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Abstract

Fully autonomous exploration and mobile manipulation in rough terrain are still beyond

the state of the art|robotics challenges and competitions are held to facilitate and bench-

mark research in this direction. One example is the DLR SpaceBot Cup 2013, for which we

developed an integrated robot system to semi-autonomously perform planetary exploration

and manipulation tasks. Our robot explores, maps, and navigates in previously unknown,

uneven terrain using a 3D laser scanner and an omnidirectional RGB-D camera. We de-

veloped manipulation capabilities for object retrieval and pick-and-place tasks. Many parts

of the mission can be performed autonomously. In addition, we developed teleoperation

interfaces on di�erent levels of shared autonomy which allow for specifying missions, moni-

toring mission progress, and on-the-y recon�guration. To handle network communication

interruptions and latencies between robot and operator station, we implemented a robust

network layer for the middleware ROS. The integrated system has been demonstrated at the

DLR SpaceBot Cup 2013. In addition, we conducted systematic experiments to evaluate

the performance of our approaches.
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1 Introduction

Robotic systems that explore and manipulate their environment have many potential applications such as

search and rescue, remote inspection, or planetary exploration (e.g. [Mehling et al., 2007,Deegan et al., 2006,

Guizzo and Deyle, 2012, Stilman et al., 2009, Borst et al., 2009, Schenker et al., 2003]). Robots operating

within such real-world environments will have to navigate in complex terrain and reach, physically interact,

pick up, retrieve and manipulate a variety of objects. Such mobile manipulation is an activity that humans

naturally perform by combining two capabilities: locomotion and manipulation. The need of mobile manip-

ulation has been addressed in the past with the development of a variety of mobile manipulation systems

consisting of robotic arms installed on mobile bases|with the mobility provided by wheels, chains, or legs.

While for many application domains fully autonomous operation in the complex, unstructured environments

is not yet feasible, it is desirable to increase the level of autonomy in order to reduce the operator workload

and to overcome communication restrictions. Autonomy also enables faster operations, which is an important

feature in time-critical application scenarios such as search and rescue operations.

In this paper, we present an advanced robotic system for semi-autonomous exploration and manipulation

tasks. With our system we competed in the DLR SpaceBot Cup 2013 robotics competition. In this competi-

tion, a robot has to explore previously unknown planetary-like terrain and build a 3D map of the environment.

The robot needs to �nd and retrieve objects such as a cup-like container and a battery, and install them at

a base station. One further di�culty of the competition setting is a communication link between operator

station and robot that is a�ected by several seconds of latency and intermittent wireless connection.

Our Explorer robot, shown in Fig. 1, carries multiple 3D sensors, has a fast onboard computer, and a

robust wireless communication link. With its six-wheeled drive and a 7 DoF manipulator, it can operate

with a high level of autonomy. We developed e�cient methods for allocentric and egocentric mapping of

the environment, assessment of drivability, allocentric and egocentric path planning, object manipulation,

intuitive teleoperation interfaces, and a robust communication system. In this article, we describe robot

hardware and our novel software contributions which utilize the rich sensory equipment of our robot. We

evaluate the system in several �eld experiments and report on the performance at the DLR SpaceBot Cup

2013 competition.



Figure 1: Left: Explorer robot with six-wheeled drive and 7 DoF arm for mobile manipulation in rough
terrain. Center: The sensor head carries a 3D laser scanner, eight RGB-D cameras, and three HD cameras.
Right: Our operator station consisting of four monitors and input devices including a joystick.

2 Related Work

Several robot application domains include navigation in unknown, rough terrain, mobile manipulation, and

shared autonomy. E.g., the tasks performed by rescue robots range from exploration and mapping to mobile

manipulation. The books of [Tadokoro, 2010] and [Murphy, 2014] give a good overview about the state-

of-the-art in disaster-response robots. Space applications for exploration robots have a stronger focus on

navigation with shared autonomy under communication latency and restrictions in the availability of com-

munication [Chhaniyara et al., 2012,Maimone et al., 2007,Biesiadecki et al., 2007,Seelinger et al., 2012].

2.1 Exploration and Navigation in Rough Terrain

Frequently, the application domains require the robot to navigate in uneven, rough terrain. Recently, much

research has been devoted to simultaneous localization and mapping (SLAM) in 3D, exploration, and navi-

gation in rough terrain.

For mapping and localization in a previously unknown environment, early research focused on the 2D sub

problem|assuming the robot moves on at ground. As robots are increasingly deployed in less constrained

environments, 3D mapping and localization has become an active research topic. To be applicable on

autonomous robot platforms, su�cient onboard sensors are required, and the methods must be memory and

run-time e�cient.

Using multi-resolution maps to maintain high performance and low memory consumption has been inves-



tigated by several groups. [Hornung et al., 2013], for example, implement a multi-resolution map based on

octrees (OctoMap). [Ryde and Hu, 2010] use voxel lists for e�cient look-up. Both of these approaches

consider mapping in 3D with a voxel being the smallest map element. Similar to our approach, the 3D-

NDT [Magnusson et al., 2007] represents point clouds as Gaussian distributions in voxels at multiple res-

olutions. Our multi-resolution surfel maps (MRSMap [St�uckler and Behnke, 2014]) adapt the maximum

resolution with distance to the sensor to incorporate measurement characteristics. Our registration method

matches 3D scans on all resolutions concurrently, utilizing the �nest common resolution available between

both maps, which also makes registration e�cient. By exploiting the neighborhood of scan lines due to the

continuous rotating 3D scan acquisition, map aggregation can also be made very e�cient.

For SLAM, pose graph optimization methods are state-of-the-art. They adjust the scan poses to min-

imize scan registration errors. A stop-and-scan scheme as used in our approach can be bene�cial, as

it simpli�es mapping and avoids inaccuracies that could arise with approaches performing mapping un-

der motion. This comes with a trade-o� for exploration speed, though. Some SLAM approaches

integrate scan lines of a continuously rotating laser scanner into 3D maps while the robot is mov-

ing, e.g. [Bosse and Zlot, 2009, Elseberg et al., 2012, Stoyanov and Lilienthal, 2009, Maddern et al., 2012,

Anderson and Barfoot, 2013,Droeschel et al., 2014,Holz and Behnke, 2014].

For online localization in a 3D map, several approaches have been proposed. [Kuemmerle et al., 2007], for

example, apply Monte Carlo localization in multi-level surface maps [Triebel et al., 2006], which represent

occupied height intervals on a 2D grid. [Klaess et al., 2012] model the environment in surfel maps in a �xed

resolution, similar to the 3D-NDT [Magnusson et al., 2007]. They then localize in these maps using a tilting

2D laser by matching line elements extracted from the 2D scan lines in a particle �lter framework, assuming

motion of the robot in the horizontal plane. Our approach does not need to make this assumption and is

suitable for rough terrain.

Path planning for navigating in planar 2D indoor environments is a well-studied topic in

robotics [Hornung et al., 2012, Klaess et al., 2012]. For navigation on non-at terrain, several approaches

generate 2D cost maps from sensor readings to essentially treat path planning in 2D [Lee et al., 2008,

Gerkey and Konolige, 2008, Ferguson and Likhachev, 2008]. Frequently, the terrain is modeled in eleva-

tion grid maps, on which planning can be performed [Kwak et al., 2008, Kewlani et al., 2009]. Recently,

[Stoyanov et al., 2010] proposed a wavefront-propagation path planner in 3D-NDT maps. We use e�cient

search-based planners and propose a robust approach to transition between neighboring 3D scans.



