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Abstrat

Position ontrol of Miro Air Vehiles (MAV) is hallenging, beause position measurements by global naviga-

tion satellite systems or laser sanners are typially available at muh lower rates than the ontrol frequeny.

Furthermore, the transient response of lassi PID ontrollers is either slow or indues overshoot.

In this work, we address this issue by a model-based ontrol approah. We model and identify the dynamis of

the MAV and use this knowledge in a nonlinear asaded ontroller to generate time-optimal trajetories. The

proposed method is evaluated in simulation and two real MAVs.
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1 Introdution

In reent years, miro aerial vehiles (MAVs) have be-

ome widely available. Due to their low ost and �exi-

bility, they are used for aerial photography, inspetion,

surveillane and resue missions.

In most ases, a human operator pilots the MAV re-

motely to ful�ll a spei� task or the MAV is following

a prede�ned path of GPS waypoints in an obstale-free

altitude. Instead of remotely operating the MAV, we

aim for a fully autonomous �ight.

For the above mentioned tasks, a high level of au-

tonomy is neessary, inluding the apability of �ying

to and staying at waypoints. To this end, a model-

based position ontroller is developed in this work.

Partiular attention is needed in terms of overshoot

and settling time of the ontroller. During missions

in restrited environments suh as urban areas with

lose-to-wall �ying, overshoot ould easily lead to ol-

lisions. Time is also a ruial asset in these opera-

tions, sine the battery stritly limits the ahievable

�ight time. Setion 2 brie�y desribes the MAVs used

in this work.

2 Miro Aerial Vehiles

2.1 MAV 1

Suessful exeution of resue operations demand

quik response from the �re-�ghters whih may ause

physial and psyhologial stress on them during

emergeny servies. In order to failitate them to

perform their task e�iently, a MAV (Fig. 1) is de-

veloped to support suh operations. The MAV serves

as a mobile sensor platform and operates in oopera-

tion with the humans involved. For a omprehensive

spei�ation of the MAV properties see [1℄. The setup

an be summarized as follows:

Sensors:

• 1× 2D Laser sanner

• 1× GPS

• 1× Inertial measurement unit (IMU)

• 1× Camera dome

Proessing:

• 1× Intel-Atom 1.6GHz
• 1× Mikrokopter FlightCtrl

Atuators:

• 8× Coaxial Robbe ROXXY 2827-35

Figure 1: MAV with GPS, laser sanner and amera

dome used in resue operations
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2.2 MAV 2

Furthermore, we reate mission-spei� semanti

maps on demand. Speial fous lies on the inspe-

tion of a building's faade [2℄. Hene, the MAV has

to operate in the viinity of buildings and other stru-

tures, e.g. trees and power ables. For this purpose,

a planning algorithm generates optimal paths through

the previously mapped environment (Fig. 2). Further

information on planning is found in [3℄.

  

Figure 2: Map of the surroundings of the MAV with

planned trajetory

Our MAV used for these tasks is shown in Fig. 3. It

is equipped with a variety of sensors with omplimen-

tary properties.

  

Figure 3: MAV equipped with DGPS, stereo am-

eras and 3D laser sanner

For a detailed desription of our sensor setup and the

proessing pipeline see [4, 5, 6℄. The setup an be

summarized as follows:

Sensors:

• 2× Fisheye stereo ameras

• 1× 3D laser sanner (rotating 2D sanner)

• 1× Motion amera [7℄

• 1× Di�erential GPS (DGPS) [8℄

• 1× Inertial measurement unit (IMU)

• 8× Ultrasoni distane sensors

Proessing:

• 1× Intel Core i7 3820QM 2.7GHz

• 1× Pixhawk Autopilot

Atuators:

• 8× Coaxial MK3638 Motors

3 Related Work

Most traditional position ontrollers are based on

standard proportional-integral-derivative (PID) on-

trollers. Commerially available platforms like the

Mikrokopter, the PX4 or the OpenPilot CopterCon-

trol use linear PID-ontrollers for positioning.

Li et al. [9℄ and R. Baránek et al. [10℄ reate a

dynami model of a quadrotor. Positioning is also

ahieved with lassi PID-ontrol based on parameters

obtained from simulation. Puls et al. [11℄ desribe a

PI-ontrolled quadrotor. It relies on a dynami model

and is enhaned with a orretion term to lead the

quadrotor on a straight path to the target. A linear

state-spae model is identi�ed and parameterized by

Pfeifer et al. [12℄. Subsequently, a linear state-spae

ontroller is implemented and parameterized via pole

plaement. Bouabdallah et al. [13℄ derive a model

from di�erential equations. Basi PID and bakstep-

ping ontrol tehniques are ombined to ontrol atti-

tude, height, and position of the quadrotor. A non-

linear model of a MAV is reated by Patel et al. [14℄.

