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Abstract

Micro aerial vehicles, such as multirotors, are particularly well suited for the autonomous
monitoring, inspection, and surveillance of buildings, e.g., for maintenance or disaster man-
agement. Key prerequisites for the fully autonomous operation of micro aerial vehicles are
real-time obstacle detection and planning of collision-free trajectories. In this article, we
propose a complete system with a multimodal sensor setup for omnidirectional obstacle per-
ception consisting of a 3D laser scanner, two stereo camera pairs, and ultrasonic distance
sensors. Detected obstacles are aggregated in egocentric local multiresolution grid maps.
Local maps are efficiently merged in order to simultaneously build global maps of the en-
vironment and localize in these. For autonomous navigation, we generate trajectories in
a multi-layered approach: from mission planning over global and local trajectory planning
to reactive obstacle avoidance. We evaluate our approach and the involved components in
simulation and with the real autonomous micro aerial vehicle. Finally, we present the results
of a complete mission for autonomously mapping a building and its surroundings.

1 Introduction

Micro aerial vehicles (MAVs) are enjoying increasing popularity. Due to their low cost and flexibility, they are
used for aerial photography, inspection, surveillance, and search and rescue (SAR) missions. In most cases,
a human operator pilots the MAV remotely to fulfill a specific task or the MAV is following a predefined
path of GPS waypoints in an obstacle-free altitude. Especially for search and rescue operations—where
first responders need to obtain an overview of a site and further inspect certain regions—not all parts of
the environment may be reachable by humans or ground robots. For example, collapsed staircases and
elevators being out-of-order may hinder accessing upper stories of a building. Here, MAVs allow to quickly
inspect areas otherwise inaccessible. However, especially in collapsed buildings or larger sites, a constant
connection to the MAV may not be maintainable. Also, especially within buildings, passages may be narrow
and surrounding (collapsed) environmental structures may be hard to perceive for a human operator. In
order to safely navigate in such surroundings, an alternative is to have a (semi-)autonomous MAV that can
on its own—and without interaction with the operator—solve a well-defined sub-task. For example, the
operator may specify a set of regions within or around a building and the MAV autonomously approaches
all regions and collects (and/or transmits) sensor information.

Key prerequisites for the autonomous operation of micro aerial vehicles are real-time obstacle detection
and planning of collision-free trajectories. Fundamental aspects in the implementation of such a system
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Figure 1: Our MAV is equipped with eight co-axial rotors and a plurality of sensors, including a continuously
rotating 3D laser scanner, two stereo camera pairs, ultrasonic sensors, and GPS.

are robustness (all obstacles need to be reliably detected and mapped while avoiding false positives) and
real-time applicability (everything needs to be sensed and processed on-board). In this article, we present a
complete integrated system consisting of an MAV with multimodal omnidirectional sensor setup (see photo
and labeled CAD-model in Figure 1) and a navigation approach tailored to the special needs of MAVs. We
follow a multi-layered navigation approach: from slower deliberative to fast reactive layers, including mission
planning, global and local path planning, fast local obstacle avoidance, and robust motion controllers. Each
layer uses and builds its own environment representation: allocentric maps and city models for global path
and mission planning and local egocentric obstacle maps for local trajectory planning and reactive collision
avoidance.

Although we aim at mapping the environment during execution, prior knowledge can aid our mission
planning—in contrast to fully autonomous exploration of unknown space. We incorporate 3D city mod-
els as acquired by land surveying authorities, i.e., a Level-of-Detail 2 (LoD2) model containing footprint,
height, and roof-shape of buildings (Gröger et al., 2008) and a digital elevation model (DEM) of the envi-
ronment. These models do not include smaller structures, which constitute a collision hazard for the MAV,
however. Previously acquired maps can be outdated, especially in disaster situations and other dynamic
environments. Hence, the initial mission plans need to be adjusted on the fly, whenever more information
becomes available during flight. Nevertheless, buildings are often the largest obstacles and might inhibit local
path planners to find a feasible path towards the global goal. Other obstacles, e.g., power poles, vegetation,
debris, or building attachments, are likely to be small enough such that ways around them are included in
our local free space and obstacle map, built by means of efficient multiresolution scan registration. Hence, a
globally consistent path enables a local planner to navigate towards a global goal.

Designing sensory systems and perception algorithms is challenging for MAVs due to their size and weight
constraints and their limited computing power. In order to enable navigation in difficult 3D environments
for autonomous MAVs, we developed a small and lightweight continuously rotating 3D laser scanner that
measures distances of up to 30m in almost all directions. It consists of a Hokuyo UTM-30LX-EW 2D
laser range finder (LRF), which is rotated by a servo actuator to gain a 3D field-of-view (FoV), as shown
in Figure 3. Additionally, our MAV is equipped with two stereo camera pairs and ultrasonic sensors,
covering the volume around the MAV up to 6m range (Holz et al., 2013). All these sensors have only
local precision. This is reflected in the local multiresolution property of our MAV-centric obstacle map,
which has constant memory and computational requirements, independent of the environment size. The
local navigation planner operates directly on this representation. We employ 3D local multiresolution path
planning, extending ideas from our prior work (Behnke, 2004). This efficient planning technique allows for
frequent replanning, which makes 3D navigation in dynamic, unpredictable environments possible.



The MAV-centric local maps are used to build a globally consistent map of the environment. While we
assure real-time in the processing pipeline for the local maps, the global map can be built asynchronously
or even on a different computer (e.g., a ground station).

In this article, we present results of complete autonomous mapping missions and give a complete system
overview including the sensor setup and the involved perception and planning components. Building a fully
integrated system with the given requirements led to two main advances over the state-of-the-art:

1. We introduce a local multiresolution map structure and a scan registration method to efficiently build
accurate 3D maps. These maps are used for navigation and to build globally consistent environment
representations.

2. We present an efficient multi-layered planning approach for MAV navigation that generates collision
free trajectories based on coarse prior knowledge and the aforementioned global and local maps.

The remainder of this article is organized as follows: after a discussion of related work in the next section,
we introduce our MAV in Section 3. Section 4 describes our approach to local and global mapping. Our
hierarchical control architecture from global mission and path planning to low-level obstacle avoidance is
detailed in Section 5. Finally, we present the results of complete mapping missions and of experimental
evaluations of the involved components in Section 6.

2 Related Work

The application of MAVs varies especially in the level of autonomy—ranging from basic hovering and position
holding (Bouabdallah et al., 2004) over trajectory tracking and waypoint navigation (Puls et al., 2009) to
fully autonomous navigation (Grzonka et al., 2012).

2.1 Obstacle Perception

Particularly important for fully autonomous operation is the ability to perceive obstacles and to avoid
collisions. Obstacle avoidance is often neglected, e.g., by flying in a sufficient height when autonomously
flying between waypoints.

Due to the limited payload of MAVs, most approaches to obstacle avoidance are camera-based (Mori and
Scherer, 2013; Ross et al., 2013; Schmid et al., 2014; Magree et al., 2014; Tripathi et al., 2014; Flores et al.,
2014; Schauwecker and Zell, 2014; Park and Kim, 2014). Approaches using monocular cameras to detect
obstacles require movement in order to perceive the same surface points from different perspectives for being
able to triangulate depth. In order to estimate depth of object points instantaneously, stereo camera pairs
are used on MAVs, e.g., in the works of Schmid et al. (2014) and Park and Kim (2014). Tripathi et al. (2014)
use stereo cameras for reactive collision avoidance. A particularly small and lightweight (only 4 g) stereo
system was developed in the DelFly project (De Wagter et al., 2014). Indoors, a popular approach for depth
perception is to use RGB-D cameras that can measure depth even on textureless surfaces by projecting an
infrared pattern (Bachrach et al., 2012; Flores et al., 2014).