Judging traversability of terrain and avoiding obstacles with robots|especially planetary rovers|has

been investigated before. [Chhaniyara et al., 2012] provide a detailed survey of di�erent sensor types and

soil characterization methods. Most commonly employed are LIDAR sensors, e.g. [Gingras et al., 2010,

Hebert and Vandapel, 2003], which combine wide depth range with high angular resolution. Chhaniyara et

al. investigate LIDAR systems and conclude that they o�er higher measurement density than stereo vision,

but do not allow terrain classi�cation based on color. Our RGB-D terrain sensor provides high-resolution

combined depth and color measurements at high rates in all directions around the robot. We employ omnidi-

rectional depth cameras, which provide instantaneous geometry information of the surrounding terrain with

high resolution. In many environments, color or texture do not provide su�cient traversability information,

so 3D geometry is needed.

We present an integrated system for obstacle-avoiding driving, SLAM, and path planning in rough terrain.

In the context of space robotics, integrated navigation systems with shared autonomy have been successfully

deployed for planetary exploration missions. The NASA Mars Exploration Rovers demonstrated semi-

autonomous navigation on Mars for several years [Maimone et al., 2007, Biesiadecki et al., 2007]. They use

stereo visual odometry to accurately track the position of the rover, such that slip in di�cult terrain can

be detected, and hazardous commands can be aborted. Operators plan paths via waypoints which are then

executed using hazard-avoiding control on the robot. Since command sequences can be transmitted typically

up to once per day, autonomous navigation into the unknown has proven to be an important feature to utilize

mission time well.

2.2 Mobile Manipulation

Telemanipulation systems have been developed for applications that are inaccessible or hazardous for hu-

mans such as minimally invasive surgery [Ballantyne and Moll, 2003,Hagn et al., 2010], explosive ordnance

disposal [Kron et al., 2004], and undersea [Whitcomb, 2000] or space applications [Pedersen et al., 2003].

The premise of telemanipulation systems is to utilize the cognitive capabilities of a human operator to solve

dexterous manipulation tasks such as object pick-and-place, opening a door, or tool-use. However, this

approach also leaves signi�cant load to the operator. Implementing the required cognitive capabilities in

autonomous systems is an open research topic. Many approaches to grasp and motion planning in unstruc-

tured environments assume that the geometry of objects is known and identify a set of stable grasps on

objects in an o�ine phase [Miller et al., 2003,Berenson and Srinivasa, 2008,Nieuwenhuisen et al., 2013]. To

grasp the objects in the actual scene, the grasp set is pruned by identifying those grasps that are reachable



under kinematic and free-space constraints. Hsiao et al. [Hsiao et al., 2010] proposed a reactive approach to

grasping that plans grasps at raw partial 3D measurements of objects, evaluating the resulting grasps for

reachability by time-costly motion planning. In [St�uckler et al., 2012], this approach has been extended to

provide grasps and reaching motions very fast in situations, where parametric arm motion primitives can be

used instead of costly planning of reaching motions.

Manipulation scenes can be segmented visually into object candidates through bottom-up cues without

explicit knowledge about speci�c objects. For instance, Rusu et al. [Rusu et al., 2009] propose to describe

and classify the local context of points by Fast Point Feature Histograms. They regularize the classi�cation in

a conditional random �eld on the point cloud to obtain coherent object segments. We adapt the segmentation

approach of [Holz et al., 2012], which uses integral images to quickly estimate normals from RGB-D images

and segments objects on at support surfaces.

3 System Design

3.1 Explorer Robot Hardware

Our Explorer robot, shown in Fig. 1, is equipped with three wheels on each side for locomotion. The wheels

are mounted on carbon composite springs to adjust to irregularities of the terrain in a passive way. As the

wheel orientations are �xed, the robot is turned by skid-steering, similar to a di�erential drive system.

In addition to the omnidirectional RGB-D sensor, our robot is equipped with a rotating 2D laser scanner

for allocentric navigation, an inertial measurement unit (IMU) for measuring the slope, and four consumer

cameras for teleoperation. Three of these cameras cover 180� of the forward view in Full HD and one wide-

angle overhead camera is looking downward and provides an omnidirectional view around the robot (see

Fig. 5a).

For object manipulation tasks, the robot is equipped with a 7 DoF arm build from Robotis Dynamixel Pro

actuators. These actuators come in three sizes which are distributed from strongest on the robot base (ca.

40 Nm continuous torque at 855 g) to weakest in the wrist (ca. 5.6 Nm at 340 g). The actuators have little

backlash and are backdrivable. We built a custom gripper with two 3D printed �ngers on rotary joints,

actuated by Dynamixel MX-64 servos. Our lightweight and inexpensive gripper is speci�cally designed for

the objects relevant to the DLR SpaceBot Cup.



3.1.1 Omnidirectional RGB-D Sensor

For local navigation, our robot is equipped with eight RGB-D cameras (ASUS Xtion Pro Live) capturing

RGB and depth images. The RGB-D cameras are spaced such that they create a 360� representation of the

immediate environment of the robot (Fig. 5b). Each camera provides 480�640 resolution depth images with

45� horizontal angle. Because the sensor head is not centered on the robot, the pitch angle of the cameras

varies from 29� to 39� to ensure that the robot does not see too much of itself in the camera images. The

camera transformations (from the optical frame to a frame on the robot’s base) were calibrated manually.

We carefully treat potential inaccuracies at the interfaces between the RGB-D images in later steps of the

processing pipeline, such that, e.g., no arti�cial obstacles occur in the local navigation map. We observed

no signi�cant changes in this calibration, despite driving on rough terrain for many operation hours.

The high data rate of eight RGB-D cameras poses a challenge for data acquisition, as a single camera

already consumes the bandwidth of a USB 2.0 bus. To overcome this limitation, we equipped the onboard

PC with two PCI Express USB cards, which provide four USB host adapters each. This allows to connect

each RGB-D camera on a separate USB bus which is not limited by transmissions from the other devices.

Additionally, we wrote a custom driver for the cameras, as the standard driver (openni camera) of the ROS

middleware [Quigley et al., 2009] was neither e�cient nor stable in this situation. Our driver can output

VGA color and depth images at up to 30 Hz frame rate. The source code of the custom driver is available

online1.

3.1.2 Continuously Rotating 3D Laser Sensor

To map the terrain and for localization, our robot is equipped with a continuously rotating 3D laser scanner.

It consists of a Hokuyo UTM-30LX-EW 2D laser range �nder (LRF) which is rotated by a Dynamixel MX-64

servo actuator to gain a 3D FoV. The scanning plane is parallel to the axis of rotation (pointing upwards)

and the heading direction of the scanner is always orthogonal to it. The 2D LRF is electrically connected

by a slip ring, allowing for continuous rotation of the sensor.

The Hokuyo LRF has an apex angle of 270� and an angular resolution of 0:25�, resulting in 1,080 distance

measurements per 2D scan, called a scan line. Due to its restricted FoV, the sensor has a blind spot of 90�.

We point the center measurement beam of the sensor 225� downwards (if 0� points upwards). Pointing the

laser downwards allows for 3D scanning the terrain in each half rotation. Additionally the laser is mounted

1https://github.com/AIS-Bonn/ros_openni2_multicam

https://github.com/AIS-Bonn/ros_openni2_multicam
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Figure 2: Overview of our communication link. Terrestrial components are shown in yellow, components at
the destination site in red. The systems marked with the ROS logo (9 dots) run a ROS master.

with its scan plane o� the axis of rotation. In this way, the FoV close around the robot is increased, and also

occlusions by robot parts such as the WiFi antenna are reduced. The Dynamixel actuator rotates the 2D

LRF at 1 Hz, resulting in 40 scan lines and 43,200 distance measurements per full rotation. Slower rotation

is possible if a higher angular resolution is desired. For our setup, a half rotation leads to a full 3D scan of

most of the environment. Hence, we can acquire 3D scans with up to 21,600 points with 2 Hz.

