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Abstract Inspection of industrial chimneys and smoke pipes induces high costs
due to production downtimes and imposes risks to the health of human workers
due to high temperatures and toxic gases. We aim at speeding up and automating
this process with multicopter micro aerial vehicles. To acquire high quality sensor
data, flying close to the walls of the chimney is inevitable, imposing high demands
on good localization and fast and reliable control.

In this paper, we present an integrated chimney inspection system based on
a small lightweight flying platform, well-suited for maneuvering in narrow space.
For navigation and obstacle avoidance, it is equipped with a multimodal sensor
setup including a lightweight rotating 3D laser scanner, stereo cameras for visual
odometry and high-resolution surface inspection.

We tested our system in a decommissioned industrial chimney at the Zollverein
UNESCO world heritage site, and present results from autonomous flights and
reconstructions of the chimney surface.

Keywords autonomous inspection · SLAM · planning · surface reconstruction

1 Introduction

Industrial chimneys must be inspected regularly, which causes costly production
downtime—the chimney has to cool down and toxic gases have to dissipate before
humans can enter—and poses dangers to human inspection personnel working in
large heights. Access to higher parts of the chimney is difficult and requires cranes
or scaffolding. Multicopter micro aerial vehicles (MAVs) can carry inspection sen-
sors, such as cameras, to high altitudes, but their manual control inside chimneys
close to the inspected surface is not feasible. Especially at higher altitudes, human
pilots can hardly assess the exact distance to the surface or the MAV orientation
from the ground. Fig. 1 shows examples of challenging situations when operating in
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Fig. 1: Challenging flight conditions. The perspective of a pilot on the bottom
of a chimney makes flight maneuvers in larger heights hard to control without
automation (MAV circled red). Left: Manual chimney inspection from the outside
in larger distance from the wall is not suitable for 3D surface reconstruction.
Center: Autonomous flight close to the walls. Right: Manual operation in larger
heights inside the chimney is prohibitive, especially in daylight conditions.

larger heights. Furthermore, turbulences close to the walls require continuous ad-
justments to the control inputs, making the control even more challenging. Hence,
we aim at fully autonomous operation, to make MAV-based inspection of chimneys
feasible.

The foremost task of the autonomous system, and key functionality to build
upon, is to safely navigate in the chimney in reasonable proximity to its walls.
Starting from a coarse geometric model, a detailed 3D model of the chimney for
localization and navigation is built by registering and aggregating measurements
of a 3D laser scanner which is carried by the MAV. By fusing different sensor
modalities, the MAV localizes with respect to this model.

The MAV is equipped with a high-resolution stereo camera to capture the
surface of the chimney. To simplify the inspection task for a human expert, we
create a highly detailed model of the whole chimney. We employ reconstruction
of Structure-from-Motion (SfM) on RGB images to create a detailed 3D model of
the chimney surface and visualize it as unwrapped high-resolution orthoimage for
the examination by an expert. This expert can specify poses for further inspection
and the MAV navigates to these poses autonomously based on the pose estimates
and the 3D chimney model.

The use of autonomous MAVs will 1) diminish the risk for human inspectors, 2)
reduce the costs of inspections due to shorter production downtimes, and 3) deliver
high quality inspection results. We demonstrate the applicability of our system in
a decommissioned chimney of a coking plant at the Zollverein UNESCO world
heritage site, shown in Fig. 2. Furthermore, we tested and evaluated our system
in a narrower chimney mock-up of about 4 m in height and 3.5 m in diameter.
Navigating and maneuvering in this very constrained space is highly challenging
since the air flow caused by the MAV is reflected from the chimney walls and the
ground and causes turbulences.
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Fig. 2: Autonomous chimney inspection. Our lightweight chimney inspection MAV
navigates autonomously assisted by real-time 6D laser localization and fast vi-
sual odometry. A spiraling scan pattern facilitates good and efficient coverage for
camera-based surface reconstruction of the chimney walls. Our MAV is evaluated
in a narrow chimney mock-up (left) and a decommissioned industrial chimney
(right).

Our main contribution is an integrated lightweight MAV, including camera and
3D laser-based 6D localization and high-resolution 3D surface reconstruction, with
a total mass of less than 3.5 kg. The constrained space in chimneys requires reliable
navigation close to the walls—a highly demanding task given the lower computa-
tional power of the lightweight MAV compared to our prior work (Nieuwenhuisen
et al., 2016). To the best of our knowledge, this is the first autonomous MAV-based
chimney inspection system.

2 Related Work

Employing MAVs for inspection and surveying tasks has been an active field of
research in recent years. Still, most MAVs are operated manually or via global
navigation satellite system (GNSS) waypoint following in obstacle-free distances
to objects (Nex and Remondino, 2014; Chan et al., 2015). High-resolution images
are taken at predefined positions for later inspection by an expert or for automated
reconstruction of a model employing off-the-shelf software.

One exception is the work of Ortiz et al. (2014) who developed a quadrotor
MAV for autonomous vessel inspection. Similar to our approach, they employ a
combination of laser localization and visual odometry for navigation, but use a
system of mirrors to direct some laser beams to floor and ceiling and employ a 2D
localization approach decoupled of the height measurements. In contrast, we per-
form full 3D simultaneous localization and mapping (SLAM) and 6D localization.

A lightweight MAV system aiming at industrial boiler inspection has been pre-
sented by Burri et al. (2012). Their work focuses on agile movements in industrial
environments with vision-based state estimation. Our goal is to build complete
surface models of chimneys and we are, thus, interested in steady slower, but more
accurate movements and a drift-free state estimate.

Intel demonstrated the inspection of an Airbus airplane with an MAV equipped
with Intel RealSense sensors and a high-resolution camera (Intel Corp., 2016a).
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In contrast to our work, the inspection was performed outdoors in much larger
distance from the inspected surface.

In order to estimate depth of object points instantaneously for obstacle avoid-
ance and state estimation, stereo cameras are used on MAVs, e.g., in the works
of Schmid et al. (2014) and Park and Kim (2014). Tripathi et al. (2014) use them
for reactive collision avoidance. The limited field of view (FoV) of cameras poses
a problem when flying in constrained spaces like chimneys where obstacles are
necessarily close to the MAV at all times.

