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Abstract
Visual odometry, i.e., estimating ego-motion from camera images, is frequently used as a building block in robot
navigation systems. In this paper, we propose an efficient approach that provides robust and accurate visual odometry
from RGB-D cameras in a wide range of settings. We seamlessly combine dense RGB-D image registration with
the alignment of sparse interest points. While the former approach is robust and accurate when perceiving the depth
towards structures well in less textured parts of an environment, the latter often performs better, if well textured but
less structured parts are visible. Our formulation also integrates interest points with strongly uncertain or no depth to
make best use of the available images. In experiments, we demonstrate advantages of our approach over methods that
either are based on dense image or sparse interest point matching.

1 Introduction

Robot navigation systems such as those for rough terrain
rovers or flying robots, frequently employ visual odom-
etry as one important cue to estimate the six degree-of-
freedom motion of the vehicle. In this paper, we propose
robust and accurate visual odometry from RGB-D cam-
eras that potentially covers a wide range of settings by the
combination of shape and texture cues.
We combine dense RGB-D image registration with sparse
interest point matching in a coherent framework. Our
dense image registration method uses all available depth
to align observed surfaces. This process is supported by
the texture information contained in the RGB images. We
complement dense shape registration with sparse inter-
est point matching to also incorporate detailed informa-
tion from the RGB images in regions that only have far
and noisy depth readings or no depth measurements at
all. Our approach seamlessly integrates both objectives
and performs dense RGB-D image registration and sparse
bundle adjustment concurrently.

2 Related Work

Using multi-camera setups such as stereo cameras, the
3D geometry of interest points and the camera motion can
be directly estimated between two images. In his semi-
nal work, Nister [8] proposes real-time visual odometry
for monocular as well as stereo cameras. On sequences
of stereo images, camera motion is estimated first be-
tween pairs of frames using a 3-point RANSAC algo-
rithm which is further refined using bundle adjustment.
The approach of Howard et al. [4] also formulates visual
odometry as sliding window bundle adjustment. It en-
forces rigidness in the arrangement of the interest point

Figure 1: Dense RGB-D registration is particularly well
suited in close-by scenes with strong shape variations
(top left). It also performs well if strong shape but weak
texture cues are available (top right). The registration of
sparse interest points is advantagous if shape does barely
constrain the registration, but texture variations provide
landmarks in the scenes. This may be the case with
mostly far and noisy depth measurements (bottom left),
or if a flat structure is observed (bottom right).

matches which further improves robustness. Fovis [5]
applies concepts from stereo visual odometry to RGB-
D cameras. The approach initializes interest point match-
ing and bundle adjustment with a coarse rotation estimate
that is obtained through image correlation. Droeschel et
al. [3] match interest points in the intensity images of
time-of-flight depth cameras and register the 3D coordi-
nates of the points.
With dense depth measurements available, images can be
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aligned as a whole to estimate camera motion. Typical
approaches in robotics and computer graphics are vari-
ants of the ICP [1] algorithm which register 3D point
clouds. On current CPUs, ICP methods require subsam-
pling to achieve high frame rate. In robotics, GICP [10]
has been proposed which unifies the ICP formulation
for various error metrics such as point-to-point, point-
to-plane, and plane-to-plane. Magnusson et al. [7] pro-
pose the 3D-NDT which transforms point clouds into 3D
grids and represents the points by their Gaussian statis-
tics within the voxels. Stoyanov et al. [12] register a 3D-
NDT of a scene point cloud to a model 3D-NDT. To the
best of our knowledge, these registration methods are not
reported to support real-time capable scan-matching of
VGA RGB-D images.
Recently, Steinbrücker et al. [11] proposed a dense
photogrammetric matching method for estimating visual
odometry from RGB-D images. They model how images
transform through view-pose change and optimize for the
pose in order to align gray-scale images taking into ac-
count the measured depth. Kerl et al. [6] extended this
approach with a student t-distribution noise model and it-
eratively reweighted least squares optimization.
In previous own work [15], we proposed multi-resolution
surfel maps (MRSMaps), which enables high frame-rate
registration on CPUs. Similar to the 3D-NDT, we over-
lay a 3D grid at multiple resolutions onto the point cloud
measurements. Within the voxels, we store the Gaus-
sian statistics on the shape and color distribution of the
points. To support data association during registration,
we describe local context of each voxel in shape-texture
descriptors. The data association is performed in an ef-
ficient multi-resolution strategy, and the alignment pose
between two maps is found through optimization of the
matching of the Gaussian statistics. Our highly efficient
implementation registers 640×480 RGB-D images at a
frame rate of about 23 Hz on a CPU.