The 2D laser scanner has a size of 62�62�87.5mm and a weight of 210 g. Together with the actuator (72 g)

and the slip ring, the total weight of the 3D scanner is approximately 400 g.

3.2 Mission Control Station

Our robot can be teleoperated from a dedicated Operator Station. The Operator Station consists of a

workstation with four monitors (see Fig. 1). It is connected to the robot over the communication link

described in Section 3.3. The three upper monitors always show the images from the three Full-HD webcams

mounted in the sensor head. The lower monitor shows telemetry from the robot and contains controls for

teleoperation.

3.3 Communication Link

Our communication system has been designed according to the requirements of the DLR SpaceBot Cup,

which include latency and communication interruptions. It consists of a chain of four devices (see Fig. 2):

The operator station, a network latency emulator, a lander station, and �nally the robot. To ensure mobility,

the link between the lander station and the robot is implemented wirelessly, while all other elements of the

chain are connected using Fast Ethernet.

The operator station is built from a standard PC (see section 3.2). It o�ers two Ethernet interfaces|one

directly connected to the network emulator, the other one available to connect further PCs or notebooks for
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Figure 3: General overview of our navigation stack.

further visualization or debugging tasks.

The network emulator introduces a communication delay into the communication link. This simulates a

deep-space connection, where long distance creates latency imposed by the speed of light. Note that deep-

space connections can often still guarantee data transmission with high probabilities, as they use advanced

Forward Error Correction (FEC) codes and multiple redundant links.

The lander station contains a small form factor PC (Apple Mac mini). The decision to include processing

power at the lander station was taken to have the ability to bu�er packetized telemetry at the lander station,

as will be explained below. Additionally, the lander station possesses a high-gain wireless antenna (Ubiquiti

Networks Bullet M5-HP). The robot carries a matching high-gain wireless antenna (see Fig. 1). The wireless

communication takes place using the proprietary Ubiquiti Networks AirMax protocol, which o�ers better

scalability and robustness in outdoor scenarios than standard WiFi (IEEE 802.11). Note that this local

wireless link is not a�ected by space latency|a fact that we will exploit below.

4 Rough Terrain Navigation

To navigate in previously unknown rough terrain, the robot needs to possess advanced navigation capabilities

ranging from autonomous mapping over localization to navigation. Furthermore, the operator needs to be

able to interact with the navigation process on di�erent levels. To facilitate this, we designed a two-layer

navigation stack (see Fig. 3) consisting of a high-level SLAM approach|including path planning|and a low-

level local navigation method. The higher, allocentric layer calculates an egocentric goal pose which is then

approached by the lower, egocentric layer. The layers run on di�erent time scales and are highly decoupled,

even using di�erent sensors for terrain sensing. While such a two-layer hierarchical approach is not new, we

developed e�cient algorithms on both levels that allow for 3D SLAM, rough terrain traversability analysis,



and path-planning on-line.

The following sections will describe the navigation stack in more detail. Full descriptions of the allocentric and

egocentric navigation components can be found in [Schadler et al., 2014] and [Schwarz and Behnke, 2014],

respectively.

4.1 Visual Odometry

Our local navigation uses odometry to propagate waypoints speci�ed in an ego-centric coordinate frame

while driving towards a waypoint. Accurate odometry is especially useful when the operator is manually

giving goal poses in this ego-centric frame, which can be necessary when higher levels of autonomy are not

available. Odometry is used then to shift the given local goal pose as the robot moves. Note that during

autonomous navigation, our allocentric path planner updates the ego-centric waypoint of the local planner

at higher frequency, such that accuracy in odometry becomes less important.

The odometry measured from wheel movements can be very imprecise, especially in planetary missions

with sand-like ground. Visual odometry is not a�ected by wheel slip and can provide accurate estimates

even on di�cult terrain. Hence, we �rst estimate movement for each camera with fovis [Huang et al., 2011]

from gray-scale and depth images. Individual camera movement, wheel odometry and IMU data are then

combined into a fused odometry estimate.

4.2 Egocentric Navigation

Figure 4 gives an overview of our local navigation pipeline. The input RGB-D point clouds are projected on

a gravity-aligned plane, locally di�erentiated and then used as cost maps for existing navigation components.

4.2.1 Omnidirectional Height Map

For wheeled navigation on rough terrain, slopes and obstacles have to be perceived. Because we can measure

the gravity direction with the integrated IMU, we calculate a 2.5D height map of the immediate environment

which contains all information necessary for local navigation. This step greatly reduces the amount of data

to be processed and allows planning in real time.

To create an egocentric height map, the eight separate point clouds are transformed into a local coordinate

system on the robot base, which is aligned with the gravity vector measured by the IMU.
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Figure 4: Data ow of our local navigation method. Sensors are colored blue, data �ltering/processing
modules yellow and navigation components in red.

The robot-centric 2.5D height map is represented as a 8�8 m grid with a resolution of 5�5 cm. For each

map cell H(x; y), we calculate the maximum height of the points whose projections onto the horizontal plane

lie in the map cell. If there are no points in a cell, we assign a special NaN value. The maximum is used

because small positive obstacles pose more danger to our robot than small negative obstacles. The amount of

memory used by the resulting height map is two orders of magnitude smaller than the original point clouds

of the eight cameras.

4.2.2 Drivability Assessment

An absolute height map is not meaningful for planning local paths or for avoiding obstacles. To assess

drivability, the omnidirectional height map is transformed into a height di�erence map. We calculate local

height di�erences at multiple scales l. Let Dl(x; y) be the maximum di�erence to the center pixel (x; y) in

a local l-window:

Dl(x; y) := max
ju�xj<l;u6=x
jv�yj<l;v 6=y

jH(x; y) � H(u; v)j :

H(u; v) values of NaN are ignored. If the center pixel H(x; y) itself is not de�ned, or there are no other

de�ned l-neighbors, we assign Dl(x; y) := NaN.

Furthermore, we do not allow taking di�erences across camera boundaries. In cells which are visible from two

cameras, the local height di�erences are calculated for each camera independently and the maximum value

is used. This prevents small transformation errors between the cameras from showing up in the drivability



(a) (b) (c) (d)

Figure 5: Several exemplary navigation situations. a) Wide-angle overhead camera. b) Downscaled point
cloud, color-coded according to height. The color scale is chosen in each situation to highlight the important
features. Red is high, blue/purple is low. c) Drivability map DD with planned path (blue) to local goal
(red). d) Obstacle map D1 for precise trajectory rollout with optimal trajectory (blue).
First row: Slightly sloped ground, one close pair of rocks. Second row: Driving backwards through the
opening between two rocks. Third row: Driving towards persons standing at the top of a large ramp.

maps as obstacles. In the relevant ranges close to the robot, this additional constraint does not reduce

information, because the camera �elds of view overlap. The required precision of the camera transformation

calibration is thus greatly reduced.

Small, but sharp obstacles show up on the Dl maps with lower l scales. Larger inclines, which might be

better to avoid, can be seen on the maps with a higher l value.

4.2.3 Local Navigation Planning

For path planning, the existing ROS solutions were employed. Our method creates custom obstacle maps

for a Dijkstra planner (navfn) and a trajectory rollout planner (base local planner). Both components had



to be slightly modi�ed to allow for gradual, non-binary costs in the obstacle maps.