The limited field of view of cameras poses a problem when flying in constrained spaces, where close obstacles
can surround the MAV. To overcome these limitations, some MAVs are equipped with multiple (stereo)
cameras. Schauwecker and Zell (2014) use two pairs of stereo cameras, one oriented forward, the other
backward. Moore et al. (2014) use a ring of small cameras to achieve an omnidirectional view in the
horizontal plane, but rely on optical flow for velocity control, centering, and heading stabilization only.



Other groups use 2D laser range finders (LRF) to localize the MAV and to avoid obstacles (Grzonka et al.,
2012), limiting obstacle avoidance to the measurement plane of the LRF, or combine LRFs and visual obstacle
detection (Tomić et al., 2012; Huh et al., 2013; Jutzi et al., 2014). Still, their perceptual field is limited to
the apex angle of the stereo camera pair (facing forward), and the 2D measurement plane of the scanner
when flying sideways. They do not perceive obstacles outside of this region or behind the vehicle. We allow
omnidirectional 4D movements of our MAV, thus we have to take obstacles in all directions into account.
Another MAV with a sensor setup that allows omnidirectional obstacle perception is described by Chambers
et al. (2011).

Cameras and LRFs have problems detecting transparent obstacles such as windows. In contrast, ultrasonic
distance sensors can reliably detect such obstacles. On MAVs, ultrasonic sensors are often used to measure
height (Honegger et al., 2013). Ultrasonic sensors have a wide measurement cone. Thus only few of these
cheap and lightweight sensors are required to span a complete ring or sphere around the MAV in order to
detect obstacles in the close vicinity of the MAV, as done by Becker et al. (2012).

For mobile ground robots, 3D laser scanning sensors are widely used—due to their accurate distance mea-
surements, even in bad lighting conditions, and their large FoV. For instance, autonomous cars often perceive
obstacles by means of a rotating laser scanner with a 360◦ horizontal FoV, allowing for detection of obstacles
in every direction (Montemerlo et al., 2008). Up to now, such 3D laser scanners are rarely used on lightweight
MAVs—due to payload limitations. Instead, two-dimensional LRFs (Tomić et al., 2012; Grzonka et al., 2009;
Bachrach et al., 2009; Shen et al., 2011; Grzonka et al., 2012; Huh et al., 2013) are used. Statically mounted
2D LRFs restrict the FoV to the two-dimensional measurement plane of the sensor. However, this poses a
problem especially for reliably perceiving obstacles surrounding the MAV. When moving and in combination
with accurate pose estimation, these sensors can very well be used to build 3D maps of the measured surfaces,
though. Fossel et al., for example, use Hector SLAM (Kohlbrecher et al., 2011) for registering horizontal
2D laser scans and OctoMap (Hornung et al., 2013a) to build a three-dimensional occupancy model of the
environment at the measured heights (Fossel et al., 2013). Morris et al. follow a similar approach and in
addition use visual features to aid motion and pose estimation (Morris et al., 2010). Still, perceived infor-
mation about environmental structures is constrained to lie on the 2D measurement planes of the moved
scanner.

In contrast, we use a continuously rotating LRF, that does not only allow for capturing 3D measurements
without moving, but also provides omnidirectional sensing at comparably high frame rates (2 Hz in our
setup). A similar sensor is described by Scherer et al. (2012) and Cover et al. (2013). Their MAV is used
to autonomously explore rivers using visual localization and laser-based 3D obstacle perception. In contrast
to their work, we use the 3D laser scanner for both omnidirectional obstacle perception and mapping the
environment in 3D.

To robustly detect different types of obstacles in all directions, we combine multiple modalities. Our sensor
setup consists of a lightweight 3D laser scanner, two stereo camera pairs, and ultrasonic sensors. It contains
only lightweight sensors and is particularly well suited for MAVs (Holz et al., 2013).

2.2 Navigation Planning

A good survey on approaches to motion planning for MAVs is given by Goerzen et al. (2010). Due to the
limited computational power onboard the MAV, low computational costs are crucial for the applicability of
these algorithms. Consequently, layered planning algorithms are often used. Our approach uses four layers
operating at different time scales and different layers of abstraction.

A two-level approach to collision-free navigation, using artificial potential fields on the lower layer is proposed
by Ok et al. (2013). Similar to our work, completeness of the path planner is guaranteed by an allocentric
layer on top of local collision avoidance. Andert et al. (2010) use a three-level hierarchical behavior control
algorithm to fly a helicopter through a gate. Whalley et al. (2014) employ five navigation layers to fly 230 km



with a helicopter. Obstacles are detected and avoided with an onboard laser scanner. While in their work
sensing and consequently planning is limited to a narrow FoV in flight direction, we employ full 3D planning,
including flying sideways and backwards.

Some reactive collision avoidance methods for MAVs are based on optical flow (Green and Oh, 2008) or a
combination of flow and stereo vision (Hrabar et al., 2005). However, solely optical flow-based solutions
cannot cope well with frontal obstacles and these methods are not well suited for omnidirectional obstacle
avoidance as needed for our scenario. Johnson and Mooney (2014) use reactive obstacle avoidance on a
small helicopter for velocities up to 12m/s. Heng et al. (2014) use a multiresolution grid map to represent
the surroundings of a quadrotor. A feasible plan is generated with a vector field histogram (Ulrich and
Borenstein, 1998). We employ reactive obstacle avoidance as a fast safetety layer, and frequent replanning
in a multiresolution grid to generate collision free local paths.

Schmid et al. (2014) autonomously navigate to user-specified waypoints in a mine. The map used for planning
is created by an onboard stereo camera system. By using rapidly exploring random belief trees (RRBT),
Achtelik et al. (2014) plan paths that do not only avoid obstacles, but also minimize the variability of
the state estimation. Recent search-based methods for obstacle-free navigation include work of MacAllister
et al. (2013). They use A*-search to find a feasible path in a four-dimensional grid map—accounting for the
asymmetric shape of their MAV. With our sensor setup, we cover most of the space around the approximately
circular robot, hence we control view directions independent from path planning according to mission-defined
points of interest. Cover et al. (2013) use a search-based planning method as well. It assumes complete
knowledge of the scene geometry—an assumption that we do not make here.

2.3 Simultaneous Localization and Mapping

The Simultaneous Localization and Mapping (SLAM) problem has attracted attention especially in the field
of autonomous navigation with mobile ground robots (Nuechter et al., 2005; Magnusson et al., 2007). LRFs
provide accurate distance measurements in a large FoV, with only minor dependencies on lighting conditions.
A common research topic in SLAM with 3D laser scanners is how to maintain high run-time performance
and low memory consumption simultaneously.

Hornung et al. (2013b) implement a multiresolution map based on octrees (OctoMap). Ryde and Hu (2010)
use voxel lists for efficient neighbor queries. Both of these approaches consider mapping in 3D with a voxel
being the smallest map element. Similar to our approach, the 3D-NDT (Magnusson et al., 2007) represents
point clouds as Gaussian distributions in voxels at multiple resolutions. Our local multiresolution surfel grids
adapt the maximum resolution with distance to the sensor to incorporate measurement characteristics.

