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Abstract

Micro aerial vehicles (MAV) pose a challenge in designing sensory systems and algorithms due to their size and
weight constraints and limited computing power. We present an efficient 3D multiresolution map that we use
to aggregate measurements from our lightweight continuously rotating laser scanner. We estimate robot motion
by means of visual odometry and scan registration, aligning consecutive 3D scans with an incrementally built
map. Hence, we are able to aggregate scans over time and increase the density of the map.
By using local multiresolution, we gain computational efficiency by having a high resolution in the near vicinity
of the robot and a lower resolution with increasing distance from the robot, which correlates with sensor
characteristics in relative distance accuracy and measurement density. Compared to uniform grid-based maps,
multiresolution leads to the use of fewer grid cells without loosing information and consequently results in
lower computational costs. Hence, we are able to efficiently register new 3D scans with the map, utilizing the
multiresolution property in a coarse-to-fine approach.
In experiments, we compare the laser-based motion estimate with ground-truth from a motion capture system
as well as a state-of-the-art registration method. Overall, our approach allows for building accurate 3D obstacle
maps and estimating the MAV trajectory in real-time by 3D scan registration.

1 INTRODUCTION

Micro aerial vehicles (MAV) such as quadrotors have
attracted attention in the field of aerial robotics.
Their size and weight limitations pose a problem in
designing sensory systems for these robots, however.
Most of today’s MAVs are equipped with ultra sound
sensors and camera systems due to their minimal size
and weight. While these small and lightweight sensors
provide valuable information, they suffer from a lim-
ited field-of-view and are sensitive to illumination con-
ditions. Only few systems [17, 5, 1, 15] are equipped
with 2D laser range finders (LRF) that are used for
navigation.

In contrast, we build a continuously rotating laser
scanner that is minimalistic in terms of size and weight
and thus particularly well suited for obstacle percep-
tion and localization on MAVs, allowing for environ-
ment perception in all directions.

We use a hybrid multiresolution map that stores oc-
cupancy information and the respective distance mea-
surements. Measurements are stored in grid cells with
increasing cell size from the robot’s center. Thus, we
gain computational efficiency by having a high resolu-
tion in the close proximity to the sensor and a lower
resolution with increasing distance, which correlates
with the sensor’s characteristics in relative distance
accuracy and measurement density.

Figure 1: The grid-based multiresolution map with a
higher resolution in the close proximity to the sensor
and a lower resolution with increasing distance. The
point color encodes the distance from the ground.

Compared to uniform grid-based maps, multiresolu-
tion leads to the use of fewer grid cells without loosing
information and consequently results in lower compu-
tational costs. Fig. 1 shows our multiresolution grid-
based map.

Aggregating measurements from consecutive time
steps necessitates a robust and reliable estimation of
the sensor motion. Thus, we use the point-based map
representation to obtain an estimate of the sensor mo-
tion between consecutive 3D scans by scan registra-
tion. Since laser-based ego-motion estimation relies on
structure in the scene, it works best in scenarios where
Global Navigation Satellite Systems (GNSS) are not
available, like in indoor or urban environments.
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Figure 2: (a) CAD drawing of the continuously rotating laser scanner with the two rotation axes. The Hokuyo
2D LRF is mounted on a bearing and rotated around the red axis. (b) A photo of the assembled laser scanner.
(c) The 3D laser scanner mounted on our multicopter.

The remainder of the paper is structured as follows.
After a brief discussion of related work, the sensor
setup is described. The multiresolution map is intro-
duced in Section 4, followed by the scan registration in
Section 5. In the experiment section, we evaluate our
approach and compare it to ground-truth data from
a motion capture system as well as a state-of-the-art
registration method.

2 Related Work

For mobile ground robots, 3D laser scanning sensors
are widely used due to their accurate distance mea-
surements even in bad lighting conditions and their
large field-of-view (FoV). For instance, autonomous
cars often perceive obstacles by means of a rotating
laser scanner with a 360◦ horizontal FoV, allowing for
detection of obstacles in every direction [4, 9].
Up to now, such 3D laser scanners are rarely used
on lightweight MAVs, due to their payload limita-
tions. Instead, two-dimensional laser range find-
ers [6, 17, 5, 1, 15, 7] are used, which restricts the field-
of-view to the two-dimensional measurement plane of
the sensor.
A similar setup to ours is described by Scherer and
Cover et al. [12, 3]. Their MAV is used to au-
tonomously explore rivers using visual localization and
laser-based 3D obstacle perception. In contrast to
their work, we aggregate consecutive laser scans in
our multiresolution map by 3D scan registration.
For mobile ground robots, some approaches have been
proposed to estimate the motion of a robot by means
of 3D scan registration [11, 8, 14]. Most of these ap-
proaches are derived from the Iterative Closest Points
(ICP) algorithm [2]. Generalized-ICP [14] unifies the
ICP formulation for various error metrics such as
point-to-point, point-to-plane, and plane-to-plane.
We aim at perceiving as much of the surroundings
as possible in order to obtain almost omnidirectional
obstacle detection. Distance measurements are aggre-
gated in a 3D grid-based map at multiple resolutions

and acquired 3D scans are registered incrementally
with the map.