To overcome these limitations, some MAVs are equipped with multiple (stereo)
cameras. Moore et al. (2014) use a ring of small cameras to achieve an omnidirec-
tional view in the horizontal plane, but rely on optical flow for velocity control,
centering, and heading stabilization only.

Grzonka et al. (2012) use a 2D laser scanner to localize the MAV in environ-
ments with structures in flight altitude and to avoid obstacles. This limits obstacle
avoidance to the measurement plane of the laser scanner.

Other groups combine laser scanners and visual obstacle detection (Tomić
et al., 2012; Huh et al., 2013; Jutzi et al., 2014). Still, their perceptual field is
limited to the apex angle of the stereo camera (facing forward), and the mostly
horizontal 2D measurement plane of the scanner. They do not perceive obstacles
above or below this region or behind the vehicle.

Özaslan et al. (2017) inspect tunnels with an MAV. Similar to our work, tunnels
are dark and relatively self-similar and thus they also rely on a laser scanner and
cameras with on-board illumination for localization. In comparison to our work,
the flight is semi-autonomous and the collected data is not exploited by means of,
e.g., surface reconstruction.

In chimney inspection, ascending flights are a main direction of movement and
the MAV is operating close to surfaces such that omnidirectional obstacle percep-
tion is required. We use a continuously rotating laser scanner with a spherical FoV
that does not only allow for capturing 3D measurements without moving, but also
provides omnidirectional obstacle sensing at comparably high frame rates (2 Hz in
our setup).

The proposed MAV extends our own previous work (Beul et al., 2015), an MAV
with a dual 3D laser scanner and three wide-angle stereo camera pairs. In contrast
to our prior work, the new MAV is significantly smaller and thus more constrained
regarding payload. It has less compute power—this puts higher demands on more
efficient processing—and only one stereo camera pair instead of three.

An earlier version of the ChimneySpector system has been presented at ICUAS
2017 (Nieuwenhuisen et al., 2017). We extend this with a new localization modality
for the transfer to larger chimneys, improved and faster surface reconstruction, and
new results from the application in a real industrial chimney.

3 System Setup

Our chimney inspection robot is based on the Ascending Technologies Neo hexa-
copter platform. With a diameter of about only 80 cm, the platform is well-suited
for indoor flights. Fig. 3 shows our MAV and the used sensor setup.

The platform is equipped with a front-facing Skybotix VI-Sensor (Nikolic et al.,
2014) used as stereo camera system for visual odometry. Each camera has a wide-
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Fig. 3: Sensor setup. Our MAV is a hexarotor equipped with a rotating 3D laser
scanner for localization and obstacle avoidance, a bottom camera and a stereo
camera system for visual odometry estimation, and a high-resolution stereo camera
for surface reconstruction. For better illumination and shorter exposure times, the
scanned wall is illuminated by bright LEDs. The laser scanner rotates around the
red axis to accumulate scan lines to full 3D scans.
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Fig. 4: Schematic overview of system components. Measurements from laser scan-
ner and stereo cameras are processed to generate pose and velocity estimates. We
filter these estimates with IMU measurements to get the MAV state with low la-
tency at 100 Hz. A mission planner generates and executes chimney coverage tours
or plans paths to all inspection poses for targeted inspection.

angle lens with an apex angle of 122◦ and a resolution of 752×480 pixels. Images
are captured with 20 Hz with hardware synchronization. The VI-Sensor is equipped
with an IMU, calibrated w.r.t. the two cameras. Another down-facing camera on
the bottom of the MAV is used to perceive a marker-based localization system.

On the top of the MAV, we installed a continuously rotating Hokuyo UST-
20LX laser scanner for localization and obstacle avoidance. The sensor rotates at
a frequency of 1 Hz, yielding a spherical 3D FoV. Due to the 270◦ apex angle
and its mounting pose, it covers the space above the MAV with 2 Hz—chimney
inspection starts at the ground and thus unknown obstacles are more likely to be
above the MAV—and the space below with 1 Hz.
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For surface reconstruction and inspection, we previously used an Intel Re-
alSense SR300 RGB-D camera (Intel Corp., 2016b) mounted at the rear-end of
the MAV.

Unfortunately, the estimated depth by the SR300 exhibits a static deformation
(Quenzel et al., 2017). Additionally, the camera produces only dark rolling shutter
images so that we decided to replace the sensor by a stereo camera rig. Hence,
we use a synchronized global shutter USB stereo camera system consisting of
two PointGrey Blackfly BFLY-U3-23S6C-C color cameras, which simplifies and
improves the surface reconstruction compared to rolling shutter acquisition. The
cameras are rotated by 90◦ to form a vertical stereo pair, running at 10 Hz. The
reason for this flipped setup is that the main direction of movement and, thus, the
main direction of motion blur is going to be horizontal during the inspection flight.
Thus, vertical image gradients will be more likely to be blurred while horizontal
gradients that are used for stereo matching by the proposed setup will be retained.

Two stripes of bright LEDs were added to light up the inspected area and
to obtain sharp and well-illuminated images, even in higher altitudes where no
external light sources exist. We further fixed the exposure time to 8 ms to avoid
strong motion blur during rapid motions.

The rig is mounted on a 32 cm long cantilever to bring the sensor closer to the
surface while mitigating the effects of turbulences when flying close to walls.

All navigation-relevant sensor data processing, localization, and planning is
performed onboard the MAV. Thus, the MAV can operate fully autonomously
without depending on an unreliable WiFi connection to a ground control station.
To facilitate this, the MAV is equipped with a small and lightweight Intel NUC PC
with Intel Core i7-5557U dual core CPU running at 3.1 GHz and 16 GB of RAM.
For surface reconstruction, we acquire high-resolution images of size 1920 × 1200
pixels instead of the previous FullHD. Consequently, the two cameras generate ap-
prox. 200 MB per second with our settings. To store this data stream, we equipped
the onboard PC with a fast Samsung Pro 950 SSD.

The 3D laser scanner and the Skybotix VI-Sensor are connected via Ether-
net, and the laser rotator via a serial-to-USB interface. Fig. 4 gives a schematic
overview of the flight-relevant system components. The overall weight of the sys-
tem including all sensors and batteries is about 3.4 kg.