Moreover, our registration method matches 3D scans on all resolutions concurrently—utilizing the finest
common resolution available between both maps, which also makes registration efficient. In previous own
work (Stückler and Behnke, 2014; Schadler et al., 2013), we used this concept within an octree voxel repre-
sentation. We model up to six view directions, such that multiple 3D scans from different view points can
be integrated in a single multiresolution surfel map. Compared to the dense RGB-D images used in our
previous work, the 3D scans obtained from our LRF are much sparser. We overcome this sparsity through
probabilistic assignments of surfels during the registration process.

While many methods assume the robot to stand still during 3D scan acquisition, some approaches also
integrate scan lines of a continuously rotating laser scanner into 3D maps while the robot is moving (Bosse
and Zlot, 2009; Elseberg et al., 2012; Stoyanov and Lilienthal, 2009; Maddern et al., 2012; Anderson and
Barfoot, 2013).

Above mentioned Scherer et al. (2012) and Cover et al. (2013) use a 3D laser scanner for obstacle perception
for autonomous river exploration. They approach MAV localization with a vision sensor. In contrast, we
combine visual odometry with 3D scan registration in a 3D multiresolution map to localize the MAV.
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Figure 2: Multi-layered navigation approach: slow planners on the top yield coarse trajectories which are
refined on faster lower layers. The layers build and use different environment representations: allocentric
maps from city models and local egocentric obstacle maps.

Takahashi et al. (2008) also build environment maps with a 3D laser scanner. They localize the robot using
GPS and IMU sensors. Thrun et al. (2003) propose a 3D mapping system with a rigidly mounted 2D laser
scanner on a helicopter. The laser scanner measures in a vertical plane perpendicular to the flight direction.
In order to localize the helicopter, measurements from GPS and IMU are fused and consecutive 2D scans
are registered, assuming scan consistency in flight direction. In our approach, we do not make such an
assumption on scan consistency.

3 System Setup and Overview

3.1 Approach Overview and Data Flow

To allow for prompt reactions on obstacle perceptions on the one end, and consistent mapping and complex
planning on the other end, our system architecture is layer-based (see Figure 2). Accordingly, we have slower
global layers on the top (allocentric mapping, deliberative planning) and faster local layers on the bottom
(egocentric obstacle maps, reactive obstacle avoidance). From top to bottom, the abstraction level of planning
and mapping is reduced and the processing frequency approaches the sensor measurement frequency.

3.2 Platform and Sensor Setup

Our MAV platform is an octorotor multicopter with a co-axial arrangement of rotors (see Figure 1). This
yields a compact flying platform that is able to carry a plurality of sensors and an onboard computer
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Figure 3: 3D scanner setup: (a) CAD drawing of our continuously rotating laser scanner. The Hokuyo 2D
LRF is mounted on a bearing and rotated around the red axis. Its mirror is rotated around the green axis,
resulting in a 2D measurement plane (blue). (b) Photo of the sensor. (c + d) CAD drawings illustrating the
FoV of individual scans of the laser scanner (blue) from side and top view. The black dashed line illustrates
the centre of the measurement plane.

with sufficient computing power (Intel Core i7-3820QM 2.7GHz). For sensor data processing and navigation
planning, we employ the Robot Operating System (ROS), Quigley et al. (2009), as middleware. For low-level
velocity and attitude control, the MAV is equipped with a PIXHAWK Autopilot flight control unit (Meier
et al., 2012). To allow for safe omnidirectional operation in challenging environments, our MAV is equipped
with a multimodal sensor setup:

• Our main sensor for obstacle perception is a continuously rotating 3D laser scanner (Figure 3). The
scanning plane of the Hokuyo UTM-30LX-EW 2D LRF is parallel to the axis of rotation, but the
heading direction of the scanner is twisted slightly away from the direction of the rotational axis—in
order to enlarge its FoV (Figure 3a). The measurement density of the 3D laser scanner varies and has
its maximum in a forward-facing cone. The sensor is pitched downward by 45◦ in forward direction,
so that only a small conical spot above the back of the MAV is occluded by its core.

• Two monochrome stereo camera pairs (pointing slightly downward in forward and backward direc-
tion) are used for visual odometry and obstacle perception. Equipped with fish-eye lenses, they
cover a large area around the MAV.

• Eight ultrasonic sensors around the MAV complete the perception setup. Despite their limited
accuracy and range, they aid the perception of transparent obstacles in the vicinity of the MAV,
such as windows.

• Additionally, we use GPS and an optical flow camera (Honegger et al., 2013) for localization and
state estimation. The flow camera is pointing vertically to the ground and can—given suitable
lighting conditions—measure velocities relative to the ground-plane with more than 100Hz update
rate.

We detail our sensor setup in (Holz et al., 2013; Droeschel et al., 2013). The fusion of these sensors allows
the reliable detection and avoidance of obstacles.

4 Perception and Mapping

In order to accumulate laser range measurements, we construct an MAV-centric multiresolution grid map
(Section 4.2). The map is used by our path planning and obstacle avoidance algorithms described in subse-
quent sections.
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Figure 4: Overview of our mapping system. The LRF measurements are processed in preprocessing steps
described in Section 4.1. The resulting 3D point cloud is used to estimate the transformation between the
current scan and the map as described in Section 4.4. Registered scans are stored in a local multiresolution
map. These maps are aligned to build an allocentric map as described in Section 4.5.

We register consecutive 3D laser scans with our local multiresolution surfel grid map to estimate the motion
of the MAV. 3D scans are acquired in each half rotation of the laser. Since the scans are taken in-flight in a
sensor sweep, the motion of the MAV needs to be compensated for when assembling the scan measurements
into 3D scans (Section 4.1). Furthermore, we aggregate 3D scans in a local map of the environment. We
first register newly acquired 3D scans with the so far accumulated map and then update the map with the
registered 3D scan. We concurrently build an allocentric map, where local multiresolution maps acquired
from different view poses are aligned (Section 4.5). The architecture of our perception and mapping system
is outlined in Figure 4.

4.1 3D Scan Assembly

Assembling raw laser scans to 3D scans must not only account for the rotation of the scanner w.r.t. to the
MAV, but also for MAV motion during acquisition. We undistort 3D scans in two steps.

First, measurements of individual scan lines are undistorted with regards to the rotation of the 2D LRF
around the servo rotation axis (red axis in Figure 3). Here, the rotation between the acquisition of two scan
lines is distributed over the measurements by using spherical linear interpolation.

Second, we compensate for the motion of the MAV during acquisition of a full 3D scan. To this end,
we incorporate a visual odometry estimate from the two stereo cameras. Here, a keyframe-based bundle
adjustment is performed (Schneider et al., 2013) on the synchronized images with 18Hz update rate. Since
the update rate of the 2D LRF is 40Hz, we linearly interpolate between the estimates of the visual odometry.

The 6D motion estimate is used to assemble the individual 2D scan lines of each half rotation to a 3D scan.
Figure 5 illustrates the effect of scan undistortion.

Since the dynamics of MAVs are restricted, we found linear undistorsion sufficient for preprocessing. Es-
pecially the lack of jerk and the bounded acceleration that are occurring during normal flight conditions
do not require more sophisticated algorithms. The integration of IMU measurements could possibly further
improve the result, though.