3 Dense Image and Sparse Interest
Point Registration

We combine approaches to dense image and sparse in-
terest point registration in a common optimization frame-
work. For dense image registration, we employ multi-
resolution surfel maps (MRSMaps, [15]). Sparse interest
point matching is performed through bundle adjustment.
Both objectives are integrated in a single one to combine
their complementary strengths.

3.1 Dense Image Registration with Multi-
Resolution Surfel Maps

Multi-resolution surfel maps (MRSMaps [15]) represent
the RGB-D image content as Gaussian color and shape
statistics within voxels of an octree. We denote the con-
tent of a voxel as surface element (surfel). The maximum
resolution at each point in the map is adapted to the noise
properties of the individual measurements. It is limited

in proportion to the squared distance from the sensor. A
map not only stores surfels in the leaves of the octree, but
also on all coarser resolutions. This allows for aligning
maps taken from different view points efficiently on the
finest common resolution. Registration alternates itera-
tively between surfel association and pose optimization.

3.1.1 Surfel Association

Associations of surfels AS = {(ss, st)} are established
from the current estimate x of the view pose difference
between the maps. For each scene surfel ss, we search for
an association with a model surfel st. Surfels that have
not been associated in the previous iteration are trans-
formed with the current pose estimate, and a correspond-
ing surfel is searched in a local volume around the trans-
formed position. The size of this local volume scales with
the resolution of the surfel. We determine associations for
surfels that could be associated in the previous iteration
in a more efficient way by either selecting the associated
surfel from the previous association or one of its direct
neighbors in the voxel grid. We only establish associa-
tions on the finest resolution common between both maps
to save redundant calculations on coarser resolutions.

3.1.2 Pose Optimization

To estimate pose, its likelihood given the observations of
scene MRSMap Ms and target map Mt is optimized,

p(x |Ms,Mt) = η p(Ms | x,Mt) p(x), (1)

where η is a normalization constant independent of
x. Through the probability p(x), we can include prior
knowledge on the pose. Without such knowledge, the
prior is given by the uniform distribution. The observa-
tion likelihood considers the matching of associated sur-
fels given the pose estimate

p(Ms | x,Mt) =
∏

(ss,st)∈AS

p(ss | x, st). (2)

The probability of a surfel match is the likelihood of the
matching of the normal distributions of both surfels,

p(ss | x, st) =

N
(
0;µt − T (x)µs,Σt +R(x)ΣsR(x)T

)
, (3)

where µ is the sample mean of a surfel and Σ its sample
covariance.
We efficiently optimize the logarithm of our probabilistic
objective function using the Levenberg-Marquardt (LM)
method. The negative logarithm of the objective is

LM (x) := const .+
1

2

∑
(ss,st)∈AS

log |Σ(x; ss, st)|

+
1

2

∑
(ss,st)∈AS

(µt − g(x, ss))
T

Σ(x; ss, st)
−1 (µt − g(x, ss)) , (4)

where we defined g(x, ss) := T (x)µs and
Σ(x; ss, st) := Σt + R(x)ΣsR(x)T . We neglect the



effect of the pose variable on the matching covariances
to write the objective as

LM (x) ≈ const .+
1

2
eM (x)TWMeM (x). (5)

Here, eM (x) is a vector of residuals stacked from the
residuals µt − g(x, ss) for each surfel association. The
weight matrix WM contains the inverse matching covari-
ances Σ(x; ss, st)

−1 of the associations on its main di-
agonal. Using this approximation, LM optimization per-
forms damped Gauss-Newton steps

∆x =[
JM (x)TWMJM (x) + λI

]−1
JM (x)TWMeM (x),

(6)

where JM (x) is the Jacobian of eM (x).
For further details on RGB-D image aggregation and
registration with MRSMaps, we kindly refer the reader
to [15].

3.2 Sparse Interest Point Registration
We extract multi-scale ORB [9] interest points F from
the RGB image and use the ORB descriptor for matching
them.

3.2.1 Interest Point Detection

The ORB interest point detector finds corners in the im-
age and describes the texture pattern in the local vicinity
of the corner with binarized pixel comparisons. For pose
estimation, a uniform distribution of interest points across
the image is beneficial. We overlay a 8×6 grid over the
image and select the 25 strongest interest points in a cell.
We parametrize the position of interest points f by 2D
pixel location fx, fy and inverse depth fρ = 1/d. Its
covariance Σf = diag(σ2

f,x, σ
2
f,y, σ

2
f,ρ) quantifies uncer-

tainties in pixel position and inverse depth. One reason
for using inverse depth is the disparity measurement prin-
ciple of textured-light projecting RGB-D sensors. A good
approximation for such sensors is that the standard devi-
ation of a depth measurement scales quadratically with
depth. Inverse depth also allows for modeling large depth
measurement noise [2]. Points without depth can be as-
signed a very large constant.
Additionally, to consider imprecisions of the pixel posi-
tion of the interest point, we examine the depth in the lo-
cal image neighborhood of the interest point. We use the
empirical mean of the depth in a local radius and add its
variance to the modeled depth uncertainty. As a positive
side-effect, if the interest point is at a depth discontinuity,
depth variance covers the range between foreground and
background.