4 Localization and State Estimation

In order to navigate in a chimney, robust localization and state estimation, not
relying on GNSS availability are crucial. Our multimodal localization and state
estimation pipeline exploits the specific characteristics of all sensors in terms of,
e.g., accuracy and speed.

Visual Odometry

Our visual odometry estimation is based on LIBVISO2 (Geiger et al., 2011), a
fast feature-based visual odometry library for monocular and stereo cameras. The
stereo odometry approach is very general and does not require a specific motion
model. The only prerequisite is that the input images have to be rectified and the
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Fig. 5: Laser-based localization. To track the MAV pose (red arrow) in an allocen-
tric frame, we aggregate individual laser scans over 500 ms (blue) and match these
to an allocentric map of the chimney (green).

calibration parameters are known. Similar to other feature-based methods, LIB-
VISO2 extracts and matches features over subsequent stereo frames and estimates
the egomotion by minimizing the reprojection error. To be robust to outliers,
RANSAC is used for initialization of the minimization step.

The interior of a chimney poses a challenging environment for visual odom-
etry algorithms—the tracked features are always close to the camera due to the
restricted space and the repetitive structures are self-similar. Thus, visual odom-
etry is prone to heavy drift and can easily loose track. We use only the position
derivative of the visual odometry and integrate it as noisy velocity estimate into
our state estimation filter at the stereo camera frequency of 20 Hz.

Laser-based Pose Tracking

To localize the MAV in an allocentric chimney frame, we track its pose by regis-
tering local multiresolution maps to a global map employing multiresolution surfel
registration (MRSR) (Droeschel et al., 2014). This yields a 6D pose estimate in
the map frame at 2 Hz (Fig. 5). We build the map of the chimney ad-hoc from
the takeoff position before a mission. For larger chimneys, our approach is able to
perform SLAM during a first simple exploration flight, e.g., flying straight up and
down in the chimney center. The allocentric map is represented by surfels with a
uniform size.

Since the laser scanner acquires complete 3D scans with a relatively low rate,
we incorporate the filtered egomotion estimate from visual odometry and mea-
surements from the Neo’s IMU to track the pose of the MAV. The egomotion
estimate is used as a prior for the motion between two consecutive 3D scans.
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Fig. 6: Laser obstacle map. To avoid collisions, we maintain an obstacle map
containing the most recent 3D laser scan and move it with our motion estimate
(black arrow). The blue arrow depicts the laser localization pose.

In detail, we track the pose hypothesis by alternating the prediction of the MAV
movement given the filter result and alignment of the current local multiresolution
map towards the allocentric map of the environment.

The allocentric localization is triggered after acquiring a 3D scan and adding
it to the local multiresolution map. We update the allocentric robot pose with
the resulting registration transformation. To achieve real-time performance of the
localization module, we only track one pose hypothesis. We assume that the initial
pose of the MAV is roughly known by starting from a predefined pose in the center
of the chimney or, if this is not possible, setting the pose in our control GUI. The
approximately known pose is then quickly refined by scan registration. Here, small
structures, e.g., a ladder commonly attached to chimney walls, are sufficient to
align with the map.

Fig. 5 shows the registration of a 3D scan to the map and an estimated 6D
pose. The resulting robot pose estimate from the allocentric localization is used
as a measurement update in a lower-level state estimation filter.

For obstacle avoidance, we create a local obstacle map consisting of the most
recent individual laser measurements that form a full laser rotation, i.e., 1 s of
aggregated laser scans, depicted in Fig. 6. The obstacle map is kept in an egocentric
frame by incorporating the MAV egomotion estimate.

Visual Detection of a Fiducial Ground Pattern

The chimney is highly symmetric and lacks visual or geometric distinctive features
that would allow to continuously and reliably identify an absolute measure of
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Fig. 7: The setup and exemplary recording from the down-facing wide-angle cam-
era. LED panels with printed AprilTags are placed on the ground in an arbitrary
arrangement (left and center). The robot detects these markers (right) and derives
an absolute measure of orientation.

orientation. To circumvent this caveat, we deploy an artificial pattern consisting
of several uniformly lit LED panels, each printed with a distinct AprilTag (cf.
Fig. 7). The panels are placed on the ground and are recorded with a down-
facing wide-angle camera attached to the bottom of the MAV. By sufficiently
reducing the exposure time of the camera, the panels are easily segmented within
the camera image, both accelerating and robustifying the detection. There is no
need to account for lens distortion in a preprocessing step as the used AprilTag
detector by Olson (2011) is able to perform well under moderate distortion. We
follow a SLAM approach in order to estimate the camera pose and the poses of all
tags at the same time, i.e., it is not necessary to chose a particular arrangement
of the LED panels. However, in order to define a unique coordinate system, one of
the panels is distinguished from the others. It has to be detected first and spans
a frame that defines the poses of the other panels and the MAV itself. The state
estimation itself is similar to our previous work (Houben et al., 2016a). Briefly,
every AprilTag is modeled by its four corner points

P = {pi,Ak
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with s being its size, within its own coordinate frame Ak, k = 0, . . . , n. Let A0

be the frame of the distinguished AprilTag. To model the image generation, we
transform the corner points into the camera frame C:(
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for all pi,Ak

∈ P and k.

TC,Ak
is the 4 × 4 matrix representing the rigid transform between the AprilTag

coordinate frame Ak and the camera frame C. Subsequently, we project the corner
points using the camera matrix KC and the bijective lens distortion function
f : R2 7→ Ω ⊂ R2:

π(x, y, z) = (x
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y
z ),

pi,C = f (π (KCpi,C)) .
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This yields two equations for each of the four corner points of each AprilTag. The
detection of the distinguished AprilTag with the detected corner points u0,i, i =
1, ..., 4 allows us to solve

argmin
TC,A0

4∑
i=1

(
f

(
π

(
KCI3×4TC,A0

(
pi,A0

1

)))
− u0,i

)2

(1)

in order to obtain the relative camera pose. Whenever an AprilTag is detected for
the first time, the relative pose of the tag with respect to the camera is computed
using Eq. (1). Finally, let A be the set of all detected tags in a frame. The camera
pose is computed using all present detections:

argmin
TC,A0

∑
k∈A

4∑
i=1

(
f

(
π

(
KCI3×4TC,A0

TA0,Ak

(
pi,Ak

1

)))
− uk,i

)2

.