Figure 5: Side view of an indoor 3D scan with flat ground. Left: assembled 3D scan without considering
sensor movement during scan acquisition. Right: We incorporate visual odometry to correct for the sensor
movement.

Figure 6: Grid-based local multiresolution map with a higher resolution in proximity to the sensor and a
lower resolution with increasing distance. Color encodes height.

4.2 Local Multiresolution Map

We use a hybrid local multiresolution map that represents both occupancy information and the individual
distance measurements. The most recent measurements are stored in ring buffers within grid cells that
increase in size with distance from the robot center. Thus, we gain a high resolution in the close proximity
to the sensor and a lower resolution far away from our robot, which correlates with the sensor characteristics in
relative distance accuracy and measurement density. Compared to uniform grid-based maps, multiresolution
leads to the use of fewer grid cells, without losing relevant information and consequently results in lower
computational costs. Figure 6 shows an example of our multiresolution grid-based map.

We aim for efficient map management for translation and rotation. To this end, individual grid cells are
stored in a ring buffer to allow shifting of elements in constant time. We interlace multiple ring buffers to
obtain a map with three dimensions. The length of the ring buffers depends on the resolution and the size
of the map. In case of a translation of the MAV, the ring buffers are shifted whenever necessary to maintain
the egocentric property of the map. For sub-cell-length translations, the translational parts are accumulated
and shifted if they exceed the length of a cell.
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Figure 7: Obstacle perception by fusing laser range measurements of our 3D laser scanner with dense stereo
measurements. (a) A loose-hanging cable at 3m distance, which is not perceived with the 3D laser scanner
of the MAV; (b) Dense stereo allows for detecting the cable; (c) The resulting occupancy grid map with
measurements from the laser scanner solely; (d) The resulting occupancy grid map with laser and dense
stereo. The fused map shows the obstacle circled in blue. The MAV position is circled red. We chose a
single layer of a uniform grid for visualization.

(a) (b) (c) (d)

Figure 8: Obstacle perception by fusing laser range measurements of our 3D scanner with ultrasonic mea-
surements: (a) A window in 2m distance; (b) The window is only partially perceived by the 3D laser scanner;
(c) The resulting occupancy grid map with measurements from the laser scanner solely; (d) The resulting
occupancy grid map with laser and ultrasonic measurements (red cones). The position of the MAV is circled
red. We chose a single layer of a uniform grid for visualization.

4.3 Occupancy Mapping

The individual sensors of our MAV have different strengths and weaknesses. In order to perceive as many
obstacles as possible, it is necessary to fuse the measurements adequately into a single map. We collect
these measurements in an occupancy grid maintaining occupancy probabilities. We fuse measurements from
the 3D laser scanner, from the wide-angle stereo cameras, and from the ultrasonic sensors. Figure 7 shows
an example of an outdoor scenario where fusing laser range measurements with dense stereo (Geiger et al.,
2010) allows for perception of challenging obstacles. Besides very thin obstacles such as a cables, transparent
objects are demanding for reliable obstacle perception. Figure 8 shows how fusing measurements from our
3D laser scanner with ultrasonic measurements allows for detecting transparent obstacles, like windows.

4.4 Registration Approach

We register the points P = {p1, . . . , pP } in a 3D scan with the points Q = {q1, . . . , qQ} in the local grid map
of the environment (Droeschel et al., 2014). Instead of considering each point individually, we map the 3D



(a) Aggregated point cloud (colored by height). (b) Multiresolution surfel map (colored by surfel ori-
entation).

Figure 9: Example of a multiresolution surfel map.

scan into a local multiresolution grid and match surfels. In each voxel in the grid, we maintain one surfel
that summarizes the Px,i points that lie within the voxel. A surfel is defined by the sample mean µx,i and
the sample covariance Σx,i of these points.

We denote the set of surfels in the scene (the 3D scan) by X = {x1, . . . , xN} and write Y = {y1, . . . , yM}
for the set of model surfels in the environment map. We assume that scene and model can be aligned by a
rigid 6 degree-of-freedom (DoF) transformation T (θ) from scene to model. The observation likelihood of the
scene surfels in the environment map, given the pose estimate θ,

p(P | θ,Q) ≈
N∏
i=1

p(xi | θ, Y )Px,i . (1)

now considers the number of points in each surfel in order to approximate the point-to-point observation
likelihood. By this, several orders of magnitudes less map elements are used for registration than if the points
would have been used individually. Similarly, the registration of two local maps is treated as the registration
of their point sets.

4.4.1 Gaussian Mixture Observation Model

We explain each transformed scene surfel as an observation from a mixture model, similar as in the co-
herent point drift (CPD) method (Myronenko and Song, 2010). A surfel xi is observed under the mixture
distribution defined by the model surfels and an additional uniform component that explains outliers, i.e.,

p(xi | θ, Y ) =

M+1∑
j=1

p(ci,j) p(xi | ci,j , θ, Y ). (2)

The binary variable ci,j indicates the association of xi to one of the M + 1 mixture components (defined
by surfel yj or the uniform component if j = M + 1). The mixture components for the M model surfels
correspond to the matching likelihood between the scene surfel xi and each of the model surfels through

p(xi | ci,j , θ, Y ) := N
[
T (θ)µx,i;µy,j ,Σy,j +R(θ)Σx,iR(θ)T + σ2

j I
]
, (3)



where σj = 1
2ρ
−1
y,j is a standard deviation that we adapt to the resolution ρy,j of the model surfel. We set the

likelihood of the uniform mixture component to a constant. This way, we do not make a hard association
decision for each surfel, but a scene surfel is associated to many model surfels.

4.4.2 Registration through Expectation-Maximization

The alignment pose θ is estimated through maximization of the logarithm of the joint data-likelihood

ln p(P | θ,Q) ≈
N∑
i=1

Px,i ln

M+1∑
j=1

p(ci,j) p(xi | ci,j , θ, Y ). (4)

We optimize this objective function through expectation-maximization (EM) (Bishop, 2006). In the M-step,
the latest estimate q for the distribution over component associations is held fixed to optimize for the pose θ

θ̂ = argmax
θ

const .+

N∑
i=1

Px,i

M+1∑
j=1

q(ci,j) ln p(xi | ci,j , θ, Y ). (5)

Writing out the mixture component distributions and using the fact the the uniform component is constant
in θ, we find that this optimization problem is a non-linear least squares problem,

θ̂ = argmax
θ

const .+

N∑
i=1

Px,i

M∑
j=1

q(ci,j) e
T
i,jWi,j ei,j , (6)

where we defined ei,j(θ) := µy,j − T (θ)µx,i and Wi,j(θ) :=
(
Σy,j +R(θ)Σx,iR(θ)T

)−1.
This optimization is efficiently performed using the Levenberg-Marquardt (LM) method as in (Stückler and
Behnke, 2014). We stack the residuals ei,j(θ) in a single vector e(θ). Similarly, we combine the information
matrices Wi,j in a block-diagonal weighting matrix W , but for which we treat the pose as being constant
for the non-linear least-squares optimization. Additionally, according to Eq. (5), each association needs to
be weighted by a factor wi,j := Px,i q(ci,j). These weights are additional factors to the information matrices
in the individual blocks (wi,jWi,j) of W .

The steps taken by LM optimization are

∆θ := (JTWJ + λI)−1JTWe(θ), (7)

where J := ∇θe(θ) is the Jacobian of the stacked residuals, and λ is adjusted by LM to trade between
Gauss-Newton and gradient descent steps. Note that due to the block-diagonal structure of W , this update
decomposes into sums over individual terms per association. The covariance of the LM estimate is readily
obtained by Σ(θ) := (JTWJ)−1.