3 Sensor Setup

Our continuously rotating 3D laser scanner consists
of a Hokuyo UTM-30LX-EW 2D laser range finder
(LRF) which is rotated by a Dynamixel MX-28 servo
actuator to gain a three-dimensional FoV. As shown
in Fig. 2, the scanning plane is parallel to the axis of
rotation, but the heading direction of the scanner is
twisted slightly away from the direction of the axis—
in order to enlarge its field-of view. The 2D LRF is
electrically connected by a slip ring, allowing for con-
tinuous rotation of the sensor. The sensor is mounted
on our multicopter (Fig. 2c) pitched downward by 45◦

in forward direction, which places the core of the robot
upwards behind the sensor. Hence, the sensor can
measure in all directions, except for a conical blind
spot pointing upwards behind the robot.

The 2D laser scanner has a size of 62×62×87.5 mm
and a weight of 210 g. Together with the actuator
(72 g) and the slip ring, the total weight of the 3D
scanner is approximately 400 g.

The Hokuyo LRF has an apex angle of 270◦ and an
angular resolution of 0.25◦, resulting in 1080 distance
measurements per 2D scan, called a scan line. The
Dynamixel actuator rotates the 2D LRF at a rate
of one rotation per second, resulting in 40 scan lines
and 43,200 distance measurements per full rotation.
Slower rotation is possible if a higher angular resolu-
tion is desired. For our setup, a half rotation leads to
a full 3D scan of most of the environment (Fig. 3).
Hence, we can acquire 3D scans with up to 21,600
points with 2 Hz.



Figure 3: A 3D scan of an indoor environment ac-
quired with our continuously rotating laser scanner.
The color of the points encodes the distance from the
ground plane.

4 Local Multiresolution Map

Distance measurements from the sensor are accumu-
lated in a 3D multiresolution map with increasing cell
sizes from the robot center. The representation con-
sists of multiple robot-centered 3D grid-maps with dif-
ferent resolutions. On the finest resolution, we use a
cell length of 0.25 m. Each grid-map is embedded in
the next level with coarser resolution and doubled cell
length.
We use a hybrid representation, storing 3D point mea-
surements along with occupancy information in each
cell. Point measurements of consecutive 3D scans
are stored in fixed-sized circular buffers, allowing for
point-based data processing and facilitating efficient
nearest-neighbor queries.
Fig. 4 shows a one-dimensional schematic illustration
of the map organization. We aim for efficient map
management for translation and rotation. Therefore,
individual grid cells are stored in a circular buffer to al-
low shifting of elements in constant time. We interlace
multiple circular buffers to obtain a map with three di-
mensions. The length of the circular buffers depends
on the resolution and the size of the map. In case
of a translation of the MAV, the circular buffers are
shifted whenever necessary to maintain the egocentric
property of the map. In case of a translation equal
or larger than the cell size, the circular buffers for re-
spective dimensions are shifted. For sub-cell-length
translations, the translational parts are accumulated
and shifted if they exceed the length of a cell.
Since we store 3D points for every cell for point-based
processing, individual points are transformed in to the
cell local coordinate frame when adding, and back to
the map’s coordinate frame when accessing. Every cell
in the map stores a list of 3D points from the current
and previous 3D scans. This list is also implemented
by a fixed-sized circular buffer. If the capacity of the
circular buffer is exceeded, old measurements are dis-
carded and replaced by new measurements.
Since rotating the map would necessitate to shuffle all

cells, our map is oriented independent of the MAV
orientation. We maintain the orientation between the
map and the MAV and use it to rotate measurements
when accessing the map.
Besides the scan registration described in the following
section, the map is utilized by our obstacle avoidance
control using a predictive potential field method to
avoid occupied cells [10].