Here TA0,Ak
denotes the rigid transform between the tags 0 and k. In regular

intervals, all detections of a frame are stored in a new keyframe to enable global
bundle adjustment and, thus, refine the estimated poses of the AprilTags and
keyframes by minimizing the overall backprojection error.

State Estimation Filter

We use two filters for state estimation: A low-level filter fuses measurements from
accelerometers, gyros, and compass to one 6D attitude and acceleration estimate
in the AscTec Trinity flight control unit. The second higher-level filter fuses linear
acceleration, velocity, and position information to a state estimate that includes
3D position and velocities. The higher-level filter is based on the Pixhawk Autopi-
lot (Meier et al., 2012) position estimator adapted to use visual odometry velocity
estimates and laser pose tracking, running on the onboard computer. IMU mea-
surements are incorporated at 100 Hz and a pose/velocity estimate is published at
the same rate.

In our position filter, we estimate the state

x =

px py pzvx vy vz
ax ay az

 ,

consisting of position p, velocity v, and acceleration a. The prediction step, based
on the current bias-corrected acceleration measurement ak,sens, is

pk = pk−1 + vk−1 · dt+
1

2
ak,sens · dt2,

vk = vk−1 + ak,sens · dt,
ak = ak,sens.

If sensor measurements are available, i.e., the measurement is not timed out,
the state is corrected accordingly. For velocity measurements vk,sens, coming from,
e.g., visual odometry, the state correction is:

vk = vk−1 + (vk,sens − vk−1) · w · dt,

ak = ak−1 + (vk,sens − vk−1) · w2 · dt2.
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Here, w is a weighting factor that indicates the reliability of the inputs.

Position measurements pk,sens, coming from, e.g., the laser scanner, are incor-
porated as

pk = pk−1 + (pk,sens − pk−1) · w · dt,

vk = vk−1 + (pk,sens − pk−1) · w2 · dt,

ak = ak−1 + (pk,sens − pk−1) · w2 · dt2.

If no new sensor measurements are received, we gradually degrade the velocity
estimate in the correction step until the filter stops.

5 Planning and Navigation

Capturing the surface of the chimney with the stereo camera requires a steady
flight path with a fixed distance between sensor and walls. Furthermore, the im-
ages need sufficient overlap in every direction to build a consistent model for the
whole flight. These demands are hard to fulfill in manual operation, especially
given the turbulent air movement close to the walls pushing the MAV away and
requiring constant control actions. Thus, we operate the MAV fully autonomously
except for start and landing. First, we plan an inspection path with 50 % image
overlap starting 1 m above the ground and moving upwards in a spiraling motion.
Fig. 8 shows an example inspection path in the coarse conic chimney model derived
from the chimney documentation. In our previous work, we flew smaller vertical
circles along this primary spiral to ensure a good image overlap to account for the
requirements of our RGB-D sensor setup. This pattern had been found to be ad-
vantageous over a simple spiraling motion in preliminary flight tests. With our new
improved camera setup, a single spiral is sufficient, speeding-up the capture flight
significantly. The inspection mission is planned, given a simple geometric model of
the chimney, the sensor characteristics (apex angles, best scanning distance), and
the part of the chimney to cover.

After a first complete inspection, the user can specify poses for a targeted sec-
ond inspection, e.g., to take close-up images of potential defects in the chimney.
The MAV processes a set of inspection poses and determines an optimal visting
order to achieve a short inspection flight employing a traveling salesman problem
solver (Fig. 9). Selection of poses for targeted inspection is assisted by a graph-
ical tool on the ground station that shows the taken images to an operator and
determines corresponding MAV poses for selected images. Thus, the operator can
select images where a possible defect is visible and mark these poses for the second
inspection.

To safely navigate in the vicinity of obstacles, e.g., probes, ladders, or open
hatches in the chimney, we employ reactive local obstacle avoidance. For this, we
extended our previous work on reactive obstacle avoidance (Nieuwenhuisen et al.,
2013). Based on a laser map of the vicinity of the MAV (see Fig. 6), we reduce
the MAV velocities towards close obstacles and actively push the MAV back from
obstacles if the distance to an obstacle falls below a safety distance. The resulting
velocity command vc given a target velocity vt and the artificial force F induced
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Fig. 8: Coverage tour in the chimney. Based on a few chimney parameters, we plan
sensor coverage tours in a coarse geometric chimney model (left, red). The MAV
moves from the bottom to the top in a spiraling motion (sensor poses depicted by
coordinate axes). In contrast to the initial laser map captured from the starting
position (center), the geometric model covers the complete chimney. Right: Photo
of the chimney for comparison.

by an obstacle is calculated as

vo =
(
vt · F̂

)
F̂, (2)

vc = vt − sslowvo + spushF̂, (3)

where vo is the part of the target velocity vt towards the obstacle. Negative
parts of vo, i.e., velocities maneuvering the MAV away from the obstacle, are
set to zero. The scalar factors sslow and spush denote the strength of slowing
down the MAV and actively pushing it away from obstacles (see Fig. 10). Their
value is a linear interpolation between free-space distance and the safety distance,
and an interpolation between safety distance and critical distance, respectively.
This extends our previous approach on reactive obstacle avoidance to allow for
less conservative safety distances, as required by our stereo camera, while still
maintaining safe navigation.