The E-step obtains a new optimum q̂ for the distribution q by the conditional likelihood of the cluster
associations given the latest pose estimate θ

q̂(ci,j) =
p(ci,j) p(xi | ci,j , θ, Y )∑M+1

j′=1 p(ci,j′) p(xi | ci,j′ , θ, Y )
. (8)

In order to evaluate these soft assignments, we perform a local search in the local multiresolution surfel grid
of the model. We first look up the grid cell with a surfel available on the finest resolution in the model
map at the transformed mean position of the scene surfel. We consider the surfels in this cell and its direct
neighbors for soft association.



4.5 Simultaneous Localization and Mapping

Our map representation and registration method is able to track the pose of the MAV in a local region, since
we decrease the resolution in the map with distance to the MAV. In order to localize the robot in a fixed
frame towards its environment and to concurrently build an allocentric map, we align local multiresolution
maps acquired from different view poses.

We register the current local multiresolution map towards a reference key view to keep track of the MAV
motion. A new key view is generated for the current map, if the robot moved sufficiently far. The new key
view is set as the reference for further tracking. The registration result xji between a new key view vi and
its reference vj is a spatial constraint that we maintain as values of edges eij ∈ E in a graph G = (V, E) of
key views.

To overcome pure time-sequential pose tracking by registration, we add spatial constraints between close-by
key views that are not in temporal sequence. On-line SLAM is enabled by establishing up to one spatial
constraint per 3D scan update.

4.5.1 Constraint Detection

On each scan update, we check for one new constraint between the current reference vref and other key
views vcmp. We determine a probability

pchk(vcmp) = N
(
d(xref, xcmp); 0, σ2

d

)
(9)

that depends on the translational distance d(xref, xcmp) between the key view poses xref and xcmp. We
sample a key view v according to pchk(v) and determine a spatial constraint between the key views using
our registration method.

4.5.2 Pose Graph Optimization

From the graph of spatial constraints, we infer the probability of the trajectory estimate given all relative
pose observations

p(V | E) ∝
∏
eij∈E

p(xji | xi, xj). (10)

Each spatial constraint is a normally distributed estimate with mean and covariance determined by our
probabilistic registration method. This pose graph optimization is efficiently solved using the g2o frame-
work (Kuemmerle et al., 2011).

5 Planning

For successful fulfillment of an exploration and mapping mission, safe navigation is key. Multiple planning
and navigation tasks have to be executed: from mission planning to low-level motion control. These tasks
require different abstractions of the environment, as illustrated in Figure 2.

To plan a mapping mission, we employ a coarse (semantic) model of the environment; to plan collision-free
paths, we need a finer and up-to-date consistent geometric model; and to avoid obstacles, we need a non-
aggregated local representation of the close vicinity of the MAV. The planned actions also have different
granularity, which is represented by the planning frequency: from once per mission to multiple times per
second. The higher-layer planners set goals for the lower-level planners which produce more concrete action
sequences based on more local and up-to date environment representations.



(a) OctoMap derived from city model. (b) Laser scan of the environment. (c) Aerial photo of the environment.

Figure 10: (a) For the more abstract high-level planning layers, we employ coarse models of the environment,
i.e., a 3D city model and a digital elevation model as provided by land surveying authorities. (b) The planned
paths are refined during a mission by means of the local planning and obstacle avoidance layers operating
with onboard sensor measurements, e.g., 3D laser scans. Including a building (right) and vegetation (blue
circle). Measurements on the MAV itself are circled red. The color in both figures depicts the height. The
(approximate) position of the scanned tree is circled blue in all figures. (c) An aerial photo of the scanned
environment (Image credit: www.bing.com/maps).

5.1 Mission Planning

The topmost layers are a mission planner and a global path planner. Both use a static representation
of the environment that is derived from a 3D city model and a digital elevation model, depicted in Fig-
ure 10(a). These models are available from land surveying authorities and aid as initial information for
planning a mission to inspect buildings or search for persons. The combined model is stored efficiently in an
OctoMap (Hornung et al., 2013a).

Input to the mission planner is a set of view poses defined by the user. The mission planner employs a global
path planner on a coarse uniform grid map to determine the approximate costs between every pair of mission
goals. In order to speed up the process, we reuse already calculated information, e.g., the obstacle costs per
grid cell stay the same for every combination of view poses. Furthermore, the costs of reaching grid cells
from one start pose stay constant in this offline processing step. After calculating all pair-wise edge weights,
the cost-optimal sequence of view poses is determined by means of Concorde (Applegate et al., 2006), a fast
solver for the traveling salesman problem (TSP). Please note, that the instances of the TSP for one mission
are sufficiently small, so that exact solutions are tractable.

The result of mission planning is a flight plan composed of a list of waypoints, the MAV should pass
approximately or reach exactly, depending on the mission objectives. Figure 11 shows an example solution
for a mission to build the map in Figure 24.

5.2 Global Path Planning

The next layer in the planning hierarchy is a global path planner. This layer plans globally consistent plans,
based on I) the static environment model, discretized to grid cells with 1 m edge length, II) the current pose
estimate of the MAV, and III) a robot-centric local grid map representing the vicinity of the MAV. Planning
frequency is 0.2 Hz and we use the A* algorithm to find cost-optimal paths.

We assume, that in our application domain most obstacles that are not known in advance can be surrounded
locally, without the need for global replanning. Hence, it is sufficient to replan globally on a more long-term
time scale to keep the local deviations of the planner synchronized to the global plan and to avoid the
MAV to get stuck in a local minimum that the local planner cannot solve due to its restricted view of the
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Figure 11: On the top layer, a mission planner evaluates the best execution order of mission poses (black
arrows). (a) All cost-optimal trajectories between each pair from the set of mission waypoints, including the
current robot pose (red arrow). (b) The optimal flight plan to reach all waypoints and return to the start
pose. The cost function allows for positions close to the building but penalizes these more than paths farther
away.

environment.

As via-points that are not mission critical can be blocked by locally perceived obstacles, it is not sufficient
to send the next waypoint of the global path to the local planning layers. Instead, the input to the local
planner is the complete global plan. The global path is cost-optimal with respect to the allocentric map.
Hence, the path costs of the global path are a lower bound to path costs for refined plans, based on newly
acquired sensor information—mostly dynamic and static previously unknown obstacles—and a local path
deviating from the global plan cannot be shorter in terms of path costs. Locally shorter plans on lower layers
with a local view on the map may yield globally suboptimal paths. Because of that, we add the estimated
path costs between waypoints of the global plan to its edges to facilitate efficient exploration of the search
space on the next lower layer. The optimal costs between every two waypoints of the global path can be
determined by the local planner and there exists no shorter way between these. Also, mission goals are
marked as the local planner has to reach these exactly. If this is not possible, the mission planning has to
resolve this failure condition.

5.3 Local Multiresolution Planning

On the local path planning layer, we employ a 3D local multiresolution path planner. This planner uses as
input the solution by the allocentric planning layer, a local excerpt of the global map, and local distance
measurements which have been aggregated in a 3D local multiresolution map (Sec. 4.2). It refines the global
path according to the actual situation. The more detailed trajectory is fed to the potential field-based
reactive obstacle avoidance layer on the next level (cf. Sec. 5.4).