The Dijkstra planner is provided with a linear combination of Dl maps to include information about small

obstacles as well as larger inclines. The summands are capped at a value of 0.5 to ensure that one Dl map

alone cannot create an absolute obstacle of cost � 1:

~D :=
X

l2f1;3;6g

min f0:5; �lDlg

In addition, costs are inated, because the Dijkstra planner treats the robot as a point and does not consider

the robot footprint. In a �rst step, all absolute obstacles (with a cost greater or equal 1 in any of the maps

Dl), are enlarged by the robot radius. A second step calculates local averages to create the e�ect that costs

increase gradually close to obstacles:

P (x; y) := f(u; v)j(x � u)2 + (y � v)2 < r2g;

DD(x; y) := max

8
<

:
~D(x; y);

X

(u;v)2P (x;y)

~D(u; v)
jP (x; y)j

9
=

;
:

4.2.4 Robot Navigation Control

To determine forward driving speed and rotational speed that follow the planned trajectory and avoid

obstacles, we use the ROS trajectory rollout planner (base local planner). It already sums costs under the

robot polygon. As larger obstacles and general inclines are managed by the Dijkstra planner, we can simply

pass the D1 map as a cost map to the trajectory planner, which will then avoid sharp, dangerous edges.

Replanning is done at least once every second to account for robot movement and novel terrain percepts.

4.3 Allocentric Mapping and Navigation

In order to accomplish navigation and exploration on an allocentric scale, a number of problems must

be solved, including environment mapping, localization, drivability assessment, and path planning. The

di�culty in these challenges increases in unconstrained 3D environments such as those encountered during



planetary exploration missions. Additionally, environment sensing hardware should be accurate, e�cient,

a�ordable, and obey auxiliary constraints including weight and space restrictions.

To ful�ll sensing hardware requirements, we use a continuously rotating laser scanner for environment percep-

tion. Multi-resolution surfel maps allow for a 3D environment and compact surface representation, e�cient

data-extraction from laser scanners, and fast alignment of maps. This makes the maps particularly well

suited for our purpose, compared to other map representations that may lack one of the features such as fast

registration, for instance. We acquire maps of the environment in a stop-and-go scanning scheme (Fig. 12).

The 3D scans are registered to each other and aligned into a global map using graph optimization of the 3D

scan poses.

The 6 DoF robot pose is continuously tracked while the robot is driving, based on the 2D scan lines of

the continuously rotating 3D laser scanner. From multi-resolution surfel maps, we e�ciently determine

observation likelihoods of 2D scans allowing for real-time tracking of the 6D robot pose, as detailed below.

Drivability assessment is performed using an allocentric surfel map created during exploration. Due to the

structure of a surfel map, surfaces can be easily extracted and evaluated for drivability characteristics includ-

ing incline, smoothness, and neighbor continuity|resulting in a navigation graph. Using search algorithms,

we determine drivable paths in the map. An intermediate waypoint on the current path is forwarded to the

local navigation module which implements safe obstacle avoiding driving along the path. This waypoint is

determined either at a speci�c distance ahead the robot on the planned path (e.g., 3 m), at the next pose

with high curvature on the path, or at the goal if it is closer than the intermediate waypoint distance.

4.3.1 Simultaneous Localization and Mapping

Consistent 3D Mapping We use multi-resolution surfel maps (MRSMaps [St�uckler and Behnke, 2014])

to e�ciently represent environments. Octrees are the natural data structure for multiple-resolution infor-

mation storage in 3D. Within octree voxels, both the surface shape parameters and surface reectance

distribution are stored as a surface element (surfel). Surfels approximate points within a voxel, which are

considered normally distributed, by a sample mean and covariance. These statistical properties are stored

through all resolutions in the octree. The maximum resolution at a measured point is determined in linear

dependency of the distance of the point from the sensor. This corresponds to the decreasing sampling density

and increasing noise, which are caused by the constant angular resolution and the measurement principle of

our sensor, respectively.



Figure 6: Left: Image of the DLR SpaceBot Cup arena. Right: Perspective view on aligned 3D scans of the
DLR SpaceBot Cup arena (color codes height). Black rectangular areas occur at the scan poses at which
cubic volumes around the robot have been removed from the 3D scans.

The registration of MRSMaps is implemented in two main steps: surfel association and pose optimiza-

tion. Surfels are e�ciently associated between maps from the �nest resolution to coarser resolutions until

associations have been determined for the entire map.

Associations are made between surfels having the closest Euclidean distance in position and shape-texture

descriptors [St�uckler and Behnke, 2014] within the query volume. To �nd the registration between two

MRSMaps, we model pose optimization as �nding the pose that maximizes the likelihood of observing

one map at the pose in the other map. This procedure can be e�ciently implemented using Levenberg-

Marquardt’s and Newton’s method. Since this optimization method has local convergence property, we

obtain an initial guess using particle �lter localization (see Sec. 4.3.1).

Graph optimization is used to globally optimize the tracked pose from 3D laser scans. For each input 3D

scan, a key-view is generated and globally aligned to a reference key-view, which is generated at the start

of the mission. This alignment implies a geometric constraint between the key-views and is thus maintained

as an edge in a key-view graph. As an additional step, all key-views deemed \close" are registered against

each other to add edges to the constraint graph. The key-views are optimized in a probabilistic pose graph

using the g2o framework [Kuemmerle et al., 2011].

After each 3D scan has been converted into a local MRSMap and inserted into the key-view graph, the

updated poses of all key-views are used to create an allocentric MRSMap. This allocentric map is used

by the particle �lter for matching observations. Fig. 6 shows the resulting aligned 3D scans of the DLR

SpaceBot Cup arena.

Localization The 6 DoF pose of the laser scanner between key-views in the surfel map is tracked with

a particle �lter. This pose estimate is used to initialize the registration transform for the next key-view.



Compared to other �ltering methods that allow for non-linear motion and measurement models such as

an Extended Kalman Filter (EKF), the particle �lter allows for simple integration of a scan line-to-map

measurement model and also has the ability to solve the global localization problem for future applications.

The general idea of a particle �lter is not discussed here; see [Chen, 2003] for a detailed introduction.

To compute a suitable state estimate, we model the state transition with a time-discrete linear dynamics

model. The state estimation problem is posed as the estimation of the full 6 DoF con�guration of the

laser scanner. Odometry is also given as input to the propagation model with assumed Gaussian noise in

translational and rotational parts. For our rover-type robot, we project the propagated pose onto the drivable

surface. With an inertial measurement unit (IMU) given, the state propagation model also constrains pitch

and roll orientation of the robot.

The observation model of a scan line is similar to the model for 3D scan registration|a single scan line

does not contain enough information to register it to a target surfel map in 6 DoF, though. We circumvent

this issue using the particle �lter and determine the likelihood of a scan line, given a particle pose x. The

observation model measures the alignment of the scan line Z = fzign 2 R3 with n point measurements to

the current target map mt, given a particle pose x:

p(Zjx; mt) =
nY

i=1

p(zijx; A(zi; x; mt));

A(zi; x; mt) = argmin
st

dplane(st; T (x)zi); (1)

where A(zi; x; mt) associates the transformed measurement point ztransformed = T (x)zi to the surfel within

the target map having the smallest distance dplane between the surfel plane and the target point. We only

consider surfels for matching in a local volume around the transformed measurement point. The observation

likelihood of a measurement to a surfel is given by the distance of the measurement end-point from the surfel

plane under the normal distribution of the surfel.

p(zijx; A(zi; x; mt)) = p(zijx; st) = N (dplane(st; T (x)zi; x); 0; �sz(x));

�sz(x) = �sm + R(x)�zi R(x)T ; (2)

where �zi represents the point measurement covariance in R3 and dplane(st; T (x)zi) is de�ned as the distance

between the st surfel plane and the transformed measurement T (x) zi. Since we use the motion model as

proposal distribution in the particle �lter, the importance weight for each particle is given by its observation



likelihood.