Velocity setpoints for the MAV are generated by means of a PID-controller
in the integrated mission planning and navigation node when executing coverage
or inspection missions. These setpoints are propagated to our obstacle avoidance
module. After processing these setpoints, the resulting safe velocity setpoints are
fed to the velocity controller to generate attitude and thrust commands. Our
velocity controller is based on the linear model predictive controller (MPC) by
Kamel et al. (2017), modified to work with velocity-only setpoints. The resulting
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Fig. 9: Targeted inspection. After an operator selected targets to reinspect, the
observation poses (green arrows) are sent to the MAV where a mission planner
finds an optimal visting order. The left figure depicts all possible paths between
view poses and the start/return pose (blue arrow), the right figure shows the best
mission path. The MAV navigates to these poses autonomously and hovers there
for several seconds to acquire more detailed data of the surface. The chimney map
is depicted by black dots.
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Fig. 10: Scaling factors for reactive obstacle avoidance. If the MAV is too close
to an obstacle, it is actively pushed away by a force scaled with spush. Entering
a safety zone around obstacles is prevented by reducing velocities towards the
obstacle with factor sslow.

attitude-thrust setpoint is controlled by the low-level AscTec Trinity Autopilot of
the MAV.

6 Surface Reconstruction

We aim at creating a high-resolution reconstruction of the chimney surface. In
contrast to our previous work (Nieuwenhuisen et al., 2017), we use a rear-facing
synchronized stereo camera mounted at a cantilever arm with additional illumi-
nation. The stereo camera is calibrated offline by using the Kalibr (Furgale et al.,
2013) toolkit.

Chimney inspection experts are particularly interested in fine details showing
irregularities within the surface, e.g., cracks in the wall. Hence, we use the full
resolution of 1920× 1200 px for the stereo cameras.



14 Quenzel et al.

RGB CameraRGB Camera

Fig. 11: Schematic overview of our surface reconstruction pipeline. We derive an
accurate camera trajectory, estimate the 3D structure of the surface, correct the
vignetting and fuse the data to colored meshes. This process is either done onsite
with SLAM and the fast reconstruction yielding a first result of the inspection
mission and later offsite using the dense reconstruction with SfM and MVS from
COLMAP.

Fig. 11 shows an overview of our surface reconstruction pipeline. In contrast
to our prior work, we add a new low-latency coarser reconstruction which is
done within minutes onsite on a ground station laptop. This fast reconstruc-
tion enables the inspection experts to define points of interest for a second flight.
The dense reconstruction using the Structure-from-Motion (SfM) and Multi-View
Stereo (MVS) pipeline of COLMAP (Schönberger and Frahm, 2016; Schönberger
et al., 2016) is done offsite. We further improve the quality of the reconstructed
meshes by correcting camera-static color and vignetting effects.

The real-time estimated MAV pose, used for control and navigation, is not
accurate enough for surface which demands a higher precision to prevent recon-
struction artifacts. This prohibits the direct application of a mapping with known
poses approach. Hence, we reestimate the MAV trajectory from the onboard stored
stereo camera stream using a modified multi-camera variant (Houben et al., 2016b)
of ORB-SLAM (Mur-Artal et al., 2015).

Fast Reconstruction

The fast reconstruction uses only the keyframes created by the SLAM system with
their respective poses and the triangulated map points. The map points are first
meshed by the Poisson surface reconstruction included in the Point Cloud Library
(Rusu and Cousins, 2011). We map the texture onto the resulting mesh by simply
projecting triangles into the keyframes. The keyframe with the largest projected
area is chosen as a triangles reference keyframe. We chose the largest projection,
since it typically corresponds to the locally closest keyframe with most detail and
has the smallest incident angle. The projection area is extracted to texture the
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triangle. The resulting textured mesh can then be unwrapped to create the 2D
orthoimage.

To cope with the self-similar chimney environment, we added restrictions on
loop-closing to perform only if no connections between the candidates local maps
are available. So far, the loop-closing was only appearance-based using a Bag-
of-Words approach, which did not perform well under varying perspectives that
often occur during exploration flights with minimal overlap. Candidate frames were
often discarded since the number of matches was too low. To address this issue,
we added a pose-dependent loop closing on found candidates based on frustum
intersection and local map matching with two-way verification. For each candidate
frame with intersecting frustum, we gather the local map points and match these
against the current keyframe and vice versa. From these matches, we can establish
connections between the local maps, find equivalent map points and estimate a
correcting transform between candidate and current keyframe. Afterwards, we run
a global bundle adjustment (GBA) using Ceres-Solver (Agarwal et al., 2016) on
the whole map. To further improve the accuracy and reliability, we first optimize
for the keyframe poses and map point positions with fixed intrinsics. In a second
iteration, the intrinsic parameters—including lens distortion—are refined in the
optimization. To prevent scale drift, we fix the transformation between the stereo
color camera pair. Due to the synchronization of the color cameras, we have only
one pose to optimize per frame pair. After convergence, the found ORB-features for
each keyframe are again undistorted using the newly found distortion parameters,
since only undistorted keypoints are used throughout the SLAM pipeline.

Color and Vignetting Correction

The intensity of the textured mesh varies strongly, depending on the triangles
position in the reference keyframe. This so called vignetting effect decreases the
measured intensity with increasing distance to the image center and is a property
induced by the camera lens and in our case in composition with the additional
illumination. In order to provide a view of the reconstructed surface with uni-
form illumination and contrast, we adapted our online depth calibration method
(Quenzel et al., 2017), previously developed for the SR300, to estimate pixel-wise
correction factors for the color image. We show the effect of devignetting in Fig. 12.

The sparse map is projected into the keyframes and the corresponding color
values are extracted. Hence, for each pixel u within the image plane Ω we might
get multiple color triplets or none at all. The median of all measurements for a
pixel is used to create a reference value Ir per channel. We obtain scaling factors su
by dividing the reference value by the measurements value, i.e., the recorded color
within the image, and calculate a fitting thin plate spline for each color channel.
Since not every point has enough scaling factors to obtain independent correction
factors, we have to approximate the dense correction function. In fact, the scal-
ing factors are only sparsely distributed. For this reason, the thin plate spline is
employed due to excellent fill-in properties, ease of implementation, efficiency and
the minimal bending energy property. The two-dimensional thin plate spline is
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defined as:

f(u) =
∑
i=1

ci · φ (|u− di|) + vᵀ ·
(

1
u

)
, (4)

φ(r) = r2 · ln (r) . (5)

We place the spline control points di ∈ Ω statically in a regular grid of size 5× 7
on the image plane. The parameters c,v are easily calculated by minimization of
the least squared error:

argmin
c,v

M∑
i

‖f (ui)− si‖, (6)

under the additional constraints:

N∑
i

ci = 0, (7)

N∑
i

ci,x · di,x = 0, (8)

N∑
i

ci,y · di,y = 0. (9)

This minimization is achieved by solving an over-determined linear system of equa-
tions using conjugate gradient (CG):(

A X
D 0

)(
c
v

)
=

(
s
0

)
, (10)

A =

 φ (|u1 − d1|) . . . φ (|u1 − dN |)
...