To resemble the relative accuracy of onboard sensors—i.e., they measure the vicinity of the robot more
accurate and with higher density than distant space—we plan with a higher resolution close to the robot



Figure 12: The local plan (red) is coupled with the allocentric plan (black) by a cost term that penalizes
deviations from the allocentric plan. The blue lines depict the deviation vectors at example points, the green
arrow indicates the goal for local planning.

and with coarser resolutions with increasing distance from the robot.

This local multiresolution approach to path planning is very efficient. Since parts of the plan, that are
farther away from the MAV are more likely to change, e.g., due to newly acquired sensor data, it is efficient
to spend more planning effort in the close vicinity of the robot. Compared to uniform resolution planning our
approach reduces the planning time drastically and makes frequent replanning feasible. Our planner operates
on grid-based robot-centric obstacle maps with higher resolution in the center and decreasing resolution in the
distance, similar to the representation in Sec. 4.2. We embed an undirected graph into this grid (Figure 13a)
and perform A* graph search (Hart et al., 1968) from the center of the MAV-centered grid to the goal. The
edge costs are determined using the obstacle costs of the cells it is connecting and edge length.

An obstacle is modeled as a core with maximum costs, determined by obstacle radius rF and enlarged by
the approximate robot radius rR. The obstacle costs are multiplied by the fraction of the edge length within
the respective cells. Figure 13b shows our obstacle model: a core of the perceived obstacle enlarged by the
approximate robot radius rC and a distance-dependent part rS that models the uncertainty of farther away
perceptions and motions with high costs. Added is a part with linearly decreasing costs with increasing
distance to the obstacle rA that the MAV shall avoid if possible. The integral of the obstacle stays constant
by reducing its maximum costs hmax with increasing radius. For a distance d between a grid cell center and
the obstacle center, the obstacle costs hc are given by

hc(d) =


hmax if d ≤ (rF + rD)

hmax
1−d−(rF+rD)
2∗(rF+rD) if (rF + rD) < d < 3 ∗ (rF + rD)

0 otherwise
.

The local planner is coupled to the solution of the allocentric path planner by a cost term ha penalizing
deviations. For every grid cell visited in the planning process, we calculate the point-line distance between
the grid cell’s center and the closest segment of the allocentric path (see Figure 12). The distance contributes
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Figure 13: Local multiresolution path planning. (a) Connectivity in the robot-centered multiresolution
planning grid. Red lines depict edges from a cell at the corner of an inner (high resolution) grid to its
neighbors. (b) We model obstacles in the local multiresolution grid as a fixed core rC , a safety area with
maximum costs rS , and an avoidance zone with linear decreasing costs rA. With increasing distance to the
grid’s origin the radii of these areas increase and their maximum cost decreases to account for the uncertainty
in measurements.

to the overall cost for traversing the cell.

A situation where purely reactive obstacle avoidance fails but local planning is sufficient to find a solution
is shown in Figure 14.

5.4 Local Obstacle Avoidance

On the next lower layer, we employ a fast reactive collision avoidance module based on artificial potential
fields (Ge and Cui, 2002) as a safety measure reacting directly on the available sensor inputs.

The robot-centered local multiresolution occupancy grid, the current motion state xt, and a target velocity
vt, serve as input to our algorithm. The obstacle map induces repulsive forces on particles on the MAV with
magnitude

F pr = costs (argmino (‖o− p‖)) (11)

for an obstacle at position o and a particle at position p. For efficiency reasons, we calculate the force
affecting one particle by selecting the closest obstacle. The effects caused by this simplification are mitigated
by extending the standard potential field-based approach by relaxing the assumption that the robot is one
idealized particle.

We account for the shape of the MAV by discretizing it into cells (blue grid cells in Figure 15). Every cell
is considered as one particle in the algorithm. This leads to a robot model containing particles in the center
of the cells pi. The force affecting this model is the average of all individual forces

F pr =
1

N

N∑
i

F pir . (12)

The MAV velocity is modified according to the accumulated obstacle-repelling potentials of its parts and a
target velocity to follow the local plan.

Our formulation allows to evaluate the effects of the potential field on the robot’s orientation according to
Eq. 13. As the robot is represented as a discretized 3D model, we can calculate the angular momentum on
the MAV’s center by all artificial forces ~Fi applied to the individual robot cells i and their respective relative
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Figure 14: Our reactive collision avoidance layer is a fast mean to react on a priori unknown obstacles (green
rectangle in this example). (a) The arrows depict the artificial potential forces pushing the MAV away
from all static and dynamic obstacles, but the MAV will get stuck in a local minimum (red circle) while
approaching a waypoint in the direction of the black line. (b) The local path planning layer is necessary to
proceed without planning a new global path.

positions ~pi:
~M =

∑
i

~pi × ~Fi. (13)

From the three rotational velocities, only the yaw velocity can be chosen independently from the linear
velocities of the MAV. Hence, we project all pi and Fi to a plane parallel to the ground. Thus, we get
an acceleration around the z-axis resulting in an angular velocity. This can be used to orient less circular
robots (e.g., an MAV with a sensor pole) away from obstacles. As our MAV is appriximative circular, we
give precedence to the orientation commanded by higher layers.

To take the MAV’s dynamic state into account, we predict its future trajectory Tt by predicting the probable
sequence of motion commands ut:t+n for a fixed discrete-time horizon n (Figure 15). The prediction of the
future trajectory for the next n time steps, initial motion command u0, initial position p0, and a nonlinear
discrete time-invariant motion model f(x, u) is then given by

Tt = pt:t+n = (pt, pt + 1, . . . , pt+n) , (14)
pi+1 = f(xi, ui) + pi i ∈ [t : t+ n− 1] , (15)

ui = C ~Fpi . (16)

The future control commands ui are predicted by mapping the estimated forces ~Fpi at a position pi to a
control command with matrix C.

Due to the input bounding of the model, the motion state cannot be changed instantaneously. Analysis of
the model pledges a maximum lateral acceleration of amax = 1.988ms2 which leads to a maximum stopping
distance of 0.754m in 0.503 s under ideal conditions. Considering unmodeled effects like wind, a prediction
horizon of t = 1 s is found to be sufficient. For more details regarding the motion model, see Beul et al.
(2014).



Figure 15: We predict the influence of a motion command by rolling out the robot’s trajectory (red) using a
learned motion model. The direct line towards the next specified waypoint is depicted in yellow. The white
lines connect obstacles to the parts of the robot model, their artificial force is applied to.

If a given force threshold is exceeded at any point pi of the trajectory, we reduce the velocity v of the MAV
to

vnew =

(
1

2
+

i

2n

)
vmax. (17)

For more details, see Nieuwenhuisen et al. (2013).

6 Evaluation

In order to assess the performance and the reliability of our system as well as the involved components, we
conducted a set of experiments. These range from testing individual components in isolation to reporting
the results of an integrated mission where the complete system accomplishes the mapping of a building and
its surroundings.

Going through the different layers of our architecture, we first report the results of experiments on local
and allocentric mapping and then continue with global and local path planning as well as reactive collision
avoidance. Finally, we showcase a typical mission of the integrated experiment and present the achievable
results.