3.2.2 Interest Point Matching

For matching interest points F between images, we first
reject self-similar features in each image according to the

Hamming distance of their binary descriptors. From the
remaining interest points, we build a LSH index [9] to
efficiently match the binary descriptors between the im-
ages. The set of associations AF = {(fs, ft)} consists
of the best three matches per interest point of the source
image. A match is required to be mutual, i.e., it needs to
be found in both directions between the images.

3.2.3 Pose Optimization

As in bundle adjustment, we concurrently optimize for
the view pose difference between the images as well as
the landmark positions L of the interest points in a com-
mon reference frame. We parametrize landmark position
as pixel position and inverse depth, while the common
reference frame is naturally chosen as the camera frame
of the target image. Using a bundle-adjustment approach
potentially improves the estimate over pure 3D registra-
tion, when only coarse depth or barely depth is available
for the interest points.
We formulate this optimization objective as the likelihood
of the view pose estimate xs of the scene image and the
landmark positions Ls and Lt of the interest points in
both images,

p(xs, Ls, Lt | xt = 0, Fs, Ft) =

η p(Fs, Ft | xs, xt = 0, Ls, Lt) p(xs) p(Ls) p(Lt), (7)

given that the pose of the target image is fixed and coin-
cides with the common reference frame, i.e., T (xt) = I .
The factorization includes prior probabilities on poses
and landmark positions, for which we assume unin-
formed uniform probabilities.
The observation likelihood of the interest points further
factorizes into

p(Fs, Ft | xs, xt = 0, Ls, Lt) =∏
a=(fs,ft)∈AF

p(fs | xs, la) p(ft | xt = 0, la). (8)

We model the individual observation likelihood of an in-
terest point as being normal distributed, i.e.

p(f | x, l) = N (f ;h(x, l),Σf ) . (9)

The observation model

h(x, l) = π−1 [T (x)π (l)] (10)

projects the landmark position l into the camera frame
in which the interest point has been observed. The pro-
jective mapping π transforms positions parametrized in
pixel location and inverse depth into Cartesian 3D coor-
dinates, i.e.

π

 fx
fy
fρ

 =

K−1

 f−1ρ 0 0
0 f−1ρ 0
0 0 f−2ρ

  fx
fy
fρ

 , (11)



where

K =

 flx 0 cx
0 fly cy
0 0 1

 (12)

is the instrinsic camera calibration matrix parametrized
by focal lengths flx, f ly and optical center cx, cy . The
inverse projective mapping is

π−1

 lx
ly
lz

 =

 l−1z 0 0
0 l−1z 0
0 0 l−2z

 K

 lx
ly
lz

 , (13)

The negative log likelihood of the objective in Eq. (8) is

LF (y) = const .

+
1

2

∑
a=(fs,ft)∈AF

[
(fs − h(x, la))TΣ−1f,s(fs − h(x, la))

+ (ft − h(0, la))TΣ−1f,t(ft − h(0, la))
]
. (14)

In y, we stack the view pose x of the source image and
the landmark positions li of the N = |AF | associated in-
terest points. This non-linear least squares problem can
be written in the form

LF (y) = const .+
1

2
eF (y)TWF eF (y), (15)

where eF (y) stacks the individual residuals f − h(x, l)
of the interest points in both images, and WF is a block-
diagonal matrix with corresponding inverse covariances
Σ−1f on the diagonal.
We use the LM method to optimize for the view pose
of the source image and the landmark positions concur-
rently. The Jacobian JF (y) of eF (y) has a special struc-
ture,

JF (y) :=

−



dh
dx (x, l1) dh

dl (x, l1) 0 · · · 0

...
0

. . . . . .
...

...
. . . . . . 0

dh
dx (x, lN ) 0 · · · 0 dh

dl (x, lN )

0

dh
dl (0, l1) 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 dh

dl (0, lN )


.

(16)

The LM update is

∆y = (HF (y) + λI)
−1
bF (y) (17)

with HF (y) = JF (y)TWFJF (y) and bF (y) =

JF (y)TWF eF (y). Also HF (y) has a special form, i.e.