. . .
...

φ (|uM − d1|) . . . φ (|uM − dN |)

 ,

X =

1 u1

...
...

1 uM

 , D =

(
1 . . . 1
d1 . . . dN

)
.

Robustness against outliers is improved by means of iteratively reweighted
least squares (IRLS) (Holland and Welsch, 1977). The usage of CG further speeds
up this process since a previous estimate of the solution can be used for the next
iteration.

Given the resulting thin plate spline, we can correct the vignetting by applying
the inverse attenuation function:

au = f(u),∀u ∈ Ω,

V (u) =
au

max
u∈Ω

au
,

Ia,u = Iu · V (u)−1 .
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Fig. 12: Result of vignetting correction: Left: The brightness decreases towards the
corners of the original image. Right: The metal ladder (red circle) becomes more
distinct after correction.

The maximum over all scaling factors within a color channel is used to scale the
values between zero and one, since vignetting is only observable up to scale (Engel
et al., 2016). Vignetting is generally exposure-dependent, but since the cameras
have fixed exposure time, we can simply apply the above correction. The thin
plate splines are evaluated once for each pixel and used for all images of the same
camera.

In contrast to the GBA, the correction is only applied during texture cre-
ation and not during SLAM. Application during SLAM would require repeated
keypoint detection, descriptor extraction—and possibly matching—for keyframes.
This would increase computation time tremendously.

Dense Reconstruction

After capturing all images, we employ COLMAP (Schönberger and Frahm, 2016)
to further improve the accuracy and density of the chimney surface model. The
vignetting correction model optimized during the fast reconstruction is then ap-
plied to all images for reconstruction. The image corners still contain black regions.
Hence, we crop around the image center to 1775× 1100 px resolution to remove
this border. SIFT features are extracted from the images and the reference tra-
jectory is estimated from every fourth image per camera. The estimation includes
the intrinsic parameters of both cameras, these are shared between all images of
a camera.
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For dense reconstruction, we previously used MVE (Fuhrmann et al., 2014).
This often resulted in small holes in the mesh where dark regions with low in-
tensity gradients are present. Hence, we decided to employ the MVS module of
COLMAP (Schönberger et al., 2016), which automatically fills these. This has
the further advantage, that COLMAP makes extensive use of available GPUs to
speed up computation, while MVE only relies on the CPU. The final mesh is then
exported from the MVS point cloud using Poisson surface reconstruction. The de-
tail of the mesh is high enough to not run Color Map Optimization (Zhou and
Koltun, 2014) to refine image poses with respect to the mesh, although this can
still increase the accuracy.

In order to use Color Map Optimization, we first sub-sample the mesh mul-
tiple times and then optimize the image poses w.r.t. the mesh s.t. the intensity
differences of vertices between observing images is reduced. For a better result,
we now use all captured and corrected images, instead of only the subset used
for sparse and dense reconstruction. The image poses are initialized by linear
interpolation from the SfM poses. The final vertex color is obtained as a viewing-
dependent weighted average of all vertex observations. A section of the generated
high-resolution mesh is shown in Fig. 13. Finally, the reconstructed mesh is un-
wrapped to yield an easily inspectable 2D visualization, depicted in Fig. 14.

Mesh Unwrapping and Visualization

As an initial step, we place the chimney mesh into a canonical coordinate system,
chosen as being centered at the origin and having the principal axis of the chim-
ney aligned with the z-axis of the world. Therefore, we estimate the center point,
the radius and the principal axis that best fit the chimney data using RANSAC.
Afterwards, the rotation that aligns the principal axis of the fitted cylinder with
the z-axis of the world is computed using the Rodrigues’ formula (Blanco, 2010).
Unwrapping the mesh is subsequently performed by computing cylindrical coor-
dinates for each mesh vertex in our canonical coordinate system.

In order for an expert to perform a further inspection of the chimney, we need
to render an image large enough for the possible surface defects to be visible on
it. Given the size of the mesh and the texture assigned to it, we empirically chose
a resolution of 19 000× 12 000 px = 228 Mpx. To perform the rendering of such a
large image, we rely on the approach of tile rendering. Hence, we divide the image
into smaller tiles of size 800× 600 px, render them individually and assemble them
in one image. To prevent sending the whole mesh (approx. 3 GB) to the GPU to
be rendered, which will fail in the case of insufficient memory, we rather render
the mesh triangle by triangle while removing those that lie outside the frustum of
the camera tile.

Not only the visual image of the scene is of interest to the expert, but also
depth discontinuities. Hence, we generate a depth map in which each vertex is
assigned with the depth deviation to the fitted cylinder. However, the chimney
does not have a perfectly cylindrical shape but rather a slightly oval one. In order
to cope with this, we make the assumption that bricks and cracks in the wall
correspond to high frequency details while the slight oval shape corresponds to
lower frequency information. Based on this assumption, we filter the mesh with a
Laplacian operator to extract the fine details and effectively push the mesh more
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Fig. 13: Comparison of reconstructed surface with a photograph. Left: Close up of
the rightmost chimney wall in our reconstruction depicted in Fig. 14. Right: Image
of the surface taken with a compact camera. The defects in the wall are clearly
visible in the reconstruction (circled yellow).

Fig. 14: 2D visualization of the chimney walls. Reconstructed surface of seven walls
from the mock-up chimney shown in Fig. 2. Despite some warping effects caused
by the unwrapping of the 3D structure, all details are accurately reconstructed.

in line with the ideal cylinder while still retaining the protruding bricks and cracks
on the surface. Results of this mesh unwrapping are depicted in Fig. 14 and Fig. 20.