6.1 Scan Registration and Local Multiresolution Mapping

In order to assess the performance of our local multiresolution mapping approach, we have recorded two
datasets in-flight with our MAV. We register the point set of each acquired 3D scan with an iteratively



updated local multiresolution map using I) our surfel-based registration method, II) the Iterative Closest
Point algorithm (ICP) by Besl and McKay (1992) as a baseline registration algorithm, and III) the state-of-
the-art Generalized ICP (GICP) by Segal et al. (2009). Throughout the experiments, we use four levels for
the local multiresolution map with a cell length of 0.25 m at the finest level, which yields a cell length of 2m
at the coarsest level. The different approaches are compared in terms of runtime and accuracy. The latter
is evaluated using the accuracy of the determined poses along the trajectory of the MAV and the quality of
the resulting map. We make both datasets publicly available1.

6.1.1 Indoor Flight in the Motion Caption System

The first dataset provides ground-truth pose information from an indoor motion capture (MoCap) system.
The MoCap system provides accurate pose information of the MAV at high frame rates (100Hz), but is
restricted to a small capture volume of approximately 2×2×3m. During the 46 s flight, visual odometry
and laser data for 92 3D scans have been recorded. In order to assess the accuracy of our approach, we
compare the estimated trajectories by the different registration algorithms with ground truth. In addition,
we propose an entropy-based metric to measure the quality of the resulting map.

We quantify the accuracy of the estimated trajectories using the measure of the Absolute Trajectory Error
(ATE) proposed by Sturm et al. (2012). It is based on determining relative and absolute differences be-
tween estimated and ground-truth poses. Global consistency is measured by first aligning and then directly
comparing absolute pose estimates (and trajectories):

ATE (Fi:n) :=

(
1

m

m∑
i=1

‖trans (Fi (∆)) ‖2
)1/2

(18)

with Fi(∆) := Q−1i SPi, where S is the rigid-body transformation mapping the estimated trajectory Pi:n to
the ground truth trajectory Qi:n.

In order to measure the quality of the resulting map, we calculate the mean map entropy, a quantitative
measure which evaluates the sharpness of a map. The entropy h for a map point qk is calculated by

h(qk) =
1

2
ln |2πeΣ(qk)|, (19)

where Σ(qk) is the sample covariance of mapped points in a local radius r around qk. We select r = 0.3m in
our evaluation. The mean map entropy H(Q) is averaged over all map points

H(Q) =
1

Q

Q∑
k=1

h(qk). (20)

Table 1 summarizes the ATE of our method together with the estimated map entropy and measured runtimes,
and comparing them to visual odometry and registration using ICP and GICP. The results indicate that all
scan registration methods improve the motion estimate produced by visual odometry. Our method results in
a lower ATE compared to ICP and GICP. Furthermore, a lower map entropy indicates a higher quality of the
resulting map in terms of sharper planes, edges, corners and other environmental structures. In addition, the
run-times reported in Table 1 demonstrate that our method is computationally more efficient. In Figure 16,
we show the trajectory estimates obtained from the two best registration methods (ours and GICP) as well
as the deviations of both estimates from the ground-truth trajectory.

6.1.2 Flight in a Parking Garage

A second dataset has been acquired in a parking garage which allows for larger flight distances. The dataset
consists of 200 3D scans. The overall trajectory length is 73 m, covering the complete floor of the garage.

1Datasets recorded in-flight with our MAV are available at: http://www.ais.uni-bonn.de/mav_mapping.



Figure 16: Absolute trajectory error of scan registration using the multiresolution map. Poses of the tra-
jectory are projected on the xy-plane. While both approaches adequateley reconstruct the trajectory, our
surfel-based methods is closer to groung-truth (GT) than Generalized-ICP (GICP).

Table 1: Scan registration results. Trajectory error, map entropy, and runtimes.

ATE (m) map entropy run-time (ms)

RMSE mean median std min max mean mean std max

VO 0.151 0.134 0.129 0.059 0.024 0.324 -3.112
ICP 0.040 0.035 0.034 0.019 0.006 0.117 -3.411 290.31 108.72 521
GICP 0.034 0.031 0.030 0.014 0.005 0.088 -3.363 1769.52 813.92 5805
ours 0.021 0.019 0.016 0.010 0.005 0.061 -3.572 51.06 27.30 121

Visual Odometry (VO), Iterative Closest Point (ICP) and Generalized-ICP ( GICP)

Ground truth information is not available in this environment due to the lack of a MoCap system and no
availability of Global Navigation Satellite Systems (GNSS) in indoor environments. Instead, we only use
the entropy of the resulting map to measure its quality. In addition, we visually inspect the resulting maps
and present qualitative results. Using GICP to estimate the motion and building the map, results in a map
entropy of −3.438, whereas using our method results in a lower entropy of −3.696. Figure 17 illustrates
the increase of measurement density through the aggregation of measurements as well as the higher map
accuracy of our approaches, compared to GICP.

6.2 Global Registration and Allocentric Mapping

In order to assess the performance of our global registration and allocentric mapping approach, we tested
our approach on the complete dataset of the parking garage (Section 6.1.2).

Figure 18 shows the resulting allocentric maps and trajectories after pose graph optimization using the differ-
ent registration approaches. For this figure, we chose an orthogonal top-down perspective to get an indication
about the consistency of the aligned 3D scans by the parallel walls. Without pose graph optimization, the
trajectory aggregates drift which results in inconsistencies, indicated by the misalignment of the walls.



(a) Photo of the scene (b) Ours: after 1 scan (c) Ours: after 10 scans

(d) GICP: map detail of one corner (e) Ours: map detail of one corner

Figure 17: (a) Registration and local multiresolution surfel mapping in a parking garage. Ground truth or
GNSS-based pose estimates are not available in this environment. (b+c) Registering and aggregating scans
increases the density of points without loosing accuracy. (d+e) Our approach obtains higher quality maps
as indicated by lower map entropy and sharper environmental structures.

Similar to the local registration experiments, we also compare our method to GICP (Segal et al., 2009). Note
that the pipeline for assembling scans by visual odometry and pose graph optimization to globally align the
local dense 3D maps is used in the same way, to have a fair comparison. For GICP, the resulting 3D map
is less accurate and smeared. Our method is computationally more efficient with a runtime of 145 ± 50ms
averaged over the complete data set, compared to 1555± 613ms for GICP.

Figure 19 shows the resulting map from different perspectives, which allows for a better interpretation of
the scene. Here, cars and pillars in the parking garage can be identified in the globally aligned 3D scans. It
can also be seen that even lamps hanging from the ceiling are modeled by the extracted allocentric 3D point
cloud.

6.3 Global Path Planning

We tested our global path planner in simulation and with the real MAV. In the real robot experiments, our
MAV had to follow the planned paths employing a position controller and GPS. We extended the allocentric
map derived from city and elevation model with obstacles (lanterns) for these experiments. Replanning was
performed at 0.2 Hz and all components were running on the onboard computer. Our MAV was able to
follow the planned paths collision free. Figure 20 shows an example from the test runs where the MAV was
pushed from the planned path by a gust of wind—resulting in a qualitatively different path after replanning.

6.4 Local Path Planning

We evaluate the computing time and the resulting flight trajectories in simulation. The MAV follows a
globally planned path and has to avoid obstacles that are not in the a priori known world model (Figure 21).
The experiments were performed with two different uniform grids with cell size 0.25 m and 1 m, respectively.



(a) Ours with graph optimization. (b) Ours without graph optimization. (c) GICP with graph optimization.

Figure 18: Top-down views of the resulting maps: our surfel registration method with graph optimization (a)
yields accurate results, whereas the maps of the other methods show inconsistencies (b) and drift (c).