5 Scan Registration

We register consecutive 3D laser range scans to esti-
mate the motion of the robot. After acquiring a full
3D scan (i.e., a half rotation), the scan is deskewed to
compensate for the sensor motion and aligned to the
map by the Iterative Closest Point (ICP) algorithm.
Correspondences are assigned using the point-based
representation in the grid-cells and the ICP algorithm
estimates a transformation between the scan and the
map, describing the displacement between them. We
benefit from the multiresolution property of our map,
which allows to align a 3D scan in a coarse-to-fine
approach. Hence, we start assigning correspondences
and estimating the transformation at the coarsest
level. The resulting transformation is used as initial-
ization for the registration on the next finer level and
so forth.

5.1 Scan Undistortion

Since movement of the sensor during acquisition leads
to a distortion of the 3D scan, we incorporate a vi-
sual odometry estimate from two pairs of wide-angle
stereo cameras [13]. This 6D motion estimate is used
to assemble the individual 2D scan lines of each a half
rotation to a 3D scan. Fig. 5 illustrates the effect of
scan undistortion.

Figure 5: 3D point cloud of an indoor environment
with flat ground from a side view. Sensor move-
ment during scan acquisition yields distorted 3D scans
(top). We deskew the scan based on the motion esti-
mate (bottom).



Figure 4: One-dimensional schematic illustration of the hybrid local multiresolution map. Along with the oc-
cupancy information, every grid-cell (blue) maintains a circular buffer with its associated measurement points
(green). The map is centered around the robot and in case of a robot motion, ring buffers are shifted according
to the translational parts of the movement, maintaining the egocentric property of the map. Cells at coarser
levels are used to retain points from vanishing cells at finer levels and to initialize newly added cells (red arrows).

5.2 Data Association

(a) (b)

Figure 6: Assigning point correspondences. (a) For
every point of a 3D scan (blue), a corresponding map
point (green) is initially assigned from the cell’s point
list (red line). (b) If the distance to neighboring cells
is smaller than the distance to the initial assignment,
closer points might be found in the neighboring cell
(orange line).

When using the ICP algorithm for scan registration,
corresponding points between the model and the cur-
rent point cloud are assigned, usually by building a
space-partitioned data structure from the model point
cloud. In contrast, we continuously maintain our data
structure for efficient nearest-neighbor queries to as-
sign correspondences. Every point from a newly ac-
quired 3D scan is directly assigned to a cell in the
map in constant time. The closest point in terms of
the Euclidean distance from the point list of this cell
is initially assigned as corresponding point.
As illustrated in Fig. 6, points in neighboring cells
might be closer to the measured point than the ini-
tially assigned point. Consequently, we extend the
search to neighboring cells, if the distance to the initial
assignment is larger than the distance to the border

of a neighboring cell.

Since acquired 3D scans of the scene and the aggre-
gated local map differ in terms of structure and point
density, especially when parts of the scene have pre-
viously been occluded, individual assigned correspon-
dences can be incorrect. These incorrect correspon-
dences distort the transformation estimation and need
to be filtered. Thus, we reject correspondences by the
following criteria:

• Asymmetric correspondences: We check for
symmetry in the assignment, i.e., for a corre-
spondence from a scan point di to a map point
mi, we check if di is the closest point to mi in
the scan point cloud. Otherwise, the correspon-
dence is rejected.

• One-to-many correspondences: In case one point
in the map corresponds to many points in the
scan cloud, we keep the correspondence with the
least distance and reject the remaining.

• Correspondence trimming: Correspondences are
rejected by only considering θt percent of the as-
signed correspondences with the least distance.

• Distance rejection: Correspondences are re-
jected if farther away than θd.

5.3 Transformation Estimation

With N assigned corresponding point pairs (mi, di),
we determine the displacement between the points of
a scan di and the map points mi by finding a rigid
transformation T that minimizes



Table 1: ATE and run-time of our registration method, in comparison to visual odometry (VO), and GICP.

ATE (m) run-time (ms)

RMSE mean median std max mean std max

VO 0.151 0.134 0.129 0.059 0.324
GICP 0.033 0.030 0.030 0.013 0.079 1432.96 865.24 5673
ours 0.030 0.028 0.026 0.015 0.093 311.28 90.31 376

E(T) =

N∑
i=1

||mi −Tdi||2 (1)

using a closed-form singular value decomposition
(SVD) algorithm [2].

In each ICP iteration, correspondences are re-
assigned, the transformation that aligns these best is
applied to the scan, and the following termination cri-
teria are checked:

• E(T) is smaller than a given threshold θr,

• the difference between Tk and Tk−1 is smaller
than θε, or

• the number of iterations exceeds θi,

where Tk and and Tk−1 are the estimated transfor-
mations from the current and the previous iteration,
respectively.