7 Results

We tested and demonstrated our integrated system in two close-to-application sce-
narios: Inspection and reconstruction of a narrow chimney mock-up and a decom-
missioned industrial chimney. Both scenarios were defined in close collaboration
with a chimney inspection service contractor. Videos of our experiments can be
found on our website.1

1 http://www.ais.uni-bonn.de/videos/JINT_2018_ChimneySpector

http://www.ais.uni-bonn.de/videos/JINT_2018_ChimneySpector
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Fig. 15: 3D reconstruction of the chimney mock-up. The highly detailed textured
mesh (shown from two perspectives) is the result of our dense surface reconstruc-
tion after an initial coverage flight.

Experiments in Chimney Mock-up

First, we used an octagonal chimney mock-up with an inradius of 1.8 m and a
height of 4.4 m, shown in Fig. 2. The mock-up consisted of eight wooden panels
with styrofoam structures on the inner sides—resembling the stonework and con-
crete patterns that can be found in many industrial chimneys. Single structure
elements were of size 1.0× 0.5 m and each of the stone walls—except of the wall
containing an entry to the mock-up—was plastered with a single type of elements,
resulting in repetitive patterns. In addition, one panel carried a rusty iron surface
as found in chimneys with a metal alloy on the inner side. Some bricks in the
styrofoam elements were carved out to represent defects. These experiments were
performed with an SR300 sensor instead of our stereo camera setup employed in
later experiments. The then-required sensor distance of 0.8 m to 1.0 m to the sur-
face yielded a remaining safe navigation space with a diameter of only ≈1.2 m.
The mock-up was designed and built by the chimney inspection service contractor
to facilitate the transferability to real inspection applications.

We started with an initial coverage flight to acquire RGB-D data of the chim-
ney surface. For surface coverage, the MAV followed a horizontally and vertically
spiraling pattern with the RGB-D sensor directed to the nearest surface in or-
der to enable loop closings in the later surface reconstruction. Initial flight tests
showed that the depth data of the used sensor were not sufficiently accurate for
surface reconstruction due to the turbulent flight. Thus, we disregarded the depth
measurements and processed only the RGB information.

The flight to acquire the data used for the reconstruction shown in Fig. 15 took
seven minutes. We covered 36 m2 of the chimney surface with a single charge of
batteries. All defects were covered by that area. The flight was fully autonomous,
with the exception of start and landing.

After the coverage flight, we downsampled the recorded video stream from the
RGB-D sensor to speed-up the process of transferring it to a ground control station.
Here, an operator can identify and store poses for a more detailed inspection in
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the video stream. In the test case, the operator could identify all ten defects in the
images. The MAV poses, corresponding to the images showing defects, were saved
for a second flight to reinspect those defects. To exemplify the targeted inspection
of previously identified defects, the MAV then autonomously planned an inspection
mission and followed a path, adopting all stored poses in a useful order and held
its position for several seconds to demonstrate reaching the desired position. All
poses were successfully reached and the defects were clearly identified in the data
captured during the second flight. After the targeted inspection, the acquired data
was transferred to the ground control station for further offline processing.

On average, we acquired depth information for 95.5 % of the pixels, thus, the
sensor was almost always positioned in an optimal distance to the surface.

In a post-processing step, we reconstructed the surface of the chimney walls.
We could successfully reconstruct all of the eight segments. All segments covered
with artificial stonework were reconstructed without major artifacts. The recon-
struction of the rusty metal segment was sufficient for visual inspection. Depth
could not be estimated accurately for some parts of the metal wall as the im-
ages were too dark to yield enough features—a side effect of the relatively low
exposure time required to avoid motion blur. This issue was addressed with a
new high-resolution stereo camera setup, additional onboard illumination and an
intermittent devignetting step in later experiments. Overall, the representation
encompasses all interesting details, in particular, all ten defects carved into the
styrofoam wall. Fig. 14 shows the resulting unwrapped 2D visualization of the
seven mock-up walls with stonework, Fig. 15 shows the 3D model of the complete
chimney.

The computational load during the coverage flight posed a particular challenge
due to the laser and visual odometry-based state estimation on the two available
physical CPU cores. In combination with recording of the data streams from both
the SR300 and stereo cameras desired for optimal post-processing, navigation and
MAV control showed an unstable behavior during initial tests. Hence, we refrained
from recording all non-crucial data—including the stereo cameras—and estimated
the MAV trajectory for surface reconstruction solely from the the monocular vi-
sion data from the SR300 sensor. Furthermore, we captured frames at a reduced
frequency of 30 Hz instead of the desirable maximum frequency of 60 Hz. Thus,
post-processing was more challenging due to the necessary compensation for larger
inter-frame motions. Still 200 MB/s were recorded from the SR300 sensor during
the coverage flight. With these means towards reducing the system load and by
tuning the onboard PC to reach a steady data flow without peaks, we accomplished
stable and safe system performance.

The 3D laser scanner served well for low-frequency allocentric localization in a
previously recorded map in combination with visual odometry from the VI stereo
sensor to compensate for the MAV motion between scans. Furthermore, this com-
bination yielded a high-frequency positioning and state estimation and allowed
for stable MAV control when filtered with IMU readings. The stability of this
approach allowed us to rely on a pre-chosen initial pose in order to resolve the
orientation ambiguity by the symmetric chimney cross section.
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Fig. 16: Fast reconstruction. For visualization purposes, we reconstructed a coarse
model of the chimney within minutes. The geometry of the surface is approximated
by a very reduced number of vertices compared to the dense reconstruction. We
meshed the vertices and applied a texture to the model to provide the operator
with an initial visual impression of the inspection mission. From left to right:
Wireframe model, untextured surface, textured chimney model.

Experiments in a Decommissioned Industrial Chimney

Based on the experiments in the chimney mock-up, we improved our system setup
and transferred our system to a scenario closer to the inspection of actual in-
dustrial chimneys. We evaluated and demonstrated our system in a chimney of
a decommissioned coking plant at the Zollverein Coal Mine Industrial Complex
in Essen, Germany. The total height of the chimney is 98 m. The inradius at the
bottom is 2.75 m and tapers to 2.2 m on the top. With our improved camera setup,
we could increase the distance to the surface to 1.5 m, resulting in a larger covered
area. Furthermore, we could omit the smaller vertical spirals for better coverage of
the surface. Both improvements yielded a much higher surface coverage speed. The
MAV flew at a maximum speed of 1.5 m/s. In total, the area covered with a single
charge of batteries could be increased to 140 m2 due to the faster coverage proce-
dure. The autonomous flight time was 3:27 minutes, plus an additional minute for
manual start, landing, and hovering phases. As a result, we covered seven times
the surface area per flight time than with our previous setup and reconstruction
methods.

