61) 3147.3 (852.98) 892.59 (253.54) 12.98 (2.27)
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Figure 6: Median translational error of the pose estimate for different frame skips k on
the freiburg1 desk (left) and freiburg2 desk (right) sequences (warp [17], GICP [5])

6.1. Incremental Registration

We first evaluate the properties of our registration method that underlies
our modeling and tracking approaches. Table 1 compares median transla-
tional drift of our approach with several other registration methods. On many
sequences, our approach outperforms the other methods, while also yielding
only moderate maximum drift in most sequences. Our method is very com-
petitive to other dense registration approaches such as warp [17], GICP [5],
and 3D-NDT [7]. For these experiments, we used a reimplementation of warp
contained in the OpenCV library with default settings but 14 iterations in
the coarsest resolution and a maximum depth difference of 0.5 m. The max-
imum distance for matches in GICP has been chosen as dmax = 0.2m. NDT
has been configured to use the four scales 0.05 m, 0.1 m, 0.2 m, and 0.4 m.
Higher resolutions were not possible due to memory limitations.

Difficult scenes contain only little geometric structure but fine-grained
texture such as the freiburg1 floor or the freiburg3 nostructure sequences.
In the freiburg2 large no loop sequence, the camera measures mostly distant
parts in the environment, for which geometric features are barely measurable
due to sensor noise and discretization of disparity. In three cases, fovis per-
forms better if texture is available, which indicates that point feature-based
registration would complement our approach well. Our approach achieves
about 15 Hz on the sequences, is much more efficient than GICP or 3D-NDT,
and demonstrates slightly faster run-time than warp (see Table 2).

In Fig. 6, we evaluate the robustness of our approach for skipping frames

3http://cvpr.in.tum.de/data/datasets/rgbd-dataset,
http://www.ais.uni-bonn.de/download/objecttracking.html
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Figure 7: 3D map (5 cm resolution) visualized by samples from the color and shape surfel
distributions of the aligned key frames and camera trajectory result of our approach on
the freiburg2 desk sequence.

on the freiburg1 desk and freiburg2 desk sequences4. Our approach achieves
similar accuracy than warp for small displacements, but retains the robust-
ness of ICP methods for larger displacements when warp fails. This property
is very important for real-time operation, if frames need to be dropped even-
tually.

6.2. Scene Reconstruction

We evaluate our SLAM approach on eleven sequences of the RGB-D
benchmark dataset and compare our approach to RGB-D SLAM ([24, 34]) by
measuring average RPE over all numbers of frame differences (see Table 35).
Fig. 7 show a typical result obtained with our approach on the freiburg2 desk
sequence. The sequence contains moderately fast camera motion in a loop

4Results for warp and GICP taken from [17].
5Results have been corrected. Instead of the RMSE error, the original version of the

article accidentally included the median error, which was slightly lower.
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Figure 8: Projection onto the x-y-plane of ground truth and trajectory estimate of our
approach on the freiburg2 desk sequence.

Table 3: Comparison of our SLAM approach with RGB-D SLAM in relative pose error
(RPE).

RMSE RPE in m

sequence
ours

all frames5
ours

real-time5
RGB-D
SLAM

freiburg1 360 0.123 0.126 0.103
freiburg1 desk2 0.098 0.107 0.102
freiburg1 desk 0.054 0.088 0.049
freiburg1 plant 0.038 0.062 0.142
freiburg1 room 0.111 0.145 0.219
freiburg1 rpy 0.041 0.045 0.042
freiburg1 teddy 0.066 0.092 0.138
freiburg1 xyz 0.020 0.025 0.021
freiburg2 desk 0.100 0.115 0.143
freiburg2 rpy 0.043 0.040 0.026
freiburg2 xyz 0.032 0.033 0.037
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around a table-top setting. In Fig. 8 it can be seen that the camera tra-
jectory recovered with our approach well aligns with the ground truth. The
freiburg1 room sequence contains a trajectory loop through an office (see
Fig. 1). The camera moves much faster than in the freiburg2 desk sequence.
On eight5 sequences, our method achieves better results than RGB-D SLAM
if all frames are processed. For real-time operation, our SLAM approach
needs to drop frames and needs to be limited to a maximum resolution of
0.05 m, but still performs very well.

Note, that our method did not succeed on sequences such as
freiburg1 floor or freiburg2 large loop. On freiburg1 floor the camera sweeps
over a floor with only little texture that could be captured by the local de-
scriptors of the surfels. Our method also cannot keep track of the camera
pose, if large parts of the image contain invalid or highly uncertain depth at
large distances.

The processing time for on-line operation is mainly governed by our reg-
istration method. At each image update, we have to register two pairs of
views. First, we keep track of the current sensor pose by aligning the image
to the closest key view in the map. Our randomized constraint detection
method invokes a second registration at each image update. While the run
time required for graph optimization depends on the size of the graph, one
iteration of graph optimization takes up to a few milliseconds in the exper-
iments (freiburg2 desk: median 0.79 ms, max. 4.01 ms at max. 64 key views
and 138 edges).