It onsists of a linear and a nonlinear part whih are

ontrolled separately by PID and sliding mode on-

trol. Some works employ mahine learning tehniques

for quadrotor ontrol. Dierks et al. [15℄, for example,

use neural networks to learn the quadrotor dynamis

and for positioning. All approahes have in ommon,

that multiple parameters and gains have to be ad-

justed. Either simple PID gains or omplex model

parameters have to be found to ahieve a good tran-

sient response. In this work, a model with very few

physially meaningful parameters is derived, whih is

identi�ed and used for model-based ontrol.

4 Modeling MAV Dynamis

4.1 Physis-based Model

A grey-box model of the 2D-dynamis of the MAV is

developed. It is assumed that the MAV is symmetrial
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Figure 4: Grey-box model of the 1D-kinematis of the MAV with two DoF.

and thus an be modelled as a superposition of two

idential models with two degrees of freedom (DoF)

eah (de�etion Θ and position x). It is also assumed

that the MAV is equipped with an underlying attitude

and an overlying height ontroller. Considering di�er-

ential equations of motion, Fig. 4 shows an approah

for the model. The MAV is modeled as point mass

with state variables [v,x℄ (veloity and position).

Assuming the MAV is hovering at onstant height, the

rotation speed of all motors n

mot

results in a onstant

jet stream v

jet

. This is represented by onstant C

prop

,

whih depends on aerodynami properties of the pro-

pellers. The diretion of the jet stream is governed

by the de�etion of plant input Θ. The resulting jet

v

jet,e�

is redued by the movement of the MAV v

and ampli�ed by the thrust onstant C

thrust

. This

onstant represents the size of the jet stream and the

aerodynami properties of the MAV. Redued by the

drag and onerning the mass of the MAV, this fore

propels the MAV with aeleration a whih results in

the veloity v and furthermore in the movement x of

the MAV.

With the following restritions made, the model an

be massively simpli�ed to the double integrator shown

in Fig. 5.

• Small angular de�etion (sin(vjet) ≈ vjet)
• Slow horizontal movement (vjet,eff >> v)
• Constant height (nmot ≈ const.)
• Negligibly small drag (Fjet >> Fdrag)

The plant input Θ is ampli�ed with the model spe-

i� gain C

a

, whih results in the aeleration a of

the MAV that is integrated to the veloity v and the

movement x.
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Figure 5: Simpli�ed grey-box model of the 1D-

kinematis of the MAV with two DoF.

4.2 Parameter Identi�ation

The model is �tted with experimental data. For this

model only one parameter has to be identi�ed. This

is done by �tting the MAV model with experimen-

tal data obtained in various test �ights using gradient

desend. For our MAVs, equations 1 to 3 hold;

Cacc =
CpropCtrustnmotor

m
, (1)

Cacc,MAV 1 = 9.3
m

s2
, (2)

Cacc,MAV 2 = 8.5
m

s2
. (3)

5 Model-based Control

Based on the identi�ed model, a nonlinear ontroller

is developed (Fig. 6). We limit the allowed de�e-

tion of the MAV in order to avoid high-speed or dy-

nami �ight maneuvers, whih ould be dangerous in

the viinity of obstales. Large de�etions would also

prevent the linearization of the model in Fig. 5. De-

spite these preautions, overshoot is not permissible as

it ould lead to ollisions during lose-to-wall �ying.
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Figure 6: Closed loop ontrol struture.

It an be seen that a asaded ontrol loop is used to

ontrol the position x as well as the veloity v of the

MAV.

The inner loop onsists of a P-ontroller whih set-

point is driven by an outer loop. Although the outer

loop ould also be a P-ontroller to arhive perfet

transient responses (in�nitely small settling time with-

out overshoot) in a non-limited system, here the outer

loop has to be nonlinear.

Considering simple equations of motion, Eq. 4 shows



the nonlinear part of the ontroller f(...). With re-

spet to the limited plant input, this ontroller is a-

pable of ahieving time-optimal responses without the

handiap of adjusting multiple gains:

f(...) =

√

2
Θmax · Cacc

xerr

. (4)

Sine both axes are ontrolled separately, the result-

ing trajetory to the target is bowed. This behavior

is shown in Fig. 7.
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Figure 7: Flight trajetory with deoupled and ou-

pled axes (xstart = [0m, 0m], xstop = [10m, 20m],
Θmax = 5◦, Cacc = 9.3 m

s
2 , Kp,inner = 10 s

m
).