4.3.2 Allocentric Navigation Planning

For navigation planning, we assume that the drivable surface can be projected onto a horizontal 2D rep-

resentation, i.e., there are no overhanging structures the robot needs to drive under or upon. Thus, we

choose a two-dimensional surfel grid as the data structure for drivability assessment and planning. Surface

information must be stored within the grid to allow for terrain assessment|surfels lends themselves well to

this task.

Using the allocentric localization map for planning could be prone to slight misalignment errors between

the 3D scans. To give our approach more robustness, we fuse the MRSMaps of each individual 3D scan at

a prede�ned resolution in the 2D grid. We overcome discretization e�ects by generating the MRSMaps in

a common reference frame. By iterating over all surfels in each map, we can generate a global 2D surfel

grid. Surfels within a speci�c distance from the origin of a scan, the ones supported by many measurements,

are integrated directly. Outside of this distance, we keep the surfel with higher mean height, if the height

di�erence between the surfels is larger than a threshold. Otherwise, the height di�erence is small and we

choose the surfel supported by the largest number of measurements. Within a 3D scan, we merge surfels

along the height direction to avoid the discretization of inclines.

We �nd the drivable cells in the 2D grid using region growing. We evaluate the drivable characteristics of

the current grid cell from the robot coverage region in the grid map. This region is modeled by a bounding

circle|an overestimate that neglects the e�ects of orientation on cost and allows for arbitrary steering. The

drivability of an individual surfel is determined from several features which we detail in the following.

Data Coverage Data coverage is modeled by the number of cells containing valid surfels divided by

the total number of cells within the region. The recommended region coverage depends on several factors

including environment properties, safety considerations, and mapping resolution. It is, however, not possible

to require a coverage of 100% due to occlusions and similar data limitations causing missing surfel data.

Bumpiness We de�ne local bumpiness b(c) of a cell c as the maximum di�erence between the surfel mean

height �z(c) of the cell and the mean height of all eight directly neighboring surfels n 2 N (c):

b(c) = max
n2N (c)

(�z(c) � �z(n)): (3)



Figure 7: Top: Picture sequence of grasping a water-�lled cup and placing it in its holder at the DLR
SpaceBot Cup. Bottom: Grasping a battery pack, placing it in its holder, and removing it again. For both,
photographs (left) and RGB-D image segmentation with estimated grasp poses (right) are shown.

The bumpiness threshold should be set depending on the robot ground coverage, robot wheel size, and

general planning safeness required.

Incline Incline refers to the angle of a surface with reference to gravity, measured by the IMU. To determine

the incline of a cell, we aggregate the statistical data of all surfels within the robot region to model a \region

surfel". The normal vector of this surfel is compared against the gravity vector for determining incline ir(c).

The incline threshold should be related to the driving characteristics of the robot considering both motor

capabilities and tipping resistance.

Drivability Cost The cost of a cell C(c) is dependent upon both region bumpiness and incline. The cost

is calculated as C(c) = �br(c) + �ir(c), where � and � are the weight parameters for bumpiness and incline,

respectively. Thresholding these combined cell costs o�ers extra safety limitations against the simultaneous

e�ects of bumpiness and incline.

Path Planning Cost-optimal paths are planned using the A* algorithm in the resulting 2D grid. We use

the Euclidean distance as its heuristic and consider traversion and drivability costs as edge and node costs.



5 Object Manipulation

Our Explorer robot can grasp objects and place them in its object holders (see Fig. 7). The holders are

designed for a cup �lled with water and a battery as used in the DLR SpaceBot competition.

Each object requires a speci�c type of grasp. We use side grasps for the cup and top grasps for the battery.

The type of grasps is not only constrained by the environment and kinematics but also by the placement in

the object holders.

Our approach segments RGB-D images for the desired object using the method of [Holz et al., 2012]. We

describe the shape of each object segment by mean position, direction and length of its principal axes, and

its maximum height above the oor.

Based on the object position and orientation, we plan all possible grasps for the desired object. The planning

algorithm only considers the arm, which means that the robot base will not move for grasping the object.

If no grasp is found, the robot drives again towards the object and tries to plan a grasp again. Given the

segmented RGB-D image, we compute the two principal axes of the object and its sizes. For the calculation

of the side grasp, we compute an ellipse that �ts the boundaries of the object and sample poses from the

computed ellipse every 10�. For the top grasps, we sample poses from the larger principal axis. Our objective

is that we can grasp the battery in a manner that we can carry it without dropping it, and place it in its

holder. Thus, we sample the grasp poses from a small area around the center of mass of the battery. We

use three di�erent positions and another three di�erent orientations which results in 9 grasps per battery

position. The orientation sampling is performed only on the pitch axis where we deviate from a pitch angle

of 90� due to arm kinematic constraints. All computed grasps are ranked according to reachability criteria

which depend on the distance and the angle between the grasp pose and the base of the arm. We discard all

grasp poses that have distance larger than the length of the arm or form an angle larger than 90�. We rank

the remaining grasp poses with respect to the similarity of the grasp pose orientation and the angle formed

between the object and the base of the arm. The top ranked grasp is the one with the smallest di�erence of

these two angles.

For the top-ranked grasps, we �nd a feasible trajectory for the robot arm. We feed the trajectory planning

algorithm with a sequence of end e�ector poses and the type of interpolation from one pose to the next.

The sequence of poses include a start pose, a pre-grasp pose, the grasp pose, and a �nal holding pose that

interfaces with a prede�ned placement motion of the object into its holder. For each pair of poses, we



interpolate, in 3D Cartesian space or in polar space in the XY plane, with constant acceleration for the �rst

half of the motion and constant deceleration for the second half. When a new pose is computed, we obtain

the corresponding values in joint-space through inverse kinematics. In order to not spill water in the cup, we

choose a slow and smooth motion, while the cup must be carried in upright orientation at all times during

the motion. Thus, we interpolate in XY plane and not in 3D Cartesian space. Besides that, the motion

does not follow any other particular velocity or acceleration constraints. In order to not spill water onto the

robot, the robot pours a small portion from full cups before placing the cup in its holder.

Once a trajectory is successfully planned, the robot performs the motion.

6 Communication

The communication link imposes constraints on all communication between the system components (see

Section 3.3). In particular:

1. The deep-space link has large latency.

2. The local planet-side communication over WiFi is unreliable.

Our approach makes the following additional assumptions:

1. The deep-space link is reasonably reliable (could be implemented by strong FEC algorithms and

multiple redundant communication links).

2. The planet-side communication has small latency.

Our software stack deals with the imposed constraints on two levels. A low-level communication module

provides network transparency for the ROS systems running on each PC. Furthermore, we designed the

high-level software to exploit the di�erent characteristics of each communication link.

6.1 Low-Level Communication Software

Since both the operator station and the robot run the ROS infrastructure which o�ers built-in network

transparency, we investigated this built-in capability. In the default con�guration, ROS uses the TCP

protocol for all connections over the network. This is unacceptable in our setting, since the TCP protocol

enforces a 3-way handshake for opening connections, which quickly causes high delays since the connection



may be lost and needs to be re-opened during the mission. Furthermore, TCP gives a transmission guarantee

for all data packets. This (usually desired) property is not needed for all types of data (e.g. streamed, live

camera images) and can cause the bandwidth to be exhausted with re-transmissions of data which is not

interesting, because it is too old already.