(a) Accurately mapped environmental structures and cars. (b) Ceiling structure with mapped lights.

Figure 19: Impressions of the quality of the built 3D map. Environmental structures are consistently mapped.
Even details such as car silhouettes (a) and lamps hanging from the ceiling (b) are accurately modeled.

These were compared to our local multiresolution grid with a minimum cell size of 0.25 m and 8 cells per
grid. The timings in Table 2 are measured with the MAV onboard computer.

All planning representations perform equally well if the globally planned path can be followed. In the case
newly perceived obstacles have to be avoided, the planning time for a uniform grid with high resolution
substantially exceeds the time window for replanning. In contrast, the local multiresolution planning is
always fast enough for continuous replanning.

Table 2 summarizes the resulting path lengths for a case where the MAV has to locally plan a detour around
an obstacle, not represented in the static environment model using the three planning representations. The
path lengths are normalized for comparability between test runs. Local obstacle avoidance without global
replanning results in 3% longer paths by means of our proposed multiresolution grid instead of the fine
uniform grid. The coarse uniform grid results in 9% longer paths.

6.5 Local Obstacle Avoidance

We evaluate the performance and reliability of our predictive collision avoidance module in simulation and
on the real system.
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Figure 20: (a) The MAV follows an allocentric planned path (black lines) given a static environment map.
(b) The MAV was disturbed by a strong gust of wind. (c) By continuous replanning, a new cost-optimal
path to the goal waypoint could be found (c) and the MAV reached the goal collision free. The red circle
highlights the position of the MAV. The magenta dot indicates the goal, and the red arrow indicates the
next intermediate waypoint to reach.

Table 2: Planning time of local path planner and normalized lengths of resulting trajectories.

grid representation cell size planning time length
min. max.

multiresolution 0.25 m 12 ms 35 ms 1.03 m
uniform 0.25 m 26 ms 3395 ms 1.00 m
uniform 1.00 m 4 ms 20 ms 1.09 m

We tested our approach on a simulated waypoint following scenario. In this scenario, the robot had to follow
a path through three walls with window-like openings of different size. We measured the time the MAV
needed and the forces repelling the MAV from obstacles during the flight. The forces are a measure on how
close the MAV comes to the obstacles. We compared our approach with the classical potential field approach.
Furthermore, we implemented a fixed slow down of the MAV. Here, the MAVs maximum speed is reduced
by a fixed factor if the forces along the predicted trajectory cross a threshold at any time. In our evaluation,
we tested this approach without prediction, i.e., just the forces in the current state are estimated, and with
a 1 s trajectory rollout. We show the results in Table 3.

These experiments show that our predictive collision avoidance leads to smoother trajectories, keeping the
MAV further away from obstacles than the same potential field approach without trajectory prediction. No
collisions occurred during these test runs. The simulated MAV was able to fly through passageways of its size
plus a safety margin. We also evaluated our approach with the real robot. Our collision avoidance approach
runs at approximately 100Hz on a single core of an Intel Core 2 processor, which includes data acquisition
and map building. Figure 22 shows an experiment where the hovering MAV avoided approaching or static
obstacles.

Table 3: Evaluation of flight durations and repelling forces applied to the MAV by the reactive obstacle
avoidance.

Time (s) Avg. Force
Std. Potential Fields 11.90 (0.5) 0.44 (0.06)
Fixed Slow Down 12.56 (0.8) 0.43 (0.04)
Fixed Slow Down (1 s look-ahead) 14.30 (1.7) 0.28 (0.04)
Adaptive Velocities (1 s look-ahead) 12.90 (0.8) 0.30 (0.01)
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Figure 21: A global path planner plans allocentric paths (yellow lines) based on an environment model
known in advance at a rate of 0.2 Hz. A local multiresolution path planner refines these plans locally, based
on onboard maps incorporating sensor information (colored measurements) at 2 Hz. The green lines depict
the local deviation from the global path to avoid a tree not represented in the static environment model
(blue boxes). From (a) to (b) the MAV (red box) approaches the tree and the detour is planned at a finer
resolution. The movement direction is from left to right in these figures.

6.6 Evaluation of the Integrated System

We evaluated the integration of our components into one working MAV mapping system. Here, we describe
one exemplary mapping session of our MAV. The main goal of this experiment was to autonomously map
an old manor house as shown in Figure 24a. The scenario involves vegetation such as trees and bushes and
is difficult to traverse from all sides by humans. Therefore, a manual flight by a human pilot controlling the
MAV was not possible in this scenario.

The user manually defined a set of mission-relevant view poses given the coarse LoD2 world model. These
view poses where roughly specified to cover the building facade from all sides. Then, they are processed
by a mission control layer, incorporating the mission planner. Figure 11 shows a solution for the mission
described in this section. After takeoff, the global planner begins to continuously plan paths to the next
mission relevant pose. Figure 12 shows a local deviation from the allocentric path while returning to the
start position. The allocentric world model is updated during the mission.

The overall flight duration was approximately 8 minutes and the traversed trajectory is shown in Figure 23.
The MAV successfully traversed the building in all experiments without colliding with an obstacle.

Resulting 3D maps of the global registration are shown in Figure 24. It can be seen that our method is able
to successfully map the building. Even details of the structure of the facade, such as windows and doors are
represented in the map.

7 Conclusions

In this article, we presented an integrated system to autonomously operate MAVs safely in the vicinity of
obstacles. We approached this challenge by employing local multiresolution mapping and planning techniques
that facilitate frequent updates and replanning.
We showed that by incorporating multimodal sensor information we are able to detect and avoid diverse
obstacles. Pose estimation based on camera and laser data enables robust motion control in GPS-denied
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Figure 22: (a) The hovering MAV (green) avoids collisions with approaching obstacles (yellow). (b) The
MAV is repelled by a static obstacle (fence) while a human operator commands it towards it.

Figure 23: Evaluation of the integrated system by mapping an old manor house. The resulting trajectory
(black) traversed by the MAV from top and side view. Color encodes the height from the ground.

environments.

Laser-range measurements are aggregated by registering sparse 3D scans with a local multiresolution surfel
map. Modeling measurement distributions within voxels by surface elements allows for efficient and accurate
registration of 3D scans with the local map. The incrementally built local dense 3D maps of nearby key
poses are registered globally by graph optimization. This yields a globally consistent dense 3D map of the
environment. We demonstrate accuracy and efficiency of our approach by showing consistent allocentric 3D
maps, recorded by our MAV during flight.

Furthermore, we show that multilayered navigation planning yields a high potential to cope with dynamically
changing environments and perpetually new obstacle perceptions. By employing a global-to-local approach in
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Figure 24: Evaluation of the integrated system by mapping an old manor house. (a + c) Photos of the scene.
(b + d) the resulting global maps after the mission. Color encodes the height from the ground.

our navigation planning pipeline, we achieve replanning frequencies that match the rate of expected changes
in the environment model. A reactive collision avoidance layer accounts for fast MAV and environment
dynamics and refines higher-level mission plans based on onboard sensing and a priori information.

We could demonstrate both the efficiency of the involved components as well as the reliability of the overall
system by autonomously accomplishing a mission to map a building and its surroundings while flying in the
vicinity of buildings, trees, cables and other potential obstacles and sources for collision.

Videos showing the performance of the integrated system can be seen at www.ais.uni-bonn.de/MoD.
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