HF (y) =

HF,xx HF,xl1 · · · HF,xlN

HF,l1x HF,l1l1 0 · · · 0

...
0

. . . . . .
...

...
. . . . . . 0

HF,lNx 0 · · · 0 HF,lN lN

 , (18)

where we define

HF,xx :=

N∑
i=1

(
dh

dx
(x, li)

)T
Σ−1fs,i

(
dh

dx
(x, li)

)
,

HF,xli :=

(
dh

dx
(x, li)

)T
Σ−1fs,i

(
dh

dl
(x, li)

)
,

HF,lix :=

(
dh

dl
(x, li)

)T
Σ−1fs,i

(
dh

dx
(x, li)

)
,

HF,lili :=

(
dh

dl
(x, li)

)T
Σ−1fs,i

(
dh

dl
(x, li)

)
+

(
dh

dl
(0, li)

)T
Σ−1ft,i

(
dh

dl
(0, li)

)
.

(19)

Hence, the LM update step can be subdivided into two
steps. The first step updates the pose

∆x =

S−1F

(
bF (x)−

N∑
i=1

HF,xli (HF,lili + λI)
−1
bF (li)

)
,

(20)

using the Schur complement

SF := HF,xx+λI−
N∑
i=1

HF,xli (HF,lili + λI)
−1
HF,lix

(21)
of HF (x) + λI . The update on the landmark positions L
is individual in each landmark li,

∆li = (HF,lili + λI)
−1

(bF (li)−HF,xli∆x) . (22)

This reduces run-time complexity from quadratic to lin-
ear in the number of interest point matchings. We neglect
matches with a likelihood below a threshold in each it-
eration of the LM optimization to improve accuracy and
robustness for outliers.

3.3 Combined Registration
Considering cues of dense image and sparse interest point
registration concurrently, the likelihood of source image
view pose and landmark positions is

p(xs, Ls, Lt | xt = 0,Ms,Mt, Fs, Ft) =

η p(Ms | xs,Mt) p(Fs, Ft | xs, xt = 0, Ls, Lt)

p(xs) p(Ls) p(Lt). (23)

The negative logarithm of this likelihood sums the objec-
tives in Eqs. (4) and (14),

L(y) = LM (x)+LF (y) = const .+e(y)TWe(y), (24)



where e(y) stacks the residuals eM (x) and eF (y), andW
is a block-diagonal matrix composed of WM and WF .
The LM update is

∆y = (H(y) + λI)
−1
b(y). (25)

The matrix H(y) is still sparse and decomposes into
the form of Eq. (18). Compared with HF (y), the en-
tries involving landmark positions remain the same, i.e.,
Hxli = HF,xli , Hlix = HF,lix, and Hlili = HF,lili .
Component Hxx is

Hxx = HF,xx+∑
(ss,st)∈AS

(
dg

dx
(x, ss)

)T
Σ(x; ss, st)

−1
(
dg

dx
(x, ss)

)
.

(26)

Hence, we can also apply the Schur decomposition of
H(y) + λI to efficiently compute individual updates on
the view pose and the landmark positions as in Eqs. (20)
and (22).

4 Experiments
We evaluate our approach with an Intel Core i7-4770K
QuadCore CPU with a maximum clock rate of 3.50 GHz.
We used sequences of the RGB-D benchmark [16] which
includes evaluation measures and pose ground truth cap-
tured with an optical motion capture system. The selected
sequences provide diversity in scenes such as close or far
average measurements, well or less textured scenes, or
scenes with little or strong shape variations. We com-
pare our combined approach (MRS+IP) with dense RGB-
D registration using MRSMaps, our sparse interest point
matching method alone (IP), warp [11], fovis [5], and
GICP [10]. If not stated otherwise, an open-source im-
plementation of warp contained in the OpenCV library
has been used.
Table 1 summarizes average run-time of several ap-
proaches. Pure sparse interest point registration methods
such as IP or fovis, achieve frame rates beyond 30 Hz.
The frame rate of our method is about 15.6 Hz in average
which is slightly lower than warp or MRSMap registra-
tion without interest points.
Tables 2 and 3 report median and minimum accuracy,
respectively. The combination of MRSMap and inter-
est point registration often improves the performance of
the individual approaches, while it retains their individ-
ual strengths. This can also be seen from the distribution
of errors in Fig. 3. While the dense method is very accu-
rate and robust in close-by scenes with less noisy depth
(e.g., fr2_desk), sparse interest point matching also suc-
ceeds if distant scenery is observed with noisy depth (e.g.,
fr2_large_with_loop). While not every frame can be pro-
cessed in real-time, Fig. 2 demonstrates that our method
is suitable for large frame skips, far beyond real-time re-
quirements (2 frames skipped).