Hence, we decided to design our own communication infrastructure which hooks into ROS and provides

network transparency without the aforementioned problems. Our communication module o�ers send-

ing/receiving ROS topic data over TCP or UDP, and ROS service calls over TCP. Its features include

automatic rate limiting (with upper and lower bounds) and transparent BZip2 compression for large data

packets. Our solution is a so-called multimaster approach, since we use autonomous ROS instances on the

control station PC and on the robot.

The UDP protocol option is used whenever possible, since it is handshake- and connectionless and thus o�ers

low latency and high robustness against temporary communication blackouts. If a transmission guarantee is

needed (see Sec. 6), we use the TCP transport. However, even in this situation our package has advantages

over the standard ROS approach, since we use a single permanent TCP connection for all communications.

This avoids delays caused by opening connections during service calls. Furthermore, we activate TCP

timeouts in the Linux kernel, which prevents hang-ups.

Note that ROS o�ers its own UDP protocol option (without the advanced rate-limiting and compression

features of our module). Sadly, even if it is enabled, TCP is still used for topic discovery and connection

setup, which makes the built-in ROS solution not suitable for our application.

6.2 High-Level Design Decisions

The two constraining elements in our communication link (see Fig. 2) are the Ethernet link over the network

emulator (introducing latency) and the WiFi link between lander station and robot (unreliable). Since the

two e�ects of latency and unreliability occur in di�erent sections, we can deal with them separately.

For instance, the maps generated by our SLAM component need to be displayed to the operator to increase

situational awareness. Since the maps are generated very infrequently, we want to be sure that each map

arrives at the operator station. A naive approach would be to use the TCP protocol with a direct connection

from robot to the operator station. But this solution greatly increases communication latency, since each

missing packet can only be re-transmitted after a 4 s delay. Instead, we �rst transfer them to the lander



Figure 8: Left: Pre-mission planning on a rough height map. Right: Interactive plan re�nement on an
updated height map. Red cells indicate that the height of the re�ned map deviates by a great amount from
the rough heightmap. This information is used by the operator to align the two maps precisely.

station using the TCP protocol, since re-transmissions of dropped packets are not expensive over the WiFi

link. The complete map is then transmitted to the operator station in a single UDP burst. This way, we

eliminate the unreliability of the WiFi link without increasing latency.

7 Mission Control Interfaces

Our system exposes three levels of control to the operating crew. On the highest level, it is possible to

specify entire missions, which the robot then carries out autonomously. The mid level allows the operator

to specify short-term tasks, such as grasping an object or navigating to a speci�ed pose. Finally, the lowest

level can be used for direct remote control, e.g. driving the robot with a joystick. The following sections will

describe each level in more detail, starting at the highest level.

7.1 Mission Planning

Without a high grade of autonomy, it would not be possible to complete the tasks de�ned by the SpaceBot

Cup in acceptable time. Our mission control layer is thus able to carry out most of the tasks autonomously,

except for the manipulation at the base station, which is done by means of semi-autonomous teleoperation.

Since a rough height map (1 m horizontal, 0.3 m vertical resolution) was available before the competition,

the operator can specify the initial mission tasks on this rough map (see Fig. 8, left). The displayed height

map is re�ned from the SLAM map that is aggregated from the robot 3D scans (see Section 4.3.1) during

the mission. During an initial setup phase, the height map is aligned manually with the SLAM map.

The operator receives new terrain maps after each time the robot stops for mapping (see Section 4.3.1).



Figure 9: Left: Motion Keyframe Editor GUI for semi-autonomous robot arm teleoperation. The real
position of the arm is indicated in true colors (black/white). The currently edited keyframe is shown in yellow.
Interactive markers can be used to modify the keyframe pose in 6D. Other keyframes of the same motion
can be seen in the lower right, rendered only as end e�ector positions (green) to reduce screen cluttering.
Right: The same GUI embedded in our teleoperation GUI, also showing a transmitted downsampled point
cloud in the same 3D view and images from the eight RGB-D sensors on the right.

Since the updated data may indicate that the mission plan needs to be changed, the operator can modify

the mission plan on the updated map (see Fig. 8, right) and upload it at any point in time to the robot.

The mission control layer then automatically aborts current tasks and immediately starts on the new plan.

If the operator judges that the robot is not able to perform the needed tasks autonomously, he or she can

pause the mission plan execution and perform the problematic task using the lower-level controls. After

deleting the task from the mission plan, autonomous mission execution can be resumed.

7.2 Semi-Autonomous Control

The mid layer consists of smaller sub-tasks, which are called either from the mission control layer or directly

by the operator.

The available manipulation tasks include variable keyframe motions either in joint-space or in Cartesian

space. To facilitate motion entry, we designed a keyframe editor GUI on top of the standard ROS rviz GUI

(see Fig.9 left). The operator can specify arm motion keyframes in the form of 6D end e�ector poses. End

e�ector velocity and joint velocity can be constrained. The interpolation between keyframes can be executed

in joint space or Cartesian end e�ector space. The operator can also see a downsampled RGB-D point cloud

of the robot environment to increase situation awareness (see Fig.9 right).

For semi-autonomous navigation, the operator can specify goal poses relative to the robot. Using the local

navigation component (see Section 4.2), the robot navigates to the goal position while shifting it using the



visual odometry (see Section 4.1). Since this mode of operation is not dependent on localization, it can be

used even if the robot is delocalized.

7.3 Direct Teleoperation Interfaces

Finally, the operator can directly control the robot drive using a connected joystick. Of course, it is not

possible to drive fast using direct teleoperation, since the communication delay limits reaction speed. For

this reason, this mode of operation is only used for small movements, e.g. when the higher-level navigation

controls fail to reach the target position.

8 Evaluation

We demonstrated our system during the DLR SpaceBot Cup 2013, which focused on exploration and mobile

manipulation in rough terrain. It simulated a planetary exploration mission with a simulated communication

link including a 2 s one-way latency in both directions. In addition, we conducted systematic experiments

to evaluate the performance of our navigation and manipulation sub-systems.

8.1 Egocentric Navigation System

Fig. 10 shows a series of drivability maps taken from a single drive on an S-shaped path through the opening

between two obstacles. The goal pose was given once and then shifted with visual odometry as the robot

approached it. The processing pipeline from eight 240�320 RGB-D point clouds to the two drivability maps

runs in around 50 ms on the onboard computer, which has an Intel Core i7-4770K processor with 3.5 GHz.

We also evaluated our custom camera driver. The standard ROS driver is not stable enough with eight

cameras for direct comparison, so we can only provide absolute metrics for our driver. Capturing VGA

color and depth images and converting them to RGB-D point clouds at 30 Hz is possible and creates a CPU

utilization of about 40 % on the same processor. At the reduced setting of QVGA resolution and 10 Hz rate,

the CPU utilization is at 16 %.

Of course, obstacle detection is dependent on obstacle size and distance to the obstacle. The limiting factors

here are depth sensor resolution and noisiness of the depth image. To investigate this, we placed several

obstacles, shown in Fig. 11, at varying distances to the robot on at ground (carpet). In each situation, 120

frames of the local obstacle map D1 were recorded from a static robot position. The objects have been placed



Figure 10: Lab driving experiment. The �rst image shows the initial situation observed from the robot
overhead camera. Subsequent drivability maps show the planned path (blue line) towards the goal (red
arrow).