After the initial coverage flight, a first 3D model of the chimney was processed,
employing our fast surface reconstruction method. This fast reconstruction step
took approximately 5:30 minutes (30 s for vignetting correction, 5 min for creating
the textured mesh), plus the time to load the data (due to an unoptimized loading
step, this equals the flight time). This mesh, shown in Fig. 16, contained 43 463
vertices and 80 980 textured faces. All processing was performed on a notebook
equipped with an Intel Core i7-6700 HQ CPU running at up to 3.6 GHz and 32 GB
RAM. This fast reconstruction helps to assess if the data collection was successful
in a short period of time after the flight.
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Fig. 17: 3D reconstruction of the Zollverein chimney. In addition to the spiral
coverage of the chimney, the MAV covered a part from the bottom to the begin
of the pattern during start, and a higher part of the chimney with a straight
ascending flight before landing.

In parallel, an operator has identified three defects for targeted inspection
on the ground control station employing the captured image stream. A targeted
inspection mission has been planned and all three defects have been reached au-
tonomously in a single flight. The MAV hovered for several seconds at each in-
spection pose to capture data.

A highly detailed 3D model was created in an offline processing step offsite.
Fig. 17 shows the resulting model, and Fig. 20 the unwrapped orthoimage. The pre-
cise dense reconstruction took approximately 3 h to 10 h for the SfM calculations,
48 h for MVS, and another 6 h for fusion and meshing. These calculations were
performed on a workstation equipped with eight NVIDIA Titan Xp GPUs—six of
them were used for MVS—each with 12 GB RAM and two Intel Xeon e5-2683v4
CPUs running at up to 3 GHz from which up to ten cores where used in parallel
for the SfM calculation. The resulting textured mesh contained 80 718 456 colored
vertices and 161 643 410 faces.

We compare the estimated trajectories of our laser pose tracking, the trajectory
based on AprilTag detections and the filtered trajectory in Fig. 19. Fig. 18 shows
the estimated yaw of the MAV during chimney inspection. Both, laser pose track-
ing and AprilTag detections qualitatively show similar trajectories. The magnifi-
cation, however, underlines the characteristics of the different modalities. Whereas
the laser pose tracking is always available, it shows some rotational misregistra-
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Fig. 18: Yaw of the MAV during chimney inspection. Large: Estimated yaw of the
entire inspection flight of laser pose tracking, filter and AprilTag detections. Small:
Magnification of the data between 86 s and 96 s.

tions due to the rotational symmetry of the chimney. The yaw estimates based
on the fiducial ground pattern are smoother and do not suffer from the symme-
tries as they measure an absolute angle but might temporarily not be available
when the MAV is pitching in larger heights, e.g., after 91 s in the plot. Between
88 s and 89.5 s, the laser yaw estimate had an offset of ≈10◦, but the AprilTag
detections were available. Thus, laser pose tracking and the detection of a fiducial
ground pattern can aid the state estimation filter in different situations. Further-
more, while the AprilTag detections give an absolute yaw estimate, the laser pose
tracking gives a much better estimate of the position relative to the chimney.

In order to compare the results of the state estimation with the reconstruc-
tion, we evaluated the absolute trajectory error (ATE). As a reference we chose
the poses found by the SfM reconstruction from COLMAP since we assume this
trajectory to be the most accurate. The reference trajectory was rescaled such that
the baseline matched the calibrated baseline. The trajectories were then aligned
using the method from Horn (1987). The mean ATE without intrinsic refinement
during GBA using the fast reconstruction was about 0.311 m. This was reduced
with the intrinsic refinement to only 0.074 m. For the laser pose tracking trajectory,
we get a mean ATE of 0.20 m with a standard deviation of 0.14 m. The resulting
state estimate from our filter had an ATE of 0.13 m (0.06 m).

The color correction improved the dense reconstruction, as can be seen in
Fig. 21. The difference between merged observations during fusion of dense depth
maps is reduced.
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Fig. 19: Estimated trajectories of the chimney inspection. The raw trajectories
were estimated by laser pose tracking and the AprilTag detections. While both
sensors show significant noise, the filtered trajectory is smooth.

8 Conclusions

In this work, we have presented an integrated chimney inspection system based
on a lightweight MAV platform. The small form factor severely restricts payload,
thus, choosing lightweight sensors and a small onboard PC with limited compute
power is essential. To this end, we reduced the onboard sensor setup from our pre-
vious work to a smaller subset and still maintain good real-time state estimation
and obstacle perception. In addition, we added a new sensor for surface recon-
struction. Integrating the whole sensor, state estimation, and control setup on a
lightweight MAV posed challenges but could be successfully achieved. Important
lessons learnt are that special care has to be taken on required data for online
and offline processing and a sensible assessment of the required accuracies and
real-time performance for every part of the system has to be performed. Overall,
the MAV can cover chimney surfaces autonomously and a high-quality surface
reconstruction is possible in a post-processing step. Defects identified by experts
can be reinspected at more detail in a second mission.

We have proven the applicability of our system in an experiment in a decom-
missioned industrial chimney. Here, we were able to cover 140 m2 of the surface in
3:30 minutes. The total surface of the chimney is approximately 1520 m2, thus, we
could cover the complete surface with 11 of such flights, resulting in 38:30 min-
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Fig. 20: Unwrapped surface reconstruction. Top: The unwrapped textured mesh of
the decommissioned chimney. Bottom: Corresponding depth map. In contrast to
the fast reconstruction, the finer geometric structure of the chimney is visible as
well. Defects like the large crack in the center of the images can be spotted easily
by visual inspection of the depth map.

utes of coverage time. With an estimated overhead of 2 min per flight for ascent,
descent, and battery change, an MAV-based inspection system could cover this
exemplary industrial chimney in approximately one hour.
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