Table 1: Comparison of average run-time.

method MRSMap IP MRS+IP warp fovis

run-time in ms 49.9 13.3 64.2 54.5 8.3
frame rate in Hz 20.0 75.2 15.6 18.3 120.5

Table 2: Median relative pose error (RPE) in mm.

sequence MRSMap IP MRS+IP warp fovis

fr1 360 5.0 6.3 4.8 5.9 7.1
fr1 desk 4.6 7.2 5.1 5.8 6.3
fr1 room 3.5 4.9 3.7 4.6 5.4
fr1 rpy 3.0 3.6 2.8 5.1 5.4
fr1 xyz 2.4 4.3 2.7 4.1 4.6
fr2 360 hemisphere 27.3 9.1 9.2 40.6 10.4
fr2 desk 2.2 2.4 1.9 2.1 2.5
fr2 large with loop 25.8 10.2 9.3 94.7 12.1
fr2 pioneer slam 2 11.4 4.8 6.1 6.4 7.7
fr2 rpy 1.7 1.4 1.0 1.7 1.7
fr2 xyz 1.6 1.5 1.0 2.0 1.9
fr3 nostruct notext far 9.3 21.1 12.2 40.4 11.3
fr3 nostruct notext near 15.3 11.8 13.6 28.2 11.2
fr3 nostruct text far 18.1 19.0 16.3 19.2 20.8
fr3 nostruct text near 11.6 6.3 6.8 7.0 7.3
fr3 struct notxt far 2.2 10.5 2.5 8.6 9.1
fr3 struct notxt near 2.1 12.7 2.0 8.6 9.3
fr3 struct txt far 5.5 6.9 6.7 8.1 8.8
fr3 struct txt near 3.2 4.4 4.1 5.9 6.5

Figure 2: Median trans. error (m) for frame skips on
fr1_desk (left) and fr2_desk (right) (*from [11]).
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Table 3: Maximum relative pose error (RPE) in mm.

sequence MRSMap IP MRS+IP warp fovis

fr1 360 41.8 169.4 95.1 75.4 43.1
fr1 desk 25.9 45.4 39.8 131.8 34.2
fr1 room 45.0 103.5 78.7 167.8 55.1
fr1 rpy 28.9 38.3 50.6 41.8 38.7
fr1 xyz 9.6 18.7 13.6 18.1 25.8
fr2 360 hemisphere 6296 2396 1823 5.6e5 537.7
fr2 desk 17.0 15.3 16.9 14.1 15.5
fr2 large with loop 2177 202.4 144.6 5.1e5 220.6
fr2 pioneer slam 2 908.6 5441 904.8 1.6e5 902.7
fr2 rpy 30.0 8.0 15.9 189.5 11.0
fr2 xyz 27.3 6.0 5.5 8.8 9.9
fr3 nostruct notext far 49.4 353.8 49.4 6.0e4 108.4
fr3 nostruct notext near 57.8 1198 65.4 3.2e4 79.3
fr3 nostruct text far 57.7 2375 67.1 1230 101.5
fr3 nostruct text near 60.8 39.2 62.1 100.5 41.6
fr3 struct notxt far 17.1 239.4 13.2 2579 62.4
fr3 struct notxt near 13.2 8493 11.4 1108 86.9
fr3 struct txt far 23.0 23.7 35.6 39.0 45.2
fr3 struct txt near 14.5 32.5 26.7 34.8 38.2

5 Conclusions
In this paper, we propose an approach to visual odome-
try with RGB-D cameras that combines the complemen-
tary strengths of dense image and sparse interest point
registration. Dense image registration is performed by
transforming the full RGB-D image content into multi-
resolution surfel maps, and by registering these represen-
tations of successive images. Sparse ORB interest points
are detected in texture corners in the RGB image and
matched between the images using local texture descrip-
tors and reprojection distance. Bundle adjustment then
optimizes for the pose difference between the images and
the positions of the interest points.
Both objectives are formulated in a probabilistic way
and have been integrated in a single optimization frame-
work. We evaluate our approach on a RGB-D benchmark
dataset with state-of-the-art approaches and demonstrate
superior results in accuracy over both sparse or dense ap-
proaches alone. Our approach is fast enough to perform
real-time visual odometry for 640×480 RGB-D video on
a CPU.
In future work, we plan to integrate our approach for
simultaneous localization and mapping (SLAM) with
RGB-D cameras. Also the use for motion segmentation
of multiple moving rigid objects [13] and deformable reg-
istration [14] is a potential direction for future research.
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