Glass Stone 1 Stone 2 Stone 3 Stone 4

Object dimensions.
Object Glass Stone 1 St. 2 St. 3 St. 4

Height [cm] 14.5 1.5 2.5 3.5 7.5
Width [cm] 7.5 4.5 5.0 9.0 10.0

(a) Investigated objects and robot wheel (for comparison).
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(b) Detection probabilities at increasing distance.

Figure 11: Obstacle detection experiment. The objects are placed at various distances on carpet in front of
the robot and the detection probabilities are estimated by comparing height di�erences to a threshold.

in approximately the relative angle towards the robot shown in Fig. 11. To estimate detection probabilities,

we count the number of frames containing cells near the expected obstacle location with a di�erence value

higher than a pre-de�ned threshold. As can be seen in Fig. 11, the system can reliably detect obstacles

which pose danger to the robot up to 3.5 m away.

8.2 Allocentric Navigation System

Using data collected at the DLR SpaceBot Cup 2013, results are presented illustrating the accuracy of the

SLAM system and the ability to plan trajectories spanning several 3D scans. The data was processed in

real-time using the robot on-board Intel Core i7-4770K (max 3.5 GHz) with 32 GB RAM. Localization is

performed using 250 particles. To ensure dense point clouds from 3D laser scans, we rotate the laser at

a slow speed ( 1
15 Hz) when creating full 3D scans. For tracking, we wish to maximize visible space per

time period and rotate the laser at 1 Hz. Note that during the recording, persons have walked through the

arena causing spurious measurements. Shown in Fig. 6, the SpaceBot Cup arena models a rough-terrain



Figure 12: Left: Top-view on aligned 3D scans of the DLR SpaceBot Cup arena (color codes height).
Localization estimate in blue. Right: Drivable region. Grayscale cells colored by cost. Undrivable cells
due to lack of data coverage (red), large incline (blue), large region bumpiness (green), and combined cost
(yellow). Planned path in blue.

terrestrial environment similar to those potentially visited by space exploration. Within the arena, the robot

has been controlled manually to take 14 3D scans at an average distance of 4.33 m. To more closely resemble

the open-environments in space, we have removed ceiling and wall measurements from the 3D scans before

processing. Fig. 12 shows aligned scans, localization estimate, a planning map, and a planned path. The

3D scans align very accurately, and the localization estimate follows the actual path of the robot well. The

visible gap in the localization estimate shows the di�erence between the localization estimate at one of the

scan poses and its registered, graph-optimized pose. Such drift, for example, occurs through strong drift of

the wheel odometry, or if the laser scan alignment is not constrained along a direction. While localization

can slowly compensate such drift, scan alignment at the next scan pose typically removes the drift.

A typical 3D scan has about 516,000 points, for which a MRSMap is created. For pose graph optimization,

this map is registered with maps of other 3D scans. Such a map-to-map registration takes on average 0.24 s

using a maximum voxel resolution of 0.125 m. Building the MRSMap representation takes on average 0.49 s

in this resolution. The time consumed for graph optimization itself is negligible in comparison and is in the

milliseconds for this size of graphs. Planning time is typically in the seconds and depends on the distance

between start and goal pose and the di�culty of the terrain in between.

We also evaluated the performance of our localization and SLAM system in environments such as a courtyard

and a parking garage (s. Fig. 13). In these experiments, we could measure ground truth distances between

the 3D scan poses and compare these relative measurements with the results of localization and pose graph



Figure 13: SLAM experiments in a courtyard (top) and a parking garage (bottom). Left: image of the
environment. Center: aligned 3D scans. Right: Odometry (black), localization path (blue), 3D scan pose
estimates from localization (green) and pose graph optimization (red).

Table 1: Parking garage distances between 3D scans in meters.

3D Scans 0-1 1-2 2-3 3-4 4-5 5-6 Average Error

Ground Truth 4.20 4.94 6.53 4.45 4.54 8.54
Localization 4.30 5.26 6.39 4.44 4.85 9.40 0.29
SLAM 4.18 4.90 6.37 4.40 4.49 8.43 0.07

optimization, i.e. SLAM. From Tables 1 and 2, we see that particle �lter localization provides good initial

estimates with average errors of 0.29 m and 0.20 m, respectively. Pose graph optimization, which utilizes

spatial constraints from several combinations of scan-to-scan registrations, yields accurate estimates in the

centimeters. Notably, average accuracy is slightly higher in the courtyard experiment. The parking garage

dataset includes occlusion situations and structures seen from two sides (e.g. the pillars) which can negatively

a�ect scan registration accuracy.

Compared to the rugged terrain in the DLR SpaceBot Cup arena, the surfaces in these environments appear

atter. In MRSMaps, we adapt the maximum resolution in the map with distance from the sensor in order

to adapt the representation to the observable sampling rate. Hence, we obtain accurate scan registration

also in the case of rugged terrain as demonstrated in Fig. 12.



Table 2: Courtyard distances between 3D scans in meters.

3D Scans 0-1 1-2 2-3 3-4 4-5 5-6 Average Error

Ground Truth 6.60 8.25 6.59 6.69 5.69 4.37
Localization 6.59 8.26 6.47 7.27 5.97 4.57 0.20
SLAM 6.58 8.18 6.55 6.66 5.67 4.35 0.03

Table 3: Planning time per motion and per grasp and planning attempts until success.

Average Median Maximum Minimum Std. deviation

Time per motion (in s) 1.693 1.813 4.602 0.005 1.246
Time per grasp (in s) 5.622 4.938 14.481 1.677 3.689
Number of attempts 3 3 6 2 2.627

8.3 Object Manipulation

To evaluate the autonomous object manipulation capabilities of our robot, we placed either object

(cup/battery) in a rectangular area in front of the robot which is con�ned in the forward direction in the

interval [0:45 m; 0:7 m] and [�0:25 m; 0:1 m] in sidewards direction. This area is de�ned by the workspace

of the robot and the �eld of view of the two frontal cameras that are used for object perception. Before

grasping, our robot drives towards the objects to bring them into this prede�ned area.

Grasping has been performed at 10 random positions and orientations for the battery and the cup inside

the prede�ned area. For each object pose, grasp pose candidates are determined and ranked. These poses

are fed to the planning algorithm which attempts to �nd a feasible motion in order to achieve the desired

pose. We consider the grasp successful if there is one successful planning attempt among the top-ranked

grasp pose candidates and the robot manages to pick the object as expected and lifts it.

Our evaluation results are shown in Table 3. All grasps were successful in each situation, while not all

grasp candidates yielded a valid motion plan. As shown, we need on average three planning attempts per

grasp. This can be due to a collision or to a missing inverse kinematics solution at a point of the necessary

approach motion. For each planning attempt, we need on average 1.693 s, which is mainly constituted by

the computation of the inverse kinematics and the collision checking along the trajectory at our controller

sampling rate.

The amount of time per grasp depends on the number of planning attempts needed, which in turn is a�ected

by the position of the object within the workspace. More di�cult planning situations occur close to the

border of the workspace. If the object is closer to the robot, there is high probability of collisions between



Table 4: Execution time results of teleoperated cup placement on the base station with latency of 2 s.

Time (min:sec) Average Median Maximum Minimum Std. deviation

Cup removal from robot 2:21 2:24 2:39 2:10 0:11
Remote Driving 1:10 0:50 1:50 0:42 0:34
Remote Cup Placement 2:03 2:04 2:53 0:57 0:43
Complete Task 5:34 5:26 6:21 3:52 0:38

Table 5: Execution time results of teleoperated cup placement on the base station, without latency.