This issue is addressed by de�ning a master, and a

slave axis, following the idea proposed for example

in [16℄. Both axes predit the time of arrival on the

next waypoint from the urrent state. This is done

analytially by solving Eq. 5 to Eq. 8.

∫

v dt = xerr (5)

∫

v dt = vtacc +
1

2
vmaxtdec +

1

2
(vmax − v)tacc (6)

vmax = v + taccΘmaxCacc (7)

t = tacc + tdec (8)

The solution is

t = −

v

ΘmaxCacc

+

√

v2

2 · (ΘmaxCacc)2
+

xerr

ΘmaxCacc

.

The master is de�ned as the axis with the higher time

of arrival. Subsequently Θmax of the slave axis is set

to math the arrival time:

Θmax,sl =
−

vsl
tma

+ 2xsl

t2
ma

+
√

( vsl
tma

−
2xsl

t2
ma

)2 +
v2

sl

t2
ma

Cacc

.

6 Experiments

The algorithm is �rst implemented and evaluated in

simulation (Setion 6.1). In Setion 6.2, it is applied

and evaluated on the MAV.

6.1 Simulation

Fig. 8 shows the simulated step response and subse-

quent position hold.

0 5 10 15

0

2

4

6

8

10

12

14

16

18

20

 

 

PSfrag replaements

Simulated Flight

Time in s →

P

o

s

i

t

i

o

n

i

n

m
→

Pos.Setp.x

Pos.Setp.y

Position x

Position y

Figure 8: Step response in simulation (xstart =
[0m, 0m], xstop = [10m, 20m], Θmax = 5◦, Cacc =
9.3 m

s
2 , Kp,inner = 10 s

m
).

The feedbak for the ontroller in simulation ontains

no noise and has an update rate of 1 kHz. The ou-

pled behavior is also shown in Fig. 7. Fig. 9 shows

the orresponding veloity trajetories.
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Figure 9: Step response in simulation (xstart =
[0m, 0m], xstop = [10m, 20m], Θmax = 5◦, Cacc =
9.3 m

s
2 , Kp,inner = 10 s

m
).

As an be seen in Fig. 8, these pro�les lead to exat

positioning in both axes at the same time. By limiting



the de�etion of the slave axis, an unbowed yet time

optimal trajetory is generated.

6.2 Real MAV Flight

The ontrol algorithm is also evaluated in real MAV-

�ight. Fig. 10 shows a transient response, reorded

with MAV 1.
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m
).

It an be seen that the feedbak provided by the on-

board GPS is muh less aurate then the simulated

feedbak. It leads to overshoot in the veloity. Nev-

ertheless, the overshoot in the position is negligibly

small. Furthermore, it an be seen that for example

at t = 12 s − 16 s, the measured veloity dereases

faster than the planned veloity pro�le. This is an

indiation for modelling unertainties.

The algorithm is ompared to the existing

Mikrokopter position ontroller. Table 1 shows the

results.

Controller Θmax Settling Time Overshoot

Nonlinear 2◦ 45 s 1.3m
Nonlinear 3◦ 18 s 0.7m
Nonlinear 5◦ 14 s 3.3m

Mikrokopter - 18 s 2.2m

Table 1: Performane of the ontroller

It an be seen that even with bad feedbak (no DGPS

available) and error-prone parameterization the non-

linear approah shows better results than the original

ontroller. For this very feedbak (GPS with 5Hz)
and model parameterization, a maximum de�etion

of Θmax = 3◦ would be reommended.

7 Conlusions

In this paper, an approah for a model-based position

ontroller for an unmanned MAV was presented.

A simpli�ed model is derived from di�erential equa-

tions. Model parameters are �tted to the real sys-

tem to approximate the MAV dynamis. A nonlinear

asaded ontroller, whih is apable of handling the

stritly limited plant input, is proposed. The ontrol

algorithm is implemented in simulation and on a real

MAV. It is evaluated and ompared to the existing

system.

Due to the easy model identi�ation proess and the

ability to reah waypoints without overshoot, the ap-

proah proposed in this paper is appliable to lose-to-

wall �ying. The ability to stay on a linear trajetory

in ombination with the fast transient response make

the ontroller ideal for MAVs with limited de�etion.

Sine the dynamis is limited by the slow and ina-

urate feedbak, additional researh will address this

issue. Espeially the use of DGPS on MAV 2 will be

subjet to further researh. Also the ability to pass

waypoints at a ertain speed will be investigated. Fur-

thermore, inluding height ontrol as a third oupled

axis will lead to straight paths in 3D spae.
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