6 Experiments

In a first experiment, we evaluate the accuracy of the
scan registration in an indoor motion capture (Mo-
Cap) system. It provides accurate pose information
of the MAV at high frame rates (100 Hz) but is re-
stricted to a small capture volume of approximately
2×2×3 m.

As error metric, the absolute trajectory error (ATE)
is computed, based on the estimated and the ground-
truth trajectory from the MoCap system. The refer-
ence implementation provided by Sturm et al. [16] was
used.

Throughout the experiments, five levels are used for
the multiresolution map with a cell length of 0.125 m
at the finest level, yielding a cell length of 2 m at the
coarsest level.

Figure 7: Absolute trajectory error of the scan regis-
tration using the multiresolution map (blue) compared
to ground-truth data from the MoCap system (black).
Points of the trajectory are projected on the xy-plane.

The parameters θr, θi and θε are manually deter-
mined. In this experiment, θr=1 cm, θε=0.001 cm,
θi=15, θd=1 m, and θt=80% showed best results.

The data set for evaluation is a 50 seconds flight se-
quence containing 100 3D scans, where the MAV was
controlled by a human operator, taking off and land-
ing at two locations in the MoCap volume. Fig. 7
shows the ATE of our multiresolution scan registra-
tion method, comparing it to the trajectory of the
MoCap system.

In quantitative experiments, we compare our
method to a state-of-the-art registration method, the
Generalized-ICP [14]. In addition, we evaluate the
accuracy of the visual odometry alone that is used to
undistort acquired 3D scans. The mean, standard de-
viation and maximum ATE of all three methods are
summarized in Table 1. The results indicate that
both scan registration methods improve the motion
estimate from the visual odometry and that the tra-
jectory generated by our method has a slightly lower
ATE compared to the Generalized-ICP. The run-times
of both methods for this experiment are also summa-
rized in Table 1, showing that Generalized-ICP is com-
putationally much more expensive than our method.
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Figure 8: Photo of the scene of the second experiment
(a). Aggregated 3D map after 1 scan (b), 5 scans (c),
and 10 scans (d) using the multiresolution scan regis-
tration.

In a second experiment, we acquire data in a parking
garage. Fig. 8(a) shows a photo of the environment.
Fig. 8 shows the point-based representation of the map
at different time steps, accounting for an increasing
density of the map after adding consecutive 3D scans.

Since ground-truth data, e.g., from a MoCap system
was not available in this experiment, we evaluate the
different methods by inspecting the variation of points
in a planar area. Fig. 9 shows a part of the floor in the
resulting point-based representation from a side-view.
It can be seen that using scan registration decreases
the thickness of the floor significantly, indicating an
improved motion estimate. Similar to the results of
the first experiment, the resulting floor patch gener-
ated by aggregating scans using our method is slightly
thinner. Note that in normal operation, scans are only
added if they properly align with the map, i.e., E(T)
is smaller than θr in Eq. (1). For this experiment, we
added every scan to the map to have a fair comparison
to the motion estimate from the visual odometry.

(a)

(b)

(c)

1m

Figure 9: A cut-out part of the floor from a side-view
after scan aggregation. (a) using only visual odom-
etry; (b) visual odometry combined with GICP scan
registration; (c) visual odometry with our multireso-
lution scan registration.

7 CONCLUSIONS

We presented an efficient 3D multiresolution map that
we use for obstacle avoidance and for estimating the
motion of the robot. We aggregate measurements
from a continuously rotating laser scanner that is par-
ticularly well suited for MAVs due to its size and
weight.
By using local multiresolution, we gain computational
efficiency by having a high resolution in the near vicin-
ity of the robot and a lower resolution with increasing
distance from the robot, which correlates with the sen-
sor’s characteristics in relative distance accuracy and
measurement density.
Scan registration is used to estimate the motion of the
robot by aligning consecutive 3D scans to the map in
a coarse-to-fine strategy. Hence, we are able to effi-
ciently align new 3D scans with the map and aggregate
distance measurements from consecutive 3D scans to
increase the density of the map.
In experiments, we compare the laser-based motion es-
timate with ground-truth from a motion capture sys-



tem and with the Generalized-ICP, a state-of-the-art
registration algorithm. Overall, we can build an accu-
rate 3D obstacle map and can estimate the vehicle’s
trajectory by 3D scan registration. Compared to the
Generalized-ICP, our approach results in a smaller ab-
solute trajectory error and is computational more ef-
ficient, allowing to register scans in real-time.
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