Time (min:sec) Average Median Maximum Minimum Std. deviation

Cup removal from robot 2:10 2:02 2:10 2:02 0:04
Remote Driving 0:32 0:33 0:40 0:23 0:08
Remote Cup Placement 1:16 1:16 1:22 1:11 0:04
Complete Task 3:48 3:47 4:00 3:39 0:08

the arm and the robot, because there is limited space between the robot and the object. Such di�cult

situations are eventually resolved when the robot reattempts to position itself towards the object if a valid

grasp cannot be computed. Note that while our method requires several seconds to plan and execute a grasp,

it is 100 % successful in our experiment.

8.4 Direct Teleoperation

Our direct teleoperation interfaces allow us to remotely drive the robot and manipulate objects. Our robot

autonomously can pick up objects and place them in its holders in many situations in which the object can

be segmented from its surrounding. In di�cult situations, and for installing the object at the base station

or manipulating its switch, the robot can be teleoperated.

We evaluated our teleoperation interface in experiments to measure execution time and the e�ect of latency

on timing. For this purpose, our trained and experienced operator removed the cup from the robot and

placed it on the base station and turned on the switch of the base station 5 times. We performed the

experiment with network latency of 2 s and without network latency. The results of the above experiment

are shown in Tables 4, 6, 5 and 7 respectively. As expected, the robot and the operator needed more time

Table 6: Execution time results of teleoperated switch manipulation with latency of 2 s.

Time (min:sec) Average Median Maximum Minimum Std. deviation

Remote Driving 0:44 0:48 0:56 0:23 0:13
Remote Manipulation 2:33 2:27 2:58 2:02 0:23
Complete Task 3:10 3:10 2:48 3:46 0:22



Table 7: Execution time results of teleoperated switch manipulation, without latency.

Time (min:sec) Average Median Maximum Minimum Std. deviation

Remote Driving 0:38 0:34 0:54 0:25 0:11
Remote Manipulation 1:23 1:16 1:37 1:14 0:11
Complete Task 2:01 2:05 2:23 1:41 0:17

with the 2 s latency. All attempts were successful. For the experiment, we placed the base station in 1.5 m

distance from the robot in various orientations and positions. Our operator was in a di�erent room and he

obtained information about the environment only from the robot sensors (see Fig. 9).

8.5 Full System Performance at DLR SpaceBot Cup

During our competition run in the SpaceBot Cup, our robot for the �rst time had the chance to enter the

arena. First, our system created a 3D map of the environment from an initial scan taken at the starting pose.

The robot then autonomously started the execution of a prede�ned mission. After one of the manipulation

objects, a small cup �lled with water, became visible, we took a �rst check-point to update the mission plan

accordingly. We teleoperated the robot in front of the object and triggered the autonomous grasping of the

object and storing in its appropriate holder. The cup was autonomously grasped and stowed on the robot

without spilling any of the contents (see Fig. 7, top left). Afterwards, we had a lengthy pause caused by a

failure of the driver of our rotating laser scanner. The autonomous execution of the mission could not be

continued and the run was aborted.

Directly after our run, we demonstrated the capabilities of our local navigation component by driving trough

the entire the arena (including a large hill) in a semi-autonomous mode with manually speci�ed ego-centric

waypoints (see Fig. 14).

After the end of the competition, we could enter the arena again and demonstrated autonomous grasping

of the other manipulation object (a battery) and teleoperated placement of both objects on a base station

object (see Fig. 7, Fig. 14). A video of our participation at DLR SpaceBot Cup is available online 2.

During the competition, we could demonstrate all components of our robot system in an integrated fashion.

Even getting the system started into the competition has turned out to be di�cult for many other teams. A

robust and well tested communication link and a well designed teleoperation interface have been key to get

the robot start its competition mission. Autonomous navigation has been shown by only a few teams. Only

2https://www.youtube.com/watch?v=gHso1nIyEu0

https://www.youtube.com/watch?v=gHso1nIyEu0


Figure 14: Stills from our evaluation at the DLR SpaceBot Cup. The top row contains images from our
competition run, the other images were taken after our run.

two of the ten participating teams could demonstrate obstacle avoidance. Our omnidirectional 3D multi-

camera and laser setup gave us a large advantage in perceiving obstacles, analyzing terrain for traversability,

and path-planning. We were the only team that could demonstrate the manipulation of one of the objects.

For this, the interplay between a speci�c design of the manipulator and its gripper, fast object perception,

and versatile grasp and motion planning have been important. While teleoperated manipulation was not

shown by us in the competition run, we have been one of the few teams that could demonstrate this capability

on-site to the public. In future work, the situational awareness of the operator needs to be improved, e.g.,

using head-mounted and 3D display. The creation of motion plans for the virtual robot could be made more

intuitive through better user interfaces such as 3D space mice or haptic displays.

Our system was very competitive and could show many functionalities that are required by the competition.

Unfortunately, while our control station interface provides operational status of most system components, the



speci�c failure of the laser scanner was not displayed. This hints us to the necessity of a generic approach

to automatic failure detection and recovery in our system. The general performance of all teams at the

competition demonstrated that much more research and development needs to be invested to fully solve the

complex problem de�ned by the DLR SpaceBot Cup.

9 Conclusion

In this article, we presented an integrated robot system for exploration and mobile manipulation in rough

terrain. While our system can handle many parts of the mission autonomously, all aspects from direct control

to mission speci�cation can be teleoperated through intuitive operator interfaces. Because we realized a

robust communication layer on top of ROS, our system also copes well with degraded network communication

between the robot and the operator station.

Our wheeled robot has been designed for driving in rough terrain. It is equipped with a multitude of sensors

such as a continuously rotating 3D laser scanner, an omnidirectional RGB-D camera consisting of eight

individual cameras, and three HD wide-angle cameras. Autonomous navigation in rough terrain is tackled

in a two-level approach. On the egocentric level, the robot drives to local waypoints within the view of the

omnidirectional RGB-D camera. It plans obstacle-avoiding paths, and �nds smooth driving controls. This

level also supports teleoperation to select and drive to waypoints in the local surrounding of the robot.

On the allocentric level, a 3D map of the environment is built through registration and SLAM of 3D laser

scans of the environment. The robot localizes by fusing wheel odometry, IMU measurements, and visual

odometry with observations of its pose of the incrementally build environment map. Exploration missions

can be speci�ed as a list of waypoints in a coarse environment map.

For object manipulation, the robot detects objects in front and plans feasible grasps. It executes the grasps

using parametrized trajectories, and stores them in specialized holders. Teleoperation is possible by specifying

trajectory waypoints in an external 3D visualization of the robot and its perceived environment.

The integrated system has been demonstrated at the DLR SpaceBot Cup 2013. During the o�cial run,

the robot autonomously explored and navigated in the arena. We also conducted isolated experiments to

show the quality of our approaches. Our SLAM system is capable of building a visually accurate map of

the environment. Our local navigation approach �nds smooth obstacle-avoiding paths, supported by high

frame-rate processing of the images of all eight RGB-D cameras.



In future work, we will further improve the robot design to operate in more di�cult rough terrain. For

instance, a legged robot could traverse through debris �elds. Also, the use of the manipulator to open

passages by moving debris, or to open doors could be investigated. A dexterous hand or a second arm

would allow the robot to perform more complex manipulation tasks such as tool-use. For improving shared

autonomy, automatic failure detection could be integrated into the system, such that the robot reports

failures and recommends a suitable semi-autonomous control mode for recovery.
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