6.3. Object Model Learning

We evaluate the accuracy of our object modeling approach by comparing
trajectory estimates with ground truth using the ATE measure. It can be
seen from Fig. 9 that our approach is well capable of recovering the trajectory
of the camera. We provide the minimum, median, and maximum ATE of our
trajectory estimates in Table 4. The median accuracy is about 1-2 cm for all
sequences. It can also be seen that graph optimization significantly improves
the trajectory estimate. Fig. 10 shows models learned with our approach.
Typical sizes of models are ca. 54 MB for the chair and ca. 19 MB for the
humanoid.

6.4. Object Tracking

In the following, we evaluate our object tracking method. The results
in Table 5 demonstrate that our approach tracks the learned models with
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Figure 9: Ground truth (black) and trajectory estimates obtained without graph opti-
mization (dashed green) and with graph optimization (solid red) on the box sequence.

w/o graph optimization with graph optimization

sequence min median max min median max

humanoid 18.5 65.8 320.5 2.5 12.8 38.2
box 17.4 59.3 149.8 9.0 21.9 37.3

chair 39.1 147.5 345.5 1.6 23.8 70.8

Table 4: Absolute trajectory error in mm obtained by incremental mapping without graph
optimization and with our object modeling approach (with graph optimization).

good accuracy in real-time. The tracking performance depends on distance,
relative angle, and speed towards the object (see Fig. 11). For far view poses,
the measured points on the object correspond to coarse resolutions in the
multi-resolution representation of the image. Thus, our approach registers
the image on coarse scales to the object model and the accuracy decreases
while the frame rate increases compared to closer distances. The shape of the
object may also influence the accuracy, such that it varies with view angle.

We have demonstrated our real-time tracking method publicly at
RoboCup@Home competitions in 2011 and 20126. In the Final of RoboCup
2011, our robot Cosero carried a table with a human [35] and baked omelet.

6Videos of the demonstrations can be found at http://www.nimbro.net/@Home.
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Figure 10: Learned object models at a resolution of 2.5 cm visualized by samples from
the color and shape surfel distributions. Left: humanoid, middle: box, right: chair (best
viewed in color).

Cosero’s main computer has been a quadcore notebook with an Intel i7-Q720
CPU during these demonstrations. To achieve high performance tracking on
this CPU in parallel with the robot control processes, we subsampled the
RGB-D images to QVGA (320×240) resolution. For carrying the table, we
trained a model of the table. Cosero registered RGB-D images to the model
to approach the table and to grasp it. It detected the lifting and lowering of
the table by estimating its pitch rotation. Similarly, Cosero approached the
pan on a cooking plate by tracking the object with our registration method.
At RoboCup 2012, Cosero moved a chair and watered a plant. It perceived
chair and watering can with the proposed method despite partial occlusions
of the objects by the robot itself. The demonstrations have been well re-
ceived by juries from science and media. Paired with the highest score from
the previous stages, we could win both competitions.

7. Conclusion

We proposed a novel approach to scene and object modeling and pose
tracking using RGB-D cameras. Central to our approach is the representation
of spatial and color measurements in multi-resolution surfel maps. We exploit
measurement principles of RGB-D cameras to efficiently acquire maps from
images. The transformation between maps representing overlapping parts of
the environment (e.g. created from key views) is estimated with an efficient

24



all frames real-time

sequence ATE time ATE frames
(mm) (msec) (mm) used (%)

humanoid slow 19.99 31.93 ± 5.89 21.14 73.3
humanoid med. 26.12 32.50 ± 5.19 26.97 78.5
humanoid fast 31.64 33.55 ± 6.66 32.20 78.8

box slow 23.55 39.01 ± 4.89 24.33 56.3
box med. 37.83 41.15 ± 14.20 46.58 61.3
box fast 24.05 33.87 ± 9.19 28.64 76.0

chair slow 22.87 49.09 ± 7.13 22.75 46.9
chair med. 15.78 49.57 ± 9.93 16.11 49.5
chair fast 27.67 48.78 ± 10.24 29.10 50.5

Table 5: Median absolute trajectory error, avg. time ± std. deviation, and percentage of
frames used in real-time mode for our tracking approach.

yet robust registration method in real-time. Our approach utilizes multiple
resolutions to align the maps on coarse scales and to register them accurately
on fine resolutions. We demonstrate state-of-the-art registration results w.r.t.
accuracy and robustness.

We incorporate our registration method into a probabilistic trajectory
optimization framework which performs SLAM in indoor scenes in real-time
and allows for learning full-view object models with good precision. Our ap-
proach compares very well to other image registration and SLAM approaches
using RGB-D cameras in terms of run time and accuracy. Finally, we use the
learned models to track the 6 DoF pose of objects in camera images accurately
in real-time. By the multi-resolution nature of our image and object maps,
our method inherently adapts its registration scale to the distance-dependent
measurement noise.

In future work, we will investigate approaches to additional object per-
ception problems such as object detection and initial pose estimation based
on multi-resolution surfel maps. We also will investigate the modeling of
larger scenes that requires appearance-based techniques for the detection of
loop-closures. We currently work on integrating our approach with point-
feature-based matching to cope with situations with far and imprecise depth
or to make use of fine-grained texture in scenes with little variety in geomet-
ric structure. While our approach is efficient enough to run at high frame
rates on CPUs, an implementation of our method on GPUs could further
improve run time and reduce computational load on the CPU.
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Figure 11: Tracking performance: Median translational (blue) and rotational error (red)
and their quartiles (dashed lines) w.r.t. distance, vertical view angle, linear velocity, and
rotational velocity on the box tracking